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In optical phase shift profilometry (PSP), parallel fringe patterns are projected onto an object and the
deformed fringes are captured using a digital camera. It is of particular interest in real time three-
dimensional (3D) modeling applications because it enables 3D reconstruction using just a few image
captures. When using this approach in a real life environment, however, the noise in the captured images
can greatly affect the quality of the reconstructed 3D model. In this paper, a new image enhancement
algorithm based on the oriented two-dimenional dual-tree complex wavelet transform (DT-CWT) is pro-
posed for denoising the captured fringe images. The proposed algorithmmakes use of the special analytic
property of DT-CWT to obtain a sparse representation of the fringe image. Based on the sparse repre-
sentation, a new iterative regularization procedure is applied for enhancing the noisy fringe image. The
new approach introduces an additional preprocessing step to improve the initial guess of the iterative
algorithm. Compared with the traditional image enhancement techniques, the proposed algorithm
achieves a further improvement of 7:2dB on average in the signal-to-noise ratio (SNR). When applying
the proposed algorithm to optical PSP, the new approach enables the reconstruction of 3D models with
improved accuracy from 6 to 20dB in the SNR over the traditional approaches if the fringe images are
noisy. © 2011 Optical Society of America
OCIS codes: 100.2650, 100.5070, 100.5088, 100.7410, 110.4280.

1. Introduction

Among various noncontact three-dimensional (3D)
measurement technologies, phase shift profilometry
(PSP) [1–4] is of particular interest because it can de-
liver the 3Dmodel of an object using only a few image
captures. Its applications include real time motion
captures [1], quality control in printed circuit board
manufacturing [2], intelligent robot control, and
many others [3]. When using PSP in practical appli-
cations, the captured images are often contaminated
by noise. This may be due to the practical limitations
of the working environment and the imperfection of
the optical devices. It is particularly the case when
the technique is used in some real time applications
where images are captured with a short exposure

time. The noise problem in the captured images sig-
nificantly reduces the robustness of the algorithm. It
requires not only effective but also efficient measures
to solve the problem since the whole operation is
performed in real time.

The general system setup of the PSP is shown in
Fig. 1. In the figure, parallel fringe patterns are pro-
jected from G onto an object (e.g., Fig. 2) and the
deformed fringes are captured using a digital cam-
era. The height of the object deforms the fringe pat-
tern by introducing a phase shift [4], which can be
formulated as

gðx; yÞ ¼ rðx; yÞ þ cðx; yÞ cos½2πf 0xþ ϕðx; yÞ�; ð1Þ

where gðx; yÞ is the deformed fringe image, f o is
the fundamental frequency of the sinusoidal fringe
pattern in the x direction, and ϕðx; yÞ is the “abso-
lute phase” to be estimated. Since it is in a
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two-dimensional (2D) form, we also call ϕðx; yÞ the
phase image. As can be seen in Eq. (1), ϕðx; yÞ phase-
modulates the cosine function, hence, its estimation
can also be considered as a demodulation process ap-
plied to gðx; yÞ. If ϕðx; yÞ is known, the height profile
of the object can be readily obtained. Using s as the
distance between the camera and a reference plane
and d as the distance between the camera and the
projector as shown in Fig. 1, the height of the object
can be reconstructed from the phase by hðx; yÞ ¼
ϕðx; yÞ · s=ð2πf 0dþ ϕðx; yÞÞ [4]. In Eq. (1), rðx; yÞ and
cðx; yÞ model the effects due to irregular reflectance
of the object and transmission variations. rðx; yÞ
has to be removed from the images or a severe re-
construction error will result. To do so, the Fourier
transform (FT) profilometry [3,4] and the wavelet
transform profilometry [5–8] approaches were sug-
gested for the demodulation process. Another com-
monly used approach is the π-shifted PSP [2] that
captures two fringe images with a π phase shifted be-
tween the fringe patterns. By subtracting the second
image from the first one, the resulting image will
have rðx; yÞ effectively removed. The demodulation
process can then be directly carried out by applying
the Hilbert transform to the resulting image.

The above-mentioned demodulation methods,
however, have a common deficiency that only the
wrapped phase ϕ̂ðx; yÞ can be obtained rather than
the required absolute phase ϕðx; yÞ, which is related

to the wrapped phase by ϕðx; yÞ ¼ ϕ̂ðx; yÞ þ 2Mπ;M is
an unknown integer. To obtain ϕðx; yÞ from ϕ̂ðx; yÞ, a
phase unwrapping process is needed to estimate the
unknown M. It is not trivial, particularly when the
captured fringe images are noisy, and/or there are
abrupt changes in object shape. Errors will be gener-
ated in the unwrapping process and, more impor-
tantly, the errors will propagate to other parts of the
phase image such that the 3D model reconstructed
based on that will have severe distortion. To deal
with the problem, one research direction is to develop
robust phase unwrapping methods. Examples in-
clude the path-following approaches [9] such as Gold-
stein’s method and the minimization approaches
such as that in [10]. Nevertheless, these approaches
may either be too computationally intensive or not
robust enough at high noise levels. Another direction
is to directly denoise the estimated wrapped phase
image [11–14]. However, the errors in the estimated
wrapped phase image can hardly be modeled by a
random process with known distribution. The de-
noising process can be rather complicated and may
not be effective.

In fact, the problem in phase unwrapping stems
from the noisy fringe images in which the behavior
of noise is rather well known. Enhancing these
images should be more effective than enhancing the
phase images. Earlier work in this direction includes
[2], in which fast nonlinear one-dimensional (1D) fil-
tering and 2D median filtering methods are adopted
for suppressing noise in the image capturing process.
In [15–19], a windowed FT (WFT) is suggested for
the denoising and demodulation of the fringe images.
The denoising is achieved by hard thresholding of
the WFT transform coefficients and then applying
the inverse WFT. The method is also known [15–19]
as windowed Fourier filtering (WFF). Very promising
results can be achieved provided that the threshold
and the sampling frequency are selected appro-
priately. However, WFF is an extremely time-
consuming process, which imposes great difficulty
when applied to real time applications.

Recent advances in iterative regularization meth-
ods have added a new dimension to the study of
image enhancement [20–24]. In these approaches, a
sparse representation of the image is first obtained
by transforming the image with basis functions that
are compactly supported and have high vanishing
moments. A typical example is the wavelet function.
The enhancement of a noisy image can be modeled
as an iterative optimization process. Although the
technique is very effective in removing noise while
preserving image edges, much difficulty arises when
applying it to fringe image denoising. As opposed to
normal images, fringe images do not have smooth
regions but only fringes, which are indeed sinusoidal
functions as given in Eq. (1). Traditional iterative
regularization techniques that assume a sparse re-
presentation of the image can be obtained by trans-
forming the image are not necessarily valid for
fringe images. For instance, wavelet transforming
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Fig. 1. (Color online) Setup for optical PSP.

Fig. 2. (Color online) Test object.
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a sinusoidal function using the traditional Daube-
chies wavelet functions will never give a sparse re-
presentation. Since the transform coefficients are not
sparse, it means that the information of the fringes is
encoded in many small transform coefficients. If the
fringe image is noisy, the noise coefficients will have
similar magnitude as the fringe coefficients. Directly
processing (such as thresholding) the transform co-
efficients risks removing the fringes together with
the noise.

In this paper, a new image enhancement algorithm
based on the oriented 2D dual-tree complex wavelet
transform (DT-CWT) is proposed for denoising the
captured fringe images. The proposed algorithm
makes use of the special analytic property of DT-
CWT to obtain a sparse representation of the fringe
image. We prove that the magnitude response of the
oriented 2D DT-CWT coefficients of a fringe image is
a piecewise smooth function which can never be
achieved by traditional wavelet techniques (such as
the 2D discrete wavelet transform (DWT)). Based on
the sparse representation, a new iterative regulari-
zation procedure is applied for enhancing the noisy
fringe image. The new approach introduces an addi-
tional preprocessing step to improve the initial guess
of the iterative algorithm. The approach is computa-
tionally efficient and can suppress noise effectively
even when there are sharp phase jumps in the
fringe patterns. Compared to the traditional image
enhancement techniques, the proposed algorithm
achieves a further improvement of 7:2dB on average
in the signal-to-noise ratio (SNR). When applying the
proposed algorithm to optical PSP, the new approach
enables the reconstruction of 3D models of objects
with improved accuracy from 6 to 20 dB in the SNR
over the traditional approaches if the fringe images
are noisy. Compared to the WFF, the proposed algo-
rithm achieves a similar performance with computa-
tional complexity a few orders of magnitude lower.

The organization of this paper is as follows. In Sec-
tion 2, we first explain why an analytic wavelet
transform is a useful tool for analyzing fringe images.
We show that by using an analytic wavelet trans-
form, a sparse representation of a fringe image can
be obtained. In Section 3, we extend the idea to using
a 2D DT-CWT to obtain a sparse representation of
fringe images. Then the proposed iterative regulari-
zation algorithm based on a 2D DT-CWT is detailed.
In Section 4, the simulation and experimental re-
sults as compared with the traditional image en-
hancement methods are presented. In Section 5, a
summary of the contributions of this work is given.

2. Fringe Image Analysis Using the Analytic
Wavelet Transform

As explained in Section 1, the prerequisite of many
image enhancement algorithms is a transform that
can give a sparse representation of the image. In this
case, the image energy will concentrate on a small
number of transform coefficients with large magni-
tude. It will be much different from the response

of noise since for most orthogonal transforms, noise
energy will usually spread to many small coefficients
in the transform domain. Among the various ortho-
gonal transform techniques, the wavelet transform is
a popular choice due to its compactly supported basis
functions. Besides, most wavelet functions have high
vanishing moments that can annihilate signals of
small variation. However, a traditional wavelet tran-
sform, e.g., 2DDWT, does not perform normally when
applied to fringe images. As mentioned in Section 1,
fringe images do not have smooth regions but only
fringes, which are indeed sinusoidal functions as gi-
ven in Eq. (1). Traditional compactly supported
wavelet functions, such as the Daubechies wavelet
functions, cannot localize the energy of sinusoidal
functions due to the aliasing and other problems of
the wavelet function. It gives rise to many wavelet
coefficients of small magnitude in different scales.
To illustrate this, an experiment is done to apply
the 2D DWT on the fringe image of the object as
shown in Fig. 3(a) with Gaussian noise added. The
result is displayed in Fig. 4, where the level 2 wavelet
coefficients of the fringe image are shown. We can
see that the wavelet coefficients appear in the form
of fringes plus noise similar to the original image.
Obviously, processing them further (such as thresh-
olding) will be difficult since the fringelike wavelet
coefficients are neither sparse nor smooth.

Assume that we have an analytic complex wavelet
transform (CWT) such that its wavelet function is
analytic (i.e., having zero negative frequency compo-
nents) and has compact support. The result when
applying such analytic CWT to fringe images will
be quite different. Let us first consider applying
the 1D analytic CWT to each row of a fringe image.
Mathematically, it can be written as

Wψg0yða; bÞ ¼
Z

∞

−∞

cðx; yÞ cos½w0x

þ ϕðx; yÞ�ψ
�
b − x
a

��
1
a

�
dx ð2Þ

for all y. Here, w0 ¼ 2πf o, where f o is the fundamen-
tal frequency of the sinusoidal fringe pattern in the
x direction, which has been defined in Eq. (1). We
denote g0 as the fringe image obtained using the π-
shifted PSP procedure as mentioned in Section 1
and ψ as the analytic wavelet function. In Eq. (2),
the analytic CWT is applied to a row of fringe image,
which can be modeled as a cosine function with a
phase shift as described in Eq. (1). Since we assume
the support of ψ is small, cðx; yÞ can be assumed to be
constant within the support of ψ. Hence, Eq. (2) can
be written as

Wψg0yða; bÞ ¼ cyða; bÞ
Z

∞

−∞

cos½w0x

þ ϕðx; yÞ�ψ
�
b − x
a

��
1
a

�
dx: ð3Þ
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Assuming the target object has a smooth height pro-
file, ϕðx; yÞ can also be assumed to be constant within
the support of ψ (we shall discuss later the special
cases that this assumption is not valid). Then
Eq. (3) can be written as

Wψg0ða; bÞ ¼
cða; bÞ

2

Z
∞

−∞

e−j
wϕða;bÞ

w0 ejwb½δðw −w0Þ

þ δðwþw0Þ�ψ̂ðawÞdw; ð4Þ

where ψ̂ is the FT of ψ. To simplify the presentation,
the parameter y is omitted in the formulation. Since
we assume ψ is analytic, all negative frequency com-
ponents in Eq. (4) become zero. Hence, we have

Wψg0ða; bÞ ¼
cða; bÞ

2
jψ̂ðaw0Þjejðw0b−ϕða;bÞþϕψ̂ ðaw0Þ

¼: B0ejθ; ð5Þ

where j ψ̂ j and ϕψ̂ are the magnitude and phase of ψ̂,
respectively. j ψ̂ðaw0Þj is a constant for a given a and
w0. The only variation in B0 comes from the term
cða; bÞ, which is normally a very smooth function.
Hence, the magnitude response of the wavelet coeffi-
cients is actually a very smooth function that can be
easily distinguished from noise, if any, in the trans-
form domain. Similar to other denoising applications

of thewavelet transform, a simple thresholding canbe
applied to themagnitude response of thewavelet coef-
ficients and achieves good denoising performance.
This result is only possible since the analytic CWT
is capable of annihilating negative frequency compo-
nents for real valued input signals. It cannot be
achieved by using the traditional DWT approaches.

In practical situations, it is possible that the target
object has abrupt changes in height profile. In this
case, the phase changes can be so fast that we cannot
approximate ϕðx; yÞ as constant, although the sup-
port of the wavelet kernel is small. Alternatively,
we can model such a fringe pattern as the concatena-
tion of fringe patterns with different ϕs, and each of
them has a constant value. It is shown in Appendix A
that if the wavelet function possesses a vanishing
moment larger than 1, the CWTmagnitude response
will have only small fluctuation at the meeting point
of two fringe patterns and it will have a fast decay
rate. Therefore, such a CWT magnitude response
can be seen as a piecewise smooth signal. To illus-
trate this effect, a testing object “Awl” as shown in
Fig. 3(b) is used as an example. Figure 5(b) shows
its fringe pattern, and a slice of it (row 256) is shown
in Fig. 6. For the implementation of the analytic
CWT, we use the DT-CWT, which is a good approxi-
mation of the analytic CWT and with fast implemen-
tation algorithms. Figure 7 shows two levels of
DT-CWT coefficients. As shown in Fig. 6, the fringe

Fig. 3. (Color online) 3D plot of the original shapes used in the simulations: (a) Peaks and (b) Awl.

Fig. 4. Undecimated 2D DWT of a noisy fringe image, level 2: H, V , and D subbands.
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pattern has a sharp phase change at a position
around 250. As mentioned above, we model it as
the concatenation of two fringe patterns, each of
which has a smooth phase change. The envelopes in
Fig. 7 are the magnitude response of the DT-CWT
coefficients. They are normally smooth functions
but with a sudden jump at the concatenation point.
The overshoot or undershoot around the sudden
jump does not have large magnitude and decays ra-
pidly. Hence, it is safe for us to conclude that the
analytic CWT magnitude response can be modeled
as a piecewise smooth function. Traditional wavelet
denoising techniquea can then be applied if the
fringe image is noisy.

3. Proposed Algorithm

Based on the above result, a new algorithm for the
enhancement of fringe images is proposed in this sec-
tion. The new algorithm makes use of the DT-CWT,
which is a good approximation of the analytic CWT,
as mentioned in Section 2, to obtain a sparse repre-
sentation of the fringe images. We extend the idea to

two dimensions so that we can take into account
the orientation of the fringe image, which is a useful
feature that facilitates the design of efficient denois-
ing algorithms.

Similar to the 1D case, it can be shown that the
magnitude response of the 2D DT-CWT coefficients
can also be modeled as a 2D piecewise smooth func-
tion. As can be seen in Fig. 5(a) (which is the fringe
image of the object in Fig. 3(a)), a fringe image can
be divided into different subimages with fringes or-
iented at different angles (see the differences among
regions A, B, C, and D). Each subimage can be mod-
eled as a 2D cosine function as

g0ðx; yÞ ¼ cðx; yÞ cos½u0xþ v0yþ ϕrðx; yÞ�; ð6Þ

where u0 and v0 are the fundamental frequencies (in
radians) of the cosine function in the x and y direc-
tions, respectively. ϕrðx; yÞ is the 2D phase shift.
For a small region in a subimage, both cðx; yÞ and
ϕrðx; yÞ can be assumed to be constant since the
target object usually has a smooth height profile

Fig. 5. (Color online) Clean fringe images.
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Fig. 6. (Color online) Row 256 for Awl fringe pattern.
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(for the case that the target object has abrupt
changes in its height profile, we can always consider
it as the concatenation of subimages as mentioned in

Section 2). In the frequency domain, g0ðx; yÞ can be
written as

ĝ0ðu; vÞ ¼ c
2
ejϕru=u0 ½δðu − u0Þδðv − v0Þ

þ δðuþ u0Þδðvþ v0Þ�: ð7Þ
It means that ĝðu; vÞ contains a pair of delta func-
tions at mirror positions of the 2D Fourier spectrum
with a point of reflection at the origin. Therefore, the

transformation of g0ðx; yÞ using the 2D analytic CWT
is given by

Wψg0ða; bx; byÞ ¼
Z

∞

−∞

Z
∞

−∞

cðx; yÞ cos½u0xþ v0yþ ϕrðx; yÞ�ψ
�
bx − x
a

;
by − y

a

��
1

a2

�
dxdy

¼
Z

∞

−∞

Z
∞

−∞

cða; bx; byÞ
2

ejϕrða;bx;byÞu=u0 ½δðu − u0Þδðv − v0Þ þ δðuþ u0Þδðvþ v0Þ� · ψ̂ðau;avÞejubxejvbydudv

¼ cða; bx; byÞ
2

ejðu0bxþv0byþϕrða;bx;byÞψ̂ðau0;av0Þ ¼
cða; bx; byÞ

2
jψ̂ðau0; bv0Þjejðu0bxþv0by−ϕrða;bx;byÞþϕψ̂ ðau0;bv0Þ

¼: B0ejθ;

ð8Þ

where ψ is the wavelet function and we have made
use of the analytic property of the function. Eq. (8)
shows that themagnitude response of the 2Dwavelet
coefficients is a 2D smooth function similar to that in
Eq. (5). As the target object can have abrupt changes
in its height profile, the magnitude response of the
whole image can be considered as a 2D piecewise
smooth function.

50 100 150 200 250 300 350 400 450 500

-4

-3

-2

-1

0

1

2

3

4

Real

Imaginary

Magnitude

50 100 150 200 250 300 350 400 450 500

-4

-3

-2

-1

0

1

2

3

4

Level 2 HP: [real;imag;mag]

Real

Imaginary

Magnitude

 Level 1 DT-CWT coefficients.

 Level 2 DT-CWT coefficients.

Fig. 7. (Color online) (a) Level 1 and (b) level 2 DT-CWT coefficients for row 256 of the Awl fringe pattern.

3978 APPLIED OPTICS / Vol. 50, No. 21 / 20 July 2011



As mentioned above, the oriented 2D DT-CWT [25]
is a good approximation of the 2D analytic CWT and
with fast algorithms for its implementation. It is
adopted in the proposed algorithm. The oriented
2D DT-CWT is realized using four separate DWT
trees as shown in Fig. 8. As indicated in [25], the fil-
ters used for the first stage are different from the
rest. For implementation, we adopt the wavelet fil-
ters as described in the example of [26]. At each level,
there are four sets (due to four trees) of subband
data. For each subband, it can further be divided into
fH;V ;Dg, which represent the horizontally, verti-
cally and diagonally oriented wavelet coefficients,
respectively. For example, at level 1, the wavelet
coefficients generated by the four trees are
fHpp;Vpp;Dppg, fHpq;Vpq;Dpqg, fHqp;Vqp;Dqpg, and
fHqq;Vqq;Dqqg, as can be seen in Fig. 8. Six oriented
complex subbands, namely RH1, RV1, RD1, RH2, RV2,
and RD2 can be constructed as follows (for simplicity,
only the first level is shown):

RH1 ¼ ðHpp −HqqÞ þ jðHqpþHpqÞ; ð9Þ

RV1 ¼ ðVpp − VqqÞ þ jðVqpþ VpqÞ; ð10Þ

RD1 ¼ ðDpp −DqqÞ þ jðDqpþDpqÞ; ð11Þ

RH2 ¼ ðHppþHqqÞ þ jðHqp −HpqÞ; ð12Þ

RV2 ¼ ðVppþ VqqÞ þ jðVqp − VpqÞ; ð13Þ

RD2 ¼ ðDppþDqqÞ þ jðDqp −DpqÞ: ð14Þ

To simplify the notations, let us denote �R1 ¼
fRH1;RV1;RD1g and �R2 ¼ fRH2;RV2;RD2g. An exam-
ple of the oriented 2D DT-CWT of a clean fringe
image is shown in Fig. 9. In the figure, the magnitude
response of the six subbands f�R1; �R2g is shown. It can
be seen that they no longer exist in the form of
fringes; rather, they look like smooth images with
edges. It is very different from that generated by a
traditional 2D DWT as shown in Fig. 4. It verifies
our discussion above.

Knowing that f�R1; �R2g are in the form of a 2D pie-
cewise smooth function, a denoising algorithm can be
readily designed. The noise contamination process
of fringe images can be modeled with the following
formulation:

y ¼ g0 þ n ¼ Wþgw þWþnw; ð15Þ

where Wþ is the inverse-oriented 2D DT-CWT, y and
g0 are the observed noisy fringe image and the origi-
nal clean fringe image, respectively, n ∼Nð0; σ2Þ is
the additive noise, and gw and nw are the wavelet
coefficients of g0 and n, respectively. Here we have
used the linear property of the oriented 2D DT-
CWT. Following the idea in [20–24], the denoising
of fringe images can be formulated as the following
optimization problem:

argmin
gw

1
2
∥Wþgw − y∥2 þ λ · ρðgwÞ; ð16Þ

where ρ is a convex function and, in our case, we
select ρ ¼ jgwj. To obtain a good estimation of gw, an
iterative procedure was suggested in [20–24] as

Fig. 9. (Color online) Oriented 2D DT-CWT magnitude response of clean fringe image, level 2 of the RH1, RH2, RV1, RV2, RD1, and RD2

subbands (from left to right, respectively).
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Fig. 8. Oriented 2D DT-CWT (two levels are shown).
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gkþ1
w ¼ ηðWðy −WþgkwÞ þ gkw; λÞÞ; ð17Þ

where gkw is the estimation of gw at the kth iteration.
η is the shrinkage function for complex numbers
defined as

ηðx; λÞ ¼ maxð0; jxj − λÞ expðj:∠xÞ; ð18Þ
where ∠x refers to the phase angle of x. λ is the
threshold used in the shrinkage function. The uni-
versal threshold [27] is adopted in the proposed algo-
rithm since the noise distribution is approximately
additive white Gaussian noise.

Although the above algorithm gives a good perfor-
mance in terms of SNR, it needs to be further refined
in order to apply to real time profilometry applica-
tions. As it is different from general image denoising,
the residue noise remaining in the enhanced fringe
images can be detrimental to the subsequent phase
unwrapping process since error can propagate and
introduce great visual distortion to the reconstructed
3D model. In general, the residue noise level can be
lowered by reducing the step size and increasing the
number of iterations of the optimization. It, however,
can increase the computation time such that the re-
sulting algorithm will not be suitable for real time
applications. Alternatively, a good initial guess can
help to improve the optimization without increasing
the number of iterations. For this reason, we intro-
duce an additional preprocessing step by using a
median filter to generate the initial estimate for
the iterative process. More specifically, let

g0w ¼ medðjηðWg0; λÞÞj;Nx;NyÞ: expðj:∠Wg0Þ; ð19Þ

where med is a 2D median filter with a rectangular
window of sizeNx ×Ny. The size of the median filters
for subband fH;V ;Dg of f�R1; �R2g is selected to be
3 × 5, 5 × 3 and 5 × 5 (row × column), respectively.
It is based on the observation that there is much cor-
relation between vertical (or horizontal) neighboring
coefficients for subband V (or H). Then let

ŷ ¼ Wþðg0wÞ: ð20Þ
Eq. (17) is modified as

gkþ1
w ¼ ηðWðŷ −WþgkwÞ þ gkw; λÞÞ: ð21Þ

Compared with gw, g0w contains much less large-
magnitude outliers due to themedian filtering opera-
tion. Such outliers are presumably caused by noise
since, as can be seen in Fig. 9, the magnitude re-
sponse of fringe images should be a piecewise smooth
function. Eq. (20) provides a good initial guess of y
that facilitates fast convergence of the iterative pro-
cess in Eq. (21). In general, a very good result can be
achieved by iterating Eq. (21) four to five times. We
would like to stress that the reason the simple med-
ian filter can be effectively applied to generate the
initial estimate is that the oriented 2D DT-CWT of

fringe images is a piecewise smooth function. The
same performance can hardly be achieved if applying
the median filter to the original fringe images or the
wavelet coefficients generated by using a 2D DWT.
Besides, we have adopted the orientation of different
subbands in the design of the median filters. They all
benefit from the special properties of the oriented 2D
DT-CWT when applied to fringe images.

The proposed fringe image enhancement algo-
rithm is summarized below.

Algorithm-Oriented 2D DT-CWT Iterative Shrink-
age Fringe Image Enhancer (DTISE)

For a fringe image captured based on PSP, g0ðx; yÞ,

1. Compute L levels of oriented 2D DT-CWT on
g0ðx; yÞ, i.e., Wg0 :¼ fALðu; vÞ; gw :¼ �Rr

kðu; vÞg;
r ¼ 1; :::;L; k ¼ 1; 2gg.

2. Set the scaling coefficients to zero:
ÂLðu; vÞ ¼ 0.

3. Generate the initial estimate g0w based on
Eq. (19).

4. Apply g0w to Eqs. (20) and (21) and iterate
N times.

ÂLðu; vÞ is the coarsest scaling coefficient which
should be set to zero since there should not be dc com-
ponents in a fringe image. As mentioned above, good
enhancement results can be achieved with a very
small number of iterations, such as 5. The enhanced
image is then further processed with a phase un-
wrapping technique in order to estimate the phase
and then reconstruct the 3D model of the target ob-
ject. As we will show in Section 4, the proposed algo-
rithm greatly improves the robustness of the phase
unwrapping process when working with noisy fringe
images.

4. Evaluations

A. Computational Complexity

An analysis is made in Appendix B to evaluate the
computational complexity of the proposed algorithm
DTISE and compare it with the recently proposed
WFF technique [15–19] as mentioned in Section 1.
In Table 1, the approximate number of floating point
operations of the proposed algorithm and WFF for
various fringe image sizes and parameters are listed.
In the table, Nw refers to the number of vertical and
horizontal frequency points for WFF. As mentioned
in Section 3, the proposed algorithm DTISE adopts
the oriented 2D DT-CWT implemented by using four
2D DWT trees applied to all rows and then columns
of a fringe image separately. For each 2D DWT tree,
the length of the wavelet filters is set to 12, which is
typical for wavelet filters. The table clearly shows
that the number of operations required for the pro-
posed algorithm is far less than that of WFF, at a
ratio from 1 : 27 to 1 : 259.

To evaluate the real processing speed of the
proposed algorithm DTISE and WFF, we realize
them with MATLAB running on a general personal
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computer. For WFF, we used the code (wft2f.m)
released by the authors of [15–19]. In the simula-
tion, we used 3D model “peaks” derived from the
MATLAB function “peaks” of size 512pixels ×
512pixels and scaled by 6 (for much steeper slopes)
as shown in Fig. 3(a). We then computed the fringe
images g0 of this 3Dmodel as shown in Fig. 5(a) using
the π-shifted PSP approach. The fringe images were
then added with independent and identically distrib-
uted white Gaussian noise (with standard deviation
σ ¼ 1:5). Table 2 shows the processing times and per-
formance in terms of SNR when different Nws are
used. Concurring with the analysis on computational
complexity, the processing time required by the pro-
posed algorithm is much less than by WFF for all
Nws. For example, the processing time required
by the proposed algorithm is only 1=16 of the WFF
when Nw ¼ 17 with a gain of 1:5dB in SNR. This
reduction in computational complexity enables the
proposed algorithm to be more suitable for real time
applications.

B. Performance in Simulations and Experiments

In this section, we first show the performance of
different algorithms when enhancing noisy fringe
images. For a fair comparison, we selected another
recently proposed nonlinear filtering approach [2]
that can also be used in real time applications. We
dub such method as M-NLF. We also compared the
proposed DTISE algorithms with the traditional
wavelet shrinkage denoising method using 2D DWT
to illustrate the improvement of 2D DT-CWTover 2D
DWT in fringe image denoising. In this simulation,
the testing object “Awl” as shown in Fig. 3(b) was
used. We first computed the fringe image of the test-
ing object, then white Gaussian noise at different
noise levels was added. For the proposed DTISE
and wavelet shrinkage algorithms, the traditional
universal threshold was used to denoise the images.
Figure 10 shows the comparison result. It can be seen

that the proposed DTISE-1 algorithm outperforms
the other two traditional approaches with an average
improvement of 7:2dB in SNR. Since DTISE-1 is
different from the wavelet shrinkage mainly in the
transform used to obtain the sparse represen-
tation of the fringe images, the improvement of 2D
DT-CWT over 2D DWT can easily be seen. A sample
of the enhanced image given by different algorithms
is shown in Fig. 11. The proposed DTISE-5 gives the
best result, although it has a slightly higher compu-
tational complexity than DTISE-1.

Next, we evaluated the quality of the recon-
structed 3D model based on the enhanced fringe
images using different enhancement algorithms.
For this comparison, another more challenging 3D
model “Peaks” as shown in Fig. 3(a) was used. Using
the enhanced fringe images, reconstruction of the 3D
model was performed with Goldstein’s phase un-
wrapping method [9]. In Fig. 12, the reconstructed
3D models based on the fringe images enhanced
by using M-NLF [2] and the proposed DTISE (one
and five iterations) are shown. The SNRs with re-
spect to the true model are respectively 9.39, 32.20
(one iteration), and 35:70dB (five iterations). It
can be seen in Fig. 12 that using only Goldstein’s
phase unwrapping method cannot avoid having a se-
vere error in the reconstructed 3Dmodel at this noise
level. Using a fringe image enhancer can signifi-
cantly improve the robustness of the phase unwrap-
ping process, although the improvement of M-NLF
[2] is incomparable to the proposed DTISE. Figure 13
further illustrates the quality of the reconstructed
3D model in terms of SNR when using different
enhancement methods at different noise levels. It
shows that the difference in SNR of using M-NLF

Table 1. Approximate Number of Floating Point Operations (Flops) of the Proposed DTISE (Five Iterations) and WFF for
Various Fringe Image Sizes and Parameters

Nw 64 × 64 128 × 128 256 × 256 512 × 512 1024 × 1024
CWFF 17 2:48 × 109 1:14 × 1010 5:19 × 1010 2:32 × 1011 1:02 × 1012

21 3:79 × 109 1:74 × 1010 7:92 × 1010 3:54 × 1011 1:56 × 1012

27 6:27 × 109 2:89 × 1010 13:09 × 1010 5:85 × 1011 2:58 × 1012

41 14:46 × 109 6:66 × 1010 30:19 × 1010 13:48 × 1011 5:96 × 1012

CDTISE - 8:9 × 107 3:6 × 108 1:4 × 109 5:7 × 109 2:3 × 1010

Table 2. Execution Time for Enhancing a 512 × 512
“Peaks” Fringe Image

Nw Time (seconds) SNR (decibels)

WFF 14 61.588 33.8
17 89.601 34.3
21 136.685 39.9
27 225.907 42.9
41 522.316 43.28

DTISE (five iterations) - 5.455 35.70 Fig. 10. SNR of the enhanced fringe image using different
enhancement approaches.
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[2] and the proposed DTISE can be even bigger when
the noise level is higher.

We further tested the proposed algorithms in a re-
construction experiment with a real object. We used a
paper cone as the testing 3D object as shown in Fig. 2.
The fringe images were captured using a digital
single-lens reflex (SLR) camera with a 50mm lens
at aperture f =16. Two settings were selected in the
experiment: (1) ISO100, 1=10 s exposure; and
(2) ISO1600, 1=320 s. The purpose of setting (2) is
to create an extreme environment so as to illustrate
the improvement of the proposed algorithms to the
phase unwrapping process. For setting (1), the cap-
tured fringe image and the reconstructed 3D model
using π-shifted PSP with Goldstein’s phase unwrap-
ping algorithm [9] are shown in Figs. 14(a) and 15(a),
respectively. For setting (2), the same are shown in
Figs. 14(b) and 15(b). It can be seen that the noisy

fringe image greatly affects the reconstruction
quality even using a powerful phase unwrapping al-
gorithm. In Figs. 14(c) and 14(d), the enhanced fringe
images using the proposed DTISE andM-NLF [2] are
shown. The corresponding reconstruction results are
shown in Figs. 15(c) and 15(d). For the proposed
algorithm, the quality of the reconstruction is just
as good as when using a much longer exposure time
and a smaller ISO, as shown in Fig. 15(a). However, it
cannot be achieved with the traditional M-NLF
approach [2].

5. Summary

In this paper, we investigated the enhancement
method of fringe images based on the oriented 2D
DT-CWT. We first showed that enhancing the fringe
images is important to real time profilometry appli-
cations since even with using state-of-the-art phase

Fig. 11. Enhanced fringe images using different algorithms, noise σ ¼ 2:5 (a) M-NLF, (b) wavelet shrinkage, (c) DTISE-1, (d) DTISE-5.
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unwrapping methods, it still may not be possible to
avoid having severe distortion in the reconstructed
3D model if the captured fringe images are noisy.
We then showed that, as opposed to the traditional
wavelet transform, the oriented 2-D DT-CWT effec-
tively gives a sparse representation of fringe images
because oriented 2-D DT-CWTof fringe images give a
piecewise smooth magnitude response. Based on
this finding, we proposed an iterative fringe image
denoising algorithm, namely DTISE. It is different
from the traditional wavelet-based iterative regular-
ization methods in that a preprocessing step is intro-
duced that gives a better initial estimate. The
proposed preprocessing step significantly reduces
the outliers in the enhanced images, which is impor-

tant to the subsequent phase unwrapping process.
The proposed DTISE algorithm is effective yet effi-
cient. As compared to traditional real time enhance-
ment methods such as the nonlinear filtering in [2],
the proposed algorithm gives a much lower level of
reconstruction error. As compared to the WFF en-
hancement method which delivers the best perfor-
mance (as far as we know), the proposed DTISE
algorithms give competitive performance but have
a much lower computational complexity, which facil-
itates real time optical profilometry applications.

Fig. 12. (Color online) Reconstruction using Goldstein’s phase
unwrapping method from noisy fringe images (top left), enhanced
fringe images using M-NLF (median filter plus nonlinear filtering
approach) [2] (top right), and proposed DTISE: initial estimate
(bottom left) and after five iterations (bottom right) for noise
σ ¼ 1:5.
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Fig. 13. (Color online) Average reconstruction SNR using differ-
ent enhancement approaches.

Fig. 14. Fringe images captured at (a) ISO100, exposure 1=10 s;
(b) ISO1600, exposure 1=320 s; (c) result of using M-NLF [2] on (b);
and (d) result of using the proposed DTISE (five iterations) on (b).

Fig. 15. (Color online) Reconstructed 3D model using Goldstein’s
phase unwrapping method from fringe images captured at
(a) ISO100, exposure 1=10 s; (b) ISO1600, exposure 1=320 s; (c) re-
sult of using M-NLF [2] on (b); and (d) result of using the proposed
DTISE (five iterations) on (b).
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Appendix A: Analytic CWT Response for Concatenated
Fringe Patterns

Without loss of generality, let us consider the case
that a concatenation of fringe patterns happens at
the origin. It reads

f ðxÞ ¼ B cosðw0xþ ϕÞuðxÞ ¼ gðxÞuðxÞ; ðA1Þ

where uðxÞ denotes the Heaviside step function, with

the FT FfugðwÞ ¼ π
�

1
ðjπwÞþδðwÞ

�
. Then the FT of

Eq. (A1) is

Fff gðwÞ ¼
Z

∞

−∞

FfugðyÞFfggðw − yÞdy

¼ B
2

�
e−jϕ

�
δðw −w0Þ þ

1
jπðw −w0Þ

�

þ ejϕ
�
δðwþw0Þ þ

1
jπðwþw0Þ

��
: ðA2Þ

The analytic CWT of f can be written as

WψA
ff gða; bÞ ¼

Z
∞

−∞

Fff gðwÞejbwψ̂ðawÞdw

¼ B0jψ̂Aðaw0Þjej½w0b−ϕþϕψ ðaw0Þ�

þ B
2

Z
∞

−∞

1
jπ

�
e−jϕ

w −w0

þ ejϕ

wþw0

�
ejwbψ̂ðawÞdw: ðA3Þ

The first part of Eq. (A3) is the same as Eq. (5). Some
simple calculation on the second term of Eq. (A3)
yields

B
2jπ

Z
∞

−∞

1
w
ejwbfe−jϕþjw0bψ̂A½aðwþw0Þ�

þ ejϕ−jw0bψ̂A½aðw −w0Þ�gdw: ðA4Þ

From Theorem 6.2 of [28], a wavelet with fast
decay has n vanishing moments if and only if there
exists ψ2 with a fast decay such that ψ̂ðwÞ ¼
ð−jwÞkψ̂2ðwÞ for k ¼ 0;…;n − 1. We may rewrite
Eq. (A4) as

−B
2π

Z
∞

−∞

ejwbfe−jϕþjw0bψ̂A2½aðwþw0Þ�

þ ejϕ−jw0bψ̂A2½aðw −w0Þ�gdw; ðA5Þ

which gives bounded perturbation on the first term
of Eq. (A3).

Appendix B: Computational Complexity

The proposed algorithm adopts the oriented 2D
DT-CWTwhich consists of four independent 2DDWT
decompositions. For a fringe image with size N ×M,

the complexity for performing the oriented 2D DT-
CWT and its inverse is given by

CODT2D−CWTðN;M;LÞ

≈ 4CDWTðN;M;LÞ þNM

�
1 −

1

22L

�
Csubband

≈ 4CDWTðN;M;LÞ þNMCsubband; ðB1Þ

where Csubband denotes the operations required to
compute the magnitude and phase of the complex
wavelet coefficients �R1 and �R2 from the four 2D
DWT trees, Csubband ¼ 4Cadd þ ð2Cadd þ 2Csqrtþ
4Csq þ 2Catan2Þ. The complexity of direct DWT reali-
zation is

CDWTðN;M;LÞ ≈ 1−4
−L

1−4−1
NMðNfCmultþðNf −1ÞCaddÞ

≈
4
3
NMðNfCmultþðNf −1ÞCaddÞ;

ðB2Þ

where Nf denotes the filter length. The inverse 2D
DWT takes the same complexity as the forward
transform. Therefore, the complexity of the inverse
oriented 2D DT-CWT is

CIODT2D−CWTðN;M;LÞ ≈ 4CIDWTðN;M;LÞ
þNMCIsubband; ðB3Þ

where CIsubband ¼ ð4Cmult þ 2Csin þ 2CcosÞ þ 4Cadd.
Computing the initial estimate g0w requires shrink-
age followed by median filtering on the transform
coefficient magnitudes. The complexity is given by

Cdn0ðN;M;LÞ ≈ 2NM

�
1 −

1

22L

��
Cshrink

þ Cmedian Filter

�
: ðB4Þ

Each iteration requires subtraction of ŷ and Wþgkw in
Eq. (21), the addition of the resulting coefficients and
the shrinkage operation. Hence, the complexity for
these operations becomes

Cdn1ðN;M;LÞ ≈ 2NM

�
1 −

1

22L

�
Cshrink

þ 4NM

�
1 −

1

22L

�
Cadd þNMCadd:

ðB5Þ

Therefore, the complexity for the generation of the
initial estimate becomes
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CDTISE0 ¼ CODT2D−CWTðN;M;LÞ
þ CIODT2D−CWTðN;M;LÞ þ Cdn0ðN;M;LÞ

≈ NMCadd

�
32
3

�
Nf − 1

�
þ 11

�

þNMCmult

�
32
3
Nf þ 8

�

þ 2NMðCsin þ Ccos þ Catan2

þ Csqrt þ Cmedian FilerÞ: ðB6Þ

And the complexity of each iteration becomes

CDTISE1 ¼ CODT2D−CWTðN;M;LÞ
þ CIODT2D−CWTðN;M;LÞ þ Cdn1ðN;M;LÞ

≈ NMCadd

�
32
3

�
Nf − 1

�
þ 16

�

þNMCmult

�
32
3
Nf þ 8

�
þ 2NMðCsin þ Ccos

þ Catan2 þ CsqrtÞ: ðB7Þ

Current computing technology enables similar
execution time for addition and multiplication (Cop),
i.e.,Cmult ≈ Cadd andCshrink ≈ Cadd; sine, cosine, atan2
and square root approximately require 5, 5, 10, and
20Cop, respectively; and a 5 × 5 median filter re-
quires around 50Cop. Without further optimization
on memory input/output, the complexity of the pro-
posed algorithm can be approximated as

CDTISE0 ≈ NMCop

�
32
3

�
Nf − 1

�
þ 11þ 32

3
Nf þ 8

þ 2ð5þ 5þ 10þ 20þ 50ÞÞ

¼ NMCop

�
64
3
Nf −

32
3

þ 199

�
; ðB8Þ

CDTISE1 ≈ NMCop

�
32
3

�
Nf − 1

�
þ 16þ 32

3
Nf

þ 8þ 2ð5þ 5þ 10þ 20ÞÞ

¼ NMCop

�
64
3
Nf −

32
3

þ 104

�
: ðB9Þ

For theWFF, the enhancement process requires com-
puting the 2D WFT of the input image, then thresh-
old the coefficients and apply the inverse 2D WFT.
When computing the 2D WFT, 2D convolution is per-
formed for all frequency samples in horizontal and
vertical directions, which countNwx andNwy in total,
respectively. It is realized by using a fast FT (FFT),
the complexity of which is given by

C2D−WFTðN;M;Nwx;NwyÞ ≈ CFFT

þNwxNwyðCFFT

þNMCzmult þ CIFFTÞ;
ðB10Þ

where we denote CFFT as the complexity for comput-
ing a N ×M 2D FFT. Assume that the split-
radix FFT [29,30] is adopted for its realization.
Hence, CFFT ¼ CIFFT ¼ ð4MN lgðMNÞ − 12MNþ
8ðM þNÞÞCop, where we count each complex
multiplication as requiring four real multiplications
and two real additions for its implementation and
we denote lgð·Þ as log2ð·Þ. There are CWFF-thresh ¼
NwxNwyNMCthresh operations for the thresholding
of 2DWFT coefficients. The complexity of the inverse
WFT is given by

C2D�IWFTðN;M;Nwx;NwyÞ ≈ NwxNwyðCFFT

þNMCzmult þ CIFFTÞ
þ ðNwxNwy − 1ÞNMCadd:

ðB11Þ

Therefore, the complexity of the WFF algorithm is

CWFF ¼ C2D−WFTðN;M;Nwx;NwyÞ
þ C2D−IWFTðN;M;Nwx;NwyÞ þ CWFF−thresh

¼ Copð1þ 4NwxNwyÞð4NM lgðNMÞ − 12NM

þ 8ðM þNÞÞ þ CopNMð14NwxNwy − 1Þ:
ðB12Þ

To guarantee stable enhancement results, the num-
ber of frequency samples must be sufficient. In prac-
tice, for a 512pixel × 512pixel image with carrier
cycle of about 8pixels, if we select Nwx ¼ Nwy > 20,
the quality of the enhanced fringe image will be com-
parable to that of the proposed algorithm.

This work is supported by theHong Kong Polytech-
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