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The two-dimensional transfer functions (TFs) designed based on intensity-gradient magnitude (IGM) histogram are effective
tools for the visualization and exploration of 3D volume data. However, traditional design methods usually depend on multiple
times of trial-and-error. We propose a novel method for the automatic generation of transfer functions by performing the affinity
propagation (AP) clustering algorithm on the IGM histogram. Compared with previous clustering algorithms that were employed
in volume visualization, the AP clustering algorithm has much faster convergence speed and can achieve more accurate clustering
results. In order to obtain meaningful clustering results, we introduce two similarity measurements: IGM similarity and spatial
similarity. These two similarity measurements can effectively bring the voxels of the same tissue together and differentiate the
voxels of different tissues so that the generated TFs can assign different optical properties to different tissues. Before performing
the clustering algorithm on the IGM histogram, we propose to remove noisy voxels based on the spatial information of voxels. Our
method does not require users to input the number of clusters, and the classification and visualization process is automatic and
efficient. Experiments on various datasets demonstrate the effectiveness of the proposed method.

1. Introduction

Direct volume rendering [1] has been widely used in many
fields, particularly for the visualization of medical data with
a variety of modalities such as CT, MRI, and ultrasound.
It projects three-dimensional (3D) volumetric data to a
two-dimensional (2D) screen to facilitate observation and
exploration. By using appropriate transfer functions (TFs),
which map the voxel properties (e.g., gray scale and gradient
magnitude) to optical properties (e.g., transparency and
color), the major structures of volume data can be revealed.
Designing effective TFs is a must for useful visualization
of volumetric medical data, especially for clinical diagnosis
and treatment. However, it remains a challenging task for
radiologists and physicians, as it usually requires them to

acquire technical knowledge on rendering techniques. Unfor-
tunately, doctors do not have enough time to acquire the
related knowledge and skills. In addition, the complicated
interactions in traditional direct volume rendering systems
prohibit their application in clinical practice. In this regard,
developing automatic methods for TFs generation is impor-
tant for medical data visualization.

TFs typically operate on the value domain of input
volume and its derived feature domains (such as gradient)
to separate different structures. To assist users’ exploration,
the feature domains are always decomposed into several
meaningful clusters and users can explore the data based on
these clusters. The voxels’ scale values and their gradients
are the most commonly used feature domains. Kindlmann
and Durkin [2] projected the scale values and gradients into
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a 2D space to make up the intensity-gradient magnitude
(IGM) histogram and then designed TFs based on it by using
various manipulation widgets (such as rectangles, triangles,
and ellipses). Later, IGM histogram was often used in direct
volume rendering and has been implemented in several pop-
ular visualization packages, such as VisIt [3], Voreen [4], and
ImageVis3D [5]. However, most implementations involved
a lot of manual operations to achieve satisfactory results,
which made them not applicable for doctors without special
knowledge of IGM histogram. In recent years, Wang et al. [6]
proposed a volume exploration with the Gaussian mixture
model and generated a set of suggestive elliptical transfer
functions semiautomatically. Nonetheless, this method is not
effective when the dataset is complicated, as the widgets
are too regular to describe multidimensional features with
complex shapes. Ip et al. [7] presented a semiautomatic
approach to detect embedded features and spatial structures
by visually segmenting the IGM histogram of a volumetric
dataset. However, this method required too many operations
to annul undesired structures and achieve satisfactory results
and hence was still not suitable for radiologists and physi-
cians.

To overcome these shortcomings, we propose a novel
automatic TFs design method based on IGM histogram. Our
method is based on the observation that voxels belonging to
the same structure usually have similar intensity and gradient
magnitude and are located together in the volume. In this
case, we employ affinity propagation clustering algorithm
to classify the scattering points in the IGM histogram into
clusters by defining two novel similarity measurements: IGM
similarity and spatial similarity. These two similarity mea-
surements can effectively bring the voxels of the same tissue
together and differentiate the voxels of different tissues so that
the generated TFs can assign different optical properties to
different tissues, making the visualization results unambigu-
ous and easy to be used in diagnosis and treatment. Note that
as we do not need to assign a cluster number to the affinity
propagation clustering algorithm in advance, the clustering
process is fully automatic. In addition, before performing
clustering, we eliminate noisy voxels by leveraging the spatial
information of the input volume data. We also provide a
simple interaction interface to allow users further polish the
clustering results. The TFs are automatically generated based
on the clustering results. Experiments on various datasets
demonstrate the effectiveness of the proposed method.

The organization of this paper is as follows. We presents
related work in Section 2. Section 3 describes our method in
detail. Section 4 provides experimental results. Conclusions
are drawn in Section 6.

2. Related Work

Although direct volume rendering technique has been widely
used, transfer function design remains a challenging task.
The design of TFs is often classified into two categories:
image-centric and data-centric [8], depending on whether
they derive their parameters from the resulting images or
original data.

Image-centric methods typically adjusted TFs by search-
ing for the optimal rendered image in the rendering space.
Thus, the TF’s generation is considered as a process of param-
eter optimization. In early investigations, genetic algorithms
were employed to select the most satisfactory rendering
result [9]. However, depth information cannot be sufficiently
considered in these algorithms. To enhance the depth infor-
mation of rendering images, Chan et al. [10] proposed a novel
metric based on psychological principles, and Zheng et al.
[11] proposed an effective design by optimizing an energy
function based on quantitative perception models. Although
image-centric methods are intuitive and easy to implement,
the final rendering results generated by thesemethods heavily
depend on the initial result. In addition, a lot of parameters
need to be tuned in these methods, which is unacceptable for
medical data visualization.

In contrast with image-centric methods, data-centric TFs
define visual properties based on the information of voxels. In
early studies, TFs were designed based only on the histogram
of voxels’ scalar values (these TFs are usually called 1D TFs).
However, 1D TFs have inherent difficulties in identifying
different materials with similar intensities. Then 2D TFs
based on intensity values and gradient magnitudes were
proposed, which were more effective in detecting multiple
materials and their boundaries [2]. Besides using derivative
properties of scalar value, other effective metrics were also
incorporated into the feature space, such as curvature [12],
feature size [13], and ambient occlusion [14]. In order to high-
light important structures of volume, some methods based
on visibility were introduced [15] and information divergence
between visibility distribution and target distribution was
optimized to generate automatic TFs [16–18]. Recently, Cai
et al. have proposed a rule-based transfer function based on
the local frequency distribution of a voxels neighborhood
[19]. The structures of user’s interest in a volume dataset
can be characterized by using the various feature space.
However, higher dimensions of the feature space add more
complication in transfer function design.

Recently, several semiautomatic transfer function designs
have been proposed to reduce the number of degrees of
freedom in transfer function design. Tzeng andMa proposed
a method based on material classes extracted from the
cluster space using the ISODATA technique to generate TFs
[20]. Some other machine learning based methods have also
been employed to analyze the feature spaces. For example,
MacIejewski et al. proposed a nonparametric kernel density
estimation method onto the IGM feature space in order to
extract feature patterns [21]. Furthermore,Wang et al. applied
the Morse theory to automatically decompose the IGM
feature space into a set of valley cells [22]. In order to display
the surface information of the volume data better, Šereda et al.
proposed LH histogram which uses the lower FL and higher
FH intensity values of the twomaterials that form a boundary
as the two axes to design the transfer function [23]. Based
on LH histogram, Nguyen et al. proposed to oversegment LH
histogram usingmean shift clustering and then group similar
voxels by using hierarchical clustering [24]. Roettger et al.
incorporated spatial information into the IGMhistogram and
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Figure 1: The workflow of the proposed method.

performed clustering based on the barycenter and variance
of each bin [25]. Ip et al. introduced a hierarchical volume
exploration scheme based on normalized-cut algorithm [7].

The affinity propagation (AP) clustering algorithm is an
effective clustering algorithm proposed by Frey and Dueck
[26]. It clusters based on similarity of data and has no
requirement for the symmetry of the similaritymatrix of data,
giving it a relatively wide application. AP algorithm regards
all data points as potential cluster centers simultaneously
and produces high-quality cluster centers by using message
transfer between the data points. Compared with 𝐾-means
clustering algorithms [27], AP algorithms do not need to
prespecify the number of clusters𝐾. Although the hierarchal
clustering algorithm [28] also does not require the number
of clusters, its classification results [23, 24] are sensitive to
the initial clustering result while AP algorithm clustering
resolves this issue by improving the reliability of clustering
result. As mentioned earlier, the normalized cut algorithm
[29] was also employed in volume visualization [7, 17], which
overcomes the disadvantages of the 𝐾-means algorithm for
its ability to identify nonconvex distribution clustering, but it
requires the solution of matrix eigenvalues and eigenvectors,
which is quite computation-intensive and time-consuming.
In contrast, convergence speed of AP algorithm is much
faster, and its clustering results are more accurate [26].

In this paper, we propose an automatic method to classify
the volume data not only considering the intensity value and
gradient magnitude but also taking the spatial information
of voxels into consideration. Then the TFs are automatically
generated based on the clustering results.

3. Method

Figure 1 shows the workflow of the proposed method, which
is composed of three steps. First, we calculate the gradient at
each voxel. Together with the intensity, the IGM histogram
of the volume is constructed. We call a set of voxels with
the same intensity and gradient value a bin. We compute
the mean and variance of position of the voxels within
each bin. The bin with a larger variance of position than a
specified threshold is eliminated from the histogram, as it

can be considered as noise or nonsignificant tissues located
at the boundaries of the volume. Second, we cluster the
remainder bins in the histogram using affinity propagation
algorithm according to both the intensity and gradient infor-
mation and the spatial information of voxels. In addition,
we provide a simple interaction interface to allow users
to further polish the clustering results in order to achieve
more desired visualization. Finally, the transfer functions are
automatically generated based on the clustering results, and
the visualization of the volume can be obtained from the
transfer function.

3.1. IGM Histogram. The IGM histogram is a useful tool
for exploring the volume dataset [2, 7, 25]. It is generally
represented as a 2D scatter plot. To figure out the IGM
histogram from a given 3D intensity field, we first compute
the gradient magnitude at each voxel. Then, the intensity and
gradient magnitude is set as the horizontal and vertical axis
of the scatter plot. Each point in the scatter plot represents
a bin of voxels with the same intensity and gradient value.
The brightness value of each point is associated with the
number of the corresponding voxels. To avoid significant
changes of the magnitude of the brightness, we set it as a
logarithmic function of the number of voxels. If all bins are
fed into the following clustering algorithm, the generated
transfer function obtained from the clustering results as
well as the final visualization may be greatly affected by a
great deal of noise. In this regard, we should try our best
to maintain the bins of important tissues while eliminating
nonsignificant and noisy bins as much as possible to facilitate
the histogram clustering. It is observed that the spatial
location of important tissues and organs are concentrated.
Based on this observation, we employ a simple and efficient
scheme to refine the IGM histogram considering the spatial
information of voxels. We first calculate the mean position of
voxels 𝜇𝑠 and the variance of voxel positions ]𝑠 by

𝜇𝑠 = 1𝑛 ∑V∈𝑈𝑝 (V) , (1)

]𝑠 = 1𝑛 ∑V∈𝑈
󵄩󵄩󵄩󵄩𝑝 (V) − 𝜇𝑠󵄩󵄩󵄩󵄩 , (2)
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Figure 2: The intensity-gradient histogram of abdomen dataset with different threshold values: (a) the threshold is 0; (b) threshold is 0.25;
(c) the threshold is 0.41.

where 𝑛 is the number of voxels in the bin, 𝑈 is the voxel
set, and 𝑝(V) is the position of voxel V. If ]𝑠 is larger than
a threshold value, we remove the bin from the histogram.
Figure 2 shows the intensity-gradient histogram of abdomen
dataset (see Figure 6) with different threshold values, where
gray means the removed bins based on the prespecified
threshold while the red means the left bins for clustering.
More results can be found in Section 4.

3.2. Clustering of IGM Histogram

3.2.1. Basics of Affinity Propagation Clustering. For the com-
pleteness of this paper, we introduce the basics of the affinity
propagation (AP) clustering algorithm here and readers can
refer to [26] formore details. AP clustering algorithm initially
regards all the data points as potential cluster centers. Mes-
sages between data points then begin to transmit iteratively to
maximize a fitness function until an optimal set of exemplars
and relative clusters emerge. The similarity between data
point 𝑖 and data point 𝑘, notated as 𝑠𝑖𝑘, is generally calculated
by negative Euclidean distance between them. The value of
similarity increases when the distance between the two points
decreases. The elements 𝑠𝑘𝑘 on the diagonal of the similarity
matrix 𝑆 = [𝑠𝑖𝑘]𝑛×𝑛 are defined as “preference.” Initially, the
value of 𝑠𝑘𝑘 is set as the median of the similarities between
data point 𝑘 and all other data points.

The most important messages in AP algorithms are
responsibility and availability. The responsibility 𝑟𝑖𝑘 is the
message sent from data point 𝑖 to candidate cluster center 𝑘,

which reflects whether 𝑘 is suitable to be the cluster center
of data point 𝑖, taking into account other potential exemplars
for 𝑖. The availability 𝑎𝑖𝑘 is the message sent from candidate
cluster center 𝑘 to data point 𝑖, which reflects whether data
point 𝑖 should choose 𝑘 as its cluster center. The alternating
renewal process of these two kinds of messages is the core of
the AP algorithm.

The initial values of responsibility and availability are set
to be 0. For data point 𝑖, the responsibility and the availability
are updated in an iterative way as

𝑟𝑖𝑘 ←󳨀 𝑠𝑖𝑘 −max
𝑘󸀠 ̸=𝑘

(𝑎𝑖𝑘󸀠 + 𝑠𝑖𝑘󸀠) ,
𝑎𝑖𝑘 ←󳨀 min

{{{0, 𝑟𝑘𝑘 + ∑
𝑖󸀠∉{𝑖,𝑘}

max {0, 𝑟𝑖󸀠𝑘}}}} .
(3)

The self-availability is updated in a slightly different way as

𝑎𝑘𝑘 ←󳨀 ∑
𝑖󸀠 ̸=𝑘

max {0, 𝑟𝑖󸀠𝑘} . (4)

Upon convergence, the exemplar 𝑘 for each data point 𝑖 will
be chosen by maximizing the following criterion:

argmax
𝑘

𝑎𝑖𝑘 + 𝑟𝑖𝑘. (5)

Finally, we obtained a set of exemplars and corresponding
clusters. The similarity matrix plays an important role in AP
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algorithm, as the calculation of both the responsibility and
availability depends on the similarity matrix. Traditionally,
the similarity matrix in AP algorithm is calculated based on
the negative value of the Euclidean distance between two
data points. However, it is not sufficient for our application,
where the data points are bins on the IGM histogram
and their Euclidean distance only contain the intensity and
gradient magnitude information. As mentioned, the spatial
information of voxels are also quite important to achieve
desired visualization results. To this end, we design our
own similarity measurement which integrates both intensity-
gradient information and spatial information of voxels.

3.2.2. Similarity Measurement. The similarity measurement
employed in our application should be designed to bring the
voxels of the same tissues together and differentiate the voxels
of different tissues so that the generated transfer function can
assign different opacity and color to different tissues, making
the visualization results unambiguous and easy to be used in
diagnosis. As mentioned, statistically, the voxels of the same
tissue have similar intensity and gradient magnitude and are
located closely within the volume. However, most previous
works only use the information of IGMhistogram and ignore
the location information of voxels, which may influence the
visualization result. In order to take full advantage of both
IGM and spatial information, we integrate IGM similarity
measurement and spatial similaritymeasurement into the AP
clustering algorithm to achieve a more effective clustering
results for more appealing visualization of the volumetric
data.

IGMSimilarity.Usually, close bins in the IGMhistogramhave
similar intensity and gradient magnitude. In this regard, we
employ Euclidean distance to measure the IGM similarity of
two bins 𝑏𝑥 and 𝑏𝑦:

𝑠󸀠IGM (𝑏𝑥, 𝑏𝑦) = 2√󵄨󵄨󵄨󵄨󵄨𝑏𝑥𝑖 − 𝑏𝑦𝑖󵄨󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨󵄨𝑏𝑥𝑔 − 𝑏𝑦𝑔󵄨󵄨󵄨󵄨󵄨2, (6)

where 𝑏𝑥𝑖 and 𝑏𝑦𝑖 are the intensity magnitude of the two bins
and 𝑏𝑥𝑔 and 𝑏𝑦𝑔 are the gradient magnitude of the two bins.
We normalize 𝑠󸀠IGM and obtain the IGM similarity:

𝑠IGM (𝑏𝑥, 𝑏𝑦) = 𝑠󸀠IGM − 𝑠min𝑠max − 𝑠min
, (7)

where 𝑠max and 𝑠min are themaximum andminimum value of𝑠󸀠IGM.
Spatial Similarity. The second similarity measurement is
designed to group bins that are neighbored in the volume.
We call it spatial similarity. We evaluate the spatial similarity
between two bins using the number of direct neighborhood
relations between the two bins; we employed the method
introduced in [23] to calculate the number. Given two bins 𝑏𝑥
and 𝑏𝑦, the number of direct neighborhood relations between𝑏𝑥 and 𝑏𝑦 can be calculated by

NR (𝑏𝑥, 𝑏𝑦) = ∑
V𝑥∈𝑏𝑥

∑
V𝑦∈𝑏𝑦

𝑁(V𝑥, V𝑦) ; 𝑏𝑥 ̸= 𝑏𝑦, (8)

where V𝑥 represents voxels in 𝑏𝑥; V𝑦 represents voxels in 𝑏𝑦;
and𝑁(V𝑥, V𝑦) is a Boolean function and we set it as 1 if voxel
V𝑦 is a neighbor of voxel V𝑥 and 0 otherwise. Note that we
define NR(𝑏𝑥, 𝑏𝑦) = 0.

The total number of neighborhood relations of bin 𝑏𝑥 is
NR (𝑏𝑥) = ∑

𝑏𝑖

NR (𝑏𝑥, 𝑏𝑖) , (9)

where 𝑏𝑖 represents all other bins in the IGM histogram.Then
the spatial similarity between two bins (𝑠vol) is computed by
taking themaximumof the normalized sumof neighborhood
relations:

𝑠vol (𝑏𝑥, 𝑏𝑦)

= {{{{{{{
max{NR (𝑏𝑥, 𝑏𝑦)

NR (𝑏𝑥) ,
NR (𝑏𝑦, 𝑏𝑥)
NR (𝑏𝑦) } , NR (𝑏𝑖) ̸= 0,

0, NR (𝑏𝑖) = 0,
(10)

where 𝑖 ∈ {𝑥, 𝑦} and NR(𝑏𝑖) = 0 means that there no any
neighborhood voxels of 𝑏𝑖.

By integrating the IGM similarity and the spatial similar-
ity, the similaritymeasurement employed in theAP clustering
algorithm can be defined as

𝑠 (𝑏𝑥, 𝑏𝑦) = −𝑘1𝑠IGM (𝑏𝑥, 𝑏𝑦) + 𝑘2𝑠vol (𝑏𝑥, 𝑏𝑦) , (11)

where the constant 𝑘1 and constant 𝑘2 are the weights of the
two similarity measurements. We set 𝑘1 = 0.65 and 𝑘2 = 0.35
in our experiments.

3.2.3. Affinity Propagation Clustering on IGM Histogram.
Once the similaritymeasurement is defined, we can figure out
the similarity matrix using (11) and then feed it into the AP
clustering algorithm. In order to avoid numerical oscillations,
we introduce a damping parameter 𝜆 into (3)–(4), and these
equations can be reformulated as

𝑟𝑡+1𝑖𝑘 ←󳨀 (1 − 𝜆) (𝑠𝑖𝑘 −max
𝑘󸀠 ̸=𝑘

{𝑎𝑡𝑖𝑘 + 𝑠𝑖𝑘󸀠}) + 𝜆𝑟𝑡𝑖𝑘;
𝑖 ̸= 𝑘,

(12)

𝑎𝑡+1𝑖𝑘 ←󳨀 𝜆𝑎𝑡𝑖𝑘
+ (1 − 𝜆)(min

{{{0, 𝑟
𝑡
𝑘𝑘 + ∑
𝑖󸀠∉{𝑖,𝑘}

max {0, 𝑟𝑖󸀠𝑘}}}}) ;
𝑖 ̸= 𝑘,

(13)

𝑎𝑡+1𝑘𝑘 ←󳨀 (1 − 𝜆)( ∑
𝑖󸀠∉{𝑖,𝑘}

max {0, 𝑟𝑡+1𝑖󸀠𝑘 }) + 𝜆𝑎𝑡𝑖𝑘, (14)

where the superscripts 𝑡 and 𝑡 + 1 represent the number of
iterations. The damping parameter 𝜆 is between 0 and 1,
and we set it as a default value 0.5 in our experiments. The
message-passing procedure may be terminated after changes
in the messages fall below a threshold.
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The whole AP clustering can be summarized as follows:

(1) Calculate the gradient magnitude of each voxel.
(2) Calculate the variance ]𝑠 of each bin.
(3) Remove the noisy bins according to the threshold.
(4) Calculate the IGM similarity and spatial similarity

and obtain the similarity matrix according to (11).
(5) The availability and the responsibility matrixes are

initialized as 0.
(6) Do the following until changes in the messages fall

below a threshold.

(i) Calculate the availability 𝑎𝑖𝑘 and responsibility𝑟𝑖𝑘.
(ii) Update 𝑎(𝑡+1)

𝑖𝑘
and 𝑟(𝑡+1)

𝑖𝑘
according to (12) and

(13).

(7) Output the AP clustering result.

3.3. Generation of Transfer Function

3.3.1. Opacity Transfer Function. After performing AP clus-
tering on IGM histogram, the voxels in the volume data are
classified into a set of clusters. We first assign an opacity
value to each cluster based on the average distance between
the voxels of the cluster and the center point of the volume.
In order to achieve more appealing visualization, we further
refine the opacity value of each voxel in the cluster according
to the voxel’s gradient value, which usually indicates whether
the voxel is near the boundary of the cluster or not.

A cluster𝐶𝑖 ismore likely to occlude other clusterswhen it
is located closed to the boundary of the volume and farther to
the center point of it.The average distance between the voxels
of the cluster 𝐶𝑖 and the center point of the volume can be
calculated by

𝑑 (𝐶𝑖, 𝑉0)
= 1𝑁𝑖 ∑V∈𝐶𝑖√(V𝑥 − V0𝑥)

2 + (V𝑦 − V0𝑦)2 + (V𝑧 − V0𝑧)2, (15)

where𝑉0(V0𝑥, V0𝑦, V0𝑧) is the volume’s center;𝑁𝑖 is the number of
voxels in cluster 𝐶𝑖; and V represents voxels of the cluster 𝐶𝑖.
We employ the average distance to define the opacity value of
the cluster:

𝛼𝑖 = max (𝑑) − 𝑑𝑖
max (𝑑) −min (𝑑) (𝛼max − 𝛼min) + 𝛼min, (16)

where the [𝛼min, 𝛼max] is predefined opacity range and
max (𝑑) andmin (𝑑) are themaximumandminimumaverage
distance between clusters and volume’s center.

For clear-cut visualization, the boundaries of a cluster are
much more important than the internal region of the cluster,
as boundaries determine the shape of a cluster (i.e., an organ
or tissue). In addition, the depiction of boundaries can also
enhance the perception of local occlusions, which are quite

essential in diagnosis and surgical planning. In this regard,
we should make the boundaries of a cluster visually distinct
by differentiating the voxels closer to the boundaries and the
voxels located in the internal region. In order to achieve this
effect, we refine the opacity value at each voxel according to
the gradient magnitude of this voxel:

𝛼V = 𝛼𝑖 ( 󵄩󵄩󵄩󵄩𝑔V󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑔max
󵄩󵄩󵄩󵄩)
𝑘 , (17)

where 𝛼V is the opacity value of the voxel; 𝛼𝑖 is the opacity
value of the cluster 𝐶𝑖; ‖𝑔V‖ is the gradient magnitude of
the voxel; ‖𝑔max‖ is the maximum gradient magnitude in the
cluster 𝐶𝑖; and 𝑘 is a parameter that determines how to map
the gradient value to the opacity value (we set 𝑘 as 1 or 2 in
our experiments).

3.3.2. Color Transfer Function. Color is also an important tool
for distinguishing different organs or structures. We assign
voxels in a cluster the same color. In our implementation,
the HSV model was applied for color mapping as it is a
perception-enhanced color model. We divided the space of
hue (𝐻) equally according to the number of the clusters first.
Then, the saturation (𝑆) and value (𝑉) are set to constants as1 and 0.67. Specifically, for a voxel which is classified into the
cluster 𝑗, the hue can be computed as

ℎ𝑗 = 𝑗 ∗ 360𝑛 , (18)

where 𝑛 is the number of clusters.

3.3.3. Interaction Interface. For flexibility, we also provide
an interaction interface for our visualization system. In
traditional visualization systems that employ IGM histogram
to design transfer functions, users are usually requested
to select voxels for visualization in the IGM histogram by
manipulating various widgets, such as rectangle, triangle, and
ellipse. In this case, users are often required to have a good
understanding of the IGM histogram so that the widgets can
be put in appropriate places for meaningful visualization.
It is not an easy task for doctors. In contrast, in our
visualization system, as we segment the IGM histogram into
several clusters, users can interact with the clusters instead
of scattered points in the IGM histogram, which makes
the interaction more intuitive and effective. For example,
users can merge two or more clusters by setting the clusters
with the same color or modify the color of a cluster for
more appealing visualization. In addition, users can change
parameter settings by dragging scroll bars provided in the
interface in order to obtain promising result quickly.

4. Results

Our method was implemented on a PC with 3.50GHz Intel
Xeon E5-1620, 8G memory, and an NVIDIA Quadro K4200.
The GPU-accelerated ray-casting [30] volume algorithm
was developed to render the results using C++ and GLSL
shading language. Experiments were performed on various
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Figure 3: Visualization of the Visible Human Male Head dataset using different TFs. In every subfigure, the top row shows the visualization
and the bottom row shows corresponding TFs design: (a) the visualization using basic intensity based method, (b) the visualization using
traditional IGM basedmethod based on widgets, (c) the visualization using hierarchical exploration [7] (this figure is obtained from [7]), and
(d) the visualization using our method.

datasets to demonstrate the effectiveness of the proposed
method. The datasets were obtained from the volume library
(http://www9.informatik.uni-erlangen.de/External/vollib/).

4.1. Comparison. We first compared the proposed method
with commonly used transfer function schemes, including
basic intensity based method, traditional IGM based method
using widgets, and a state-of-the-art IGM based method
leveragingmultilevel segmentation [7].The experimentswere
performed on the Visible Human Male Head dataset. The
results are shown in Figure 3. Figure 3(a) shows the visual-
ization using basic intensity basedmethod. It is observed that
the bone and other interior organs are occluded by the skin.
In addition, users have to extensively adjust TFs in a time-
consuming trial-and-error way in order to achieve desired
results. Figure 3(b) shows the visualization using traditional
IGM based method, which demonstrates the advantage of
using intensity-gradient histogram. For example, the left of
Figure 3(b) is the initial result while the right of Figure 3(b)
is the visualization by adjusting the sizes of the widgets and
changing the opacity of each widget. This is a quite time-
consuming task. Figure 3(c) shows the result using [7] which
considers the intensity-gradient histogram as an image and
segments it using graph cut to explore the different organs
in the volume data. It is a hierarchical interaction process
to remove the materials which users want to exclude in the
visualization result. For example, as shown in Figure 3(c), if
one wants to achieve the result in the right side, he (she)
needs to perform at least six interactions on the initial result

(left of Figure 3(c)). Figure 3(d) shows the visualization of our
method, which can achieve satisfaction result automatically
and users can further polish the result by performing very
simple interactions.

4.2. Rendering Results

4.2.1. Visible Human Male Head. Figure 4 shows more visu-
alization results of the Visible Human Male Head dataset
(128 × 256 × 256) using our method. In order to more clearly
show the effectiveness of our classification and interactivity
approaches, we display each organ independently by setting
the transparency of other classes to 0. Figure 4(a) shows the
design of TFs and Figure 4(b) shows the visualization result
of the whole volume. The red, green, yellow, light blue, and
mazarine represent the skin, sinus, bones in the outside,
bones in the inside, and teeth, while the grey represents the
noise and nonsignificant tissues located at the boundaries of
the volume. As teeth and the chin bone are quite close in
the volume, our method classifies them into one cluster. Note
that as the skins distance to volume data center is larger than
other tissues and its gradientmagnitude is also quite large, the
opacity of the skin is set small in ourmethod and thus it looks
transparency in the visualization result to avoid occluding
other inside organs.

4.2.2. Knee Dataset. Figure 5 shows the visualization of the
knee dataset (379 × 229 × 305). The dataset is acquired from
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(a) (b)

(c) (d) (e) (f) (g)

Figure 4: Visualization of the Visible Human Male Head dataset: (a) the refined and clustered intensity-gradient histogram, (b) the
visualization result using the left transfer function, and (c), (d), (e), (f), and (g) the visualization results of the five clusters of the histogram,
representing skin, sinus, outside bones, inside bones, and teeth, respectively.

(a) (b)

(c) (d) (e)

Figure 5: Visualization of knee dataset: (a) the refined and segmented intensity-gradient histogram, (b) the visualization result of ourmethod,
and (c), (d), and (e) the visualization results of the three clusters of the histogram, representing skin, tibia, and fibula, respectively.

CT scan and is used for anterior tibia osteotomy. The blue,
red, and yellow in Figures 5(c), 5(d), and 5(e) represent the
skin, tibia, and fibula, respectively, while the gray represents
the structures excluded by the threshold.

4.2.3. Abdomen Dataset. Figure 6 shows the visualization
of the abdomen dataset (512 × 512 × 147). The dataset
was acquired from CT scan of the abdomen and pelvis.
A doctor must identify the key structures from it before
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Figure 6: Visualization of the CT abdomen dataset: (a) the refined and segmented intensity-gradient histogram, (b) the visualization result
of the proposed method, and (c), (d), and (e) the visualization results of the skin, blood vessel, and pelvis, respectively.

(a) (b)

Figure 7: Visualization of other datasets: (a) visualization of a CTA dataset and (b) visualization of a MRI dataset.

performing surgical planning based on it. The blue, red, and
green represent the skin, blood vessel, and pelvis, respectively.
It is observed that the proposed method can automatically
produce clear and meaningful visualization result for further
diagnosis and treatment.

4.2.4. Other Datasets. In addition to CT scan data, our
method is general enough to be employed for the visual-
ization of other imaging modalities. Figure 7(a) shows the
visualization of a computed tomography angiography (CTA)
dataset (512×512×120). Note that our method can visualize
the small aneurysm in the middle of the brain (labeled by
the green ellipse in the figure), which is quite important

for diagnosis and treatment planning. Figure 7(b) shows the
visualization of a MRI data.

The threshold of the spatial variance of a bin is a key
parameter in the proposed method. It determines which bins
should be eliminated from histogram. Figures 8 and 9 show
the results of the Visible HumanMaleHead dataset and a foot(256×256×256) dataset with different thresholds.The smaller
the threshold is, themore the bins will be eliminated from the
histogram. Figures 8(a)–8(d) show the visualization results
of the Visible Human Male Head dataset when we set the
threshold as 1, 0.45, 0.23, and 0.12, respectively. Figures 9(a)–
9(c) show the visualization results of the foot dataset whenwe
set the threshold as 0.75, 0.33, and 0.21, respectively.
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(a) (b)

(c) (d)

Figure 8: Visualization of the Visible HumanMale Head dataset with different thresholds: (a) the threshold is set as 1; (b) the threshold is set
as 0.45; (c) the threshold is set as 0.23; and (d) the threshold is set as 0.12.

4.3. Performance. Six datasets have been tested using our
transfer function and its effectiveness in improving rendering
quality has been demonstrated in Figures 3–9. To evaluate
our method’s effectiveness of real time, we do the time
performance test on these datasets. We also evaluate the time
performance of the proposed method on these datasets. The
results are shown in Table 1 with some key parameters. The
time of computing ]𝑠 in (2) is also tested as the preprocessing
time.

5. Discussion

As we mentioned in Section 2, some previous works have
been proposed based on IGM histogram to help transfer
function design. Figure 3 shows the comparison of our
method and most common approaches based on IGM his-
togram. From this comparison, we can see the traditional
IGM based method needs to spend a lot of time to achieve
satisfactory results while this is not convenient in clinical
practice. Particularly in Figure 3(b), it is difficult for radiol-
ogists and physicians to find an appropriate location to put

the widget, as they usually have no good understanding of
the histogram. Figure 3(c) also needs a lot of interactions to
remove the tissues which users may not want to observe. In
our approach, it can remove noisy voxels by presetting the
threshold of the spatial variance of a bin and the classification
of voxels is automatically by usingAP clustering that is shown
in Figure 3(d). In Figure 6, the blood vessel is so small in
intensity-gradient histogram that the users cannot easily put
widget using traditional IGM based approaches, while our
method can automatically figure it out using combined IGM
and spatial information. This is convenient for doctors to
operate to further improve the efficiency of diagnosis. Our
method can be applied in many clinical applications such as
maxillofacial surgery [31], tumor detection [32], andwearable
device design [33].

Except the convenient operation, the other advantage of
our method is that the spatial information of each voxel is
also considered as the measurement of similarity and this
can help distinguish different tissues, especially for the tissues
whose intensity and gradient magnitude values are similar,
such as bone and teeth that are shown in Figures 4(f) and
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(a) (b)

(c)

Figure 9: Visualization of foot dataset with different thresholds: (a) the threshold is set as 0.75, (b) the threshold is set as 0.33, and (c) the
threshold is set as 0.21.

Table 1: Time performance of the proposed method (FPS: frame per second).

Volume Data size Figure Threshold Preprocessing (ms) FPS
Male Head 128 × 256 × 256 Figures 3(c), 4, and 8(b) 0.45 400 198
Knee 379 × 229 × 305 Figure 5 3 600 142
Abdomen 512 × 512 × 147 Figure 6 0.8 890 123
CTA Head 512 × 512 × 120 Figure 7(a) 0.55 860 135
MRI Head 125 × 154 × 145 Figure 7(b) 0.40 280 210
Foot 256 × 256 × 256 Figure 9(b) 0.33 480 187

4(g). In Figure 5, the segmentation of tibia and fibula is a
quite challenging task as they belong to the same material,
while in our method by taking both intensity and gradient
information and spatial information into consideration, the
tibia and fibula can be successfully segmented and hence the
doctors and acquire more information from the visualization
result for diagnosis and treatment planning.

Although it needs some time to compute the spatial
variance of a bin, our time performance test shows that the
preprocessing time cost is so little that does not affect the real

time rendering, and the variance of each bin is stored in a file
when they computed firstly to avoid repeated computing.

6. Conclusion

In this paper, we present a novel automatic transfer func-
tion design scheme for medical data visualization based on
the IGM histogram. Compared with previous studies also
based on IGM histogram, our method considers both the
intensity-gradient information and the spatial information
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of voxels, making the clustering of the voxels more accurate
and effective. The AP clustering algorithm is employed to
automatically generate the TFs. Compared with previous
clustering algorithms employed in volume visualization, the
AP clustering algorithm has much faster convergence speed
and can achieve more accurate clustering results. To achieve
meaningful clustering results, two novel similarity measure-
ments, IGM similarity and spatial similarity, are proposed
and integrated into the AP clustering algorithm. Experiments
demonstrate the proposed method enable users to efficiently
explore volumetric medical data withminimum interactions.
Future investigations include assessing our method on more
clinical data and attempting to automatically optimize the
parameters based on the analysis of the input volume data.
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