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Abstract

There is a growing body of biological investigations to understand impacts of seasonally
changing environmental conditions on population dynamics in various research fields such as
single population growth and disease transmission. On the other side, understanding the pop-
ulation dynamics subject to seasonally changing weather conditions plays a fundamental role
in predicting the trends of population patterns and disease transmission risks under the sce-
narios of climate change. With the host-macroparasite interaction as a motivating example, we
propose a synthesised approach for investigating the population dynamics subject to seasonal
environmental variations from theoretical point of view, where the model development, basic re-
production ratio formulation and computation, and rigorous mathematical analysis are involved.
The resultant model with periodic delay presents a novel term related to the rate of change of
the developmental duration, bringing new challenges to dynamics analysis. By investigating a
periodic semiflow on a suitably chosen phase space, the global dynamics of a threshold type
is established: all solutions either go to zero when basic reproduction ratio is less than one,
or stabilise at a positive periodic state when the reproduction ratio is greater than one. The
synthesised approach developed here is applicable to broader contexts of investigating biological
systems with seasonal developmental durations.
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1 Introduction

The rhythm of life on earth, occurring on daily or annual scales, is driven by seasonal changes in
the environment [32] which regulate various physiological and behavioural processes, as well as the
population dynamics of species. Many plant and animal species have demonstrated seasonal popula-
tion dynamics in response to seasonal environmental changes, in particular, the weather conditions.
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Mosquito species Culex pipiens and Culex restuans, main vectors of West Nile virus transmission,
are very sensitive to long-term variations in climate and short-term variations in weather [34], in
particular, temperature condition affects the rates of immature mosquito development and activity
of adults, and precipitation determines the amount and quality of larval habitats. Temperature
also affects the host-seeking activity of ticks and their rates from one life stage to the next one, as
a result, it is proposed as a statistically significant determinant and possible driver of emergence of
the tick in Canada [20]. Seasonal forcing in host and parasite biology also determines the risk of
infectious diseases through the following aspects [2]: (a) host social behaviour and aggregation; (b)
vector population and activity; (c) parasite stages in the environment; (d) timing of reproduction
and pulses of susceptible hosts; and (e) host susceptibility and immune defences.

Given the significant roles that seasonal environment factors play in population growth, disease
transmission and other life systems, theoretical models have been formulated to incorporate the
seasonality of parameters in phenomenological ways, such as those reported in [2]. Many model
parameters in ecosystems are influenced by the environmental conditions in a nonlinear way [19],
and in previous models, it is well-accepted to assume the parameters subject to seasonal factors
change periodically. For example, a sinusoidal form with period one year

β(t) = β0(1 + β1 cos(2πt))

can be fitted to describe the seasonal transmission term [2]. A growing body of literature reported
that the developmental duration can be driven by seasonal forcing, and thus be periodic. For ex-
ample, the developmental duration of mosquito species Culex pipiens and Culex restuans is affected
by temperature conditions. In the transmission cycle of malaria, the extrinsic incubation period
(EIP) of the parasite within the mosquito is one of the most critical parameters to evaluate the
disease risk. During EIP, malaria parasites go through various developmental stages and distinct
replication cycles before migrating to the salivary glands where they can be transmitted to humans.
The speed of this development depends on host, parasite and environmental factors with estimate
order of 10-14 days in areas of high malaria transmission. However, 90% of the female mosquitoes
die within 12 days and are therefore unlikely to contribute to malaria transmission. On the other
side, the extrinsic incubation period is extremely temperature sensitive [21], and hence, it is pivotal
to incorporate this seasonally forced incubation period on describing malaria transmission. For
these two aforementioned scenarios, the developmental durations for immature mosquitoes and
incubation period for parasites are periodic functions of time, which brings new challenges into
model formulation where careful mathematical derivation and biological justification are needed.
Usually, a delay τ is used to describe the developmental duration from one stage I to another stage
M , see, e.g., the following single population growth model with a time-independent developmental
duration τ introduced in [1]:

I ′(t) = bM(t)− µI(t)− bM(t− τ)e−µτ ,
M ′(t) = bM(t− τ)e−µτ − dM2(t).

(1.1)

In this model, the term µI(t) is the death rate term for stage I and dM2(t) is the death term for
stage M , bM(t) is the birth term to stage I. However, this model can not be directly extended
to incorporate the seasonal developmental delay term by simply changing τ into a time-dependent
delay τ(t) to formulate models when the developmental duration τ(t) varies seasonally. The reader
may get surprised to find that the model system involves a term, 1 − τ ′(t), related to the rate of
change of τ(t) (see the model system (2.2) in the next section). Moreover, the model system becomes
a periodic delay differential system with periodic delays, which adds challenges into theoretical
analysis. The purpose of this paper is to propose a synthesised mathematical approach to the study
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of biological systems with seasonal forcing, in particular, with seasonal variations on developmental
duration.

To present our approach, we use the host-macroparasite interaction as a motivating example.
The host-parasite interaction has attracted great attention since the pioneering work of Ander-
son and May [3], with most models aiming to figure out the basic reproduction number R0 of
parasite (measuring “the expected lifetime reproductive output of a new born larva” for macropar-
asite [19]). Here we develop a theoretical framework to investigate the population dynamics with
time-dependent developmental duration for the parasitic nematodes with a direct life cycle and
endotherm hosts [19], but we should point out that this framework can be extended to broader
contexts in life science, such as single species population growth, pathogen transmission and in-host
viral dynamics, where the developmental duration has various definitions such as the maturation
time for species, pathogen incubation duration in epidemiology, the duration for immune system
development in immunology, and so on.

This paper is organized as follows. The model is formulated in the next section through careful
arguments. Then the basic reproduction ratio R0 is introduced and the long-term behavior of
solutions is investigated in section 3. Numerical simulations are presented in section 4, and a brief
discussion section finishes the paper. In the appendix, we show how to write the next generation
operator into the integral form in [22] so that the numerical algorithm in that paper remains
applicable to R0 computation here.

2 Model formulation

Before introducing the whole model system for host-parasite interaction, we investigate a two-stage
single population growth scenario as a toy example, in the hope of presenting the modelling idea
through a simpler case.

2.1 A two-stage population growth model

We start with a two-stage model, with population containing first stage I(t) and second stage M(t)
defined, respectively, as those of age less than, and greater than, some threshold age τ(t) (the
maturation time for the cohort that matures at time t), which is assumed to be seasonal due to
the seasonal variations of weather conditions. That is, at time t, the individuals with age greater
(less) than τ(t) are in the second stage (remaining in the first stage). Within each age group, all
individuals have the same age-independent birth and death rates. Let ρ(t, a) be the population
density of age a at time t, then the numbers I(t) and M(t) of individuals in the first and second
stages, respectively, are given by

I(t) =

∫ τ(t)

0
ρ(t, a) da and M(t) =

∫ ∞
τ(t)

ρ(t, a) da.

The age density ρ(t, a) satisfies the following McKendrick von-Foerster type equation [9, 36]

∂ρ(t, a)

∂t
+
∂ρ(t, a)

∂a
= −µ(a, t)ρ(t, a), (2.1)

with the age-dependent death rates

µ(a, t) = µ1(t) if a ≤ τ(t) and µ(a, t) = µ2(t) if a > τ(t).

Page 3



Yijun Lou and Xiao-Qiang Zhao

Taking the derivatives of I(t) and M(t), and using (2.1), we obtain

dI(t)
dt = ρ(t, 0)− (1− τ ′(t))ρ(t, τ(t))− µ1(t)I(t),

dM(t)
dt = (1− τ ′(t))ρ(t, τ(t))− µ2(t)M(t)− ρ(t,∞).

Since no individual can live forever, ρ(t,∞) is taken as zero. The term ρ(t, 0) represents the flow in
rate to the first stage at time t, supposed to be ρ(t, 0) = b(t) = B(t,M(t)), a function of time t and
population density M(t). Mathematically, we also assume the delay τ(t) involved is continuously
differentiable in [0,∞) and bounded away from zero and infinity. To close the system, we calculate
ρ(t, τ(t)) in terms of ρ(t− τ(t), 0) = b(t− τ(t)) = B(t− τ(t),M(t− τ(t))) which is achieved by the
technique of integration along characteristics with the aid of the variable V s(t) = ρ(t, t − s). By
direct calculations, we arrive at

d

dt
V s(t) = −µ1(t)V s(t)

for t− s ≤ τ(t), with V s(s) = ρ(s, 0) = b(s). It follows that

V s(t) = V s(s)e−
∫ t
s µ1(ξ) dξ = B(s,M(s))e−

∫ t
s µ1(ξ) dξ.

Setting s = t− τ(t), we have, for t ≥ τ̂ with τ̂ = max{τ(t)},

ρ(t, τ(t)) = V t−τ(t)(t) = B(t− τ(t),M(t− τ(t)))e
−

∫ t
t−τ(t) µ1(ξ) dξ

.

Hence, we obtain a closed system to describe two age groups subject to seasonal effects when t ≥ τ̂ :

dI(t)
dt = B(t,M(t))− (1− τ ′(t))B(t− τ(t),M(t− τ(t)))e

−
∫ t
t−τ(t) µ1(ξ) dξ

−µ1(t)I(t),

dM(t)
dt = (1− τ ′(t))B(t− τ(t),M(t− τ(t)))e

−
∫ t
t−τ(t) µ1(ξ) dξ − µ2(t)M(t).

(2.2)

This model turns out to be a differential system with periodic time delay, which is different from
previous work without seasonal effects (see, e.g., system (1.1) and those models in [29]) in the sense
that the term 1− τ ′(t) is included in the development rate from the first stage to the next one

(1− τ ′(t))B(t− τ(t),M(t− τ(t)))e
−

∫ t
t−τ(t) µ1(ξ) dξ

. (2.3)

An alternative approach, more biologically oriented, to describe the population growth of two
stages (especially the maturation term (2.3)) is also feasible. The first stage population size I(t) at
time t counts all accumulation of individuals born at moment ξ with rate b(ξ) between t− τ(t) to t

but remain alive with the survival probability e−
∫ t
ξ µ1(s) ds. Intuitively, the size I(t) depends on the

duration of τ(t) for individuals staying in the first stage. Motivated by these biological inductions,
we can represent I(t) into an integral form

I(t) =

∫ t

t−τ(t)
b(ξ)e−

∫ t
ξ µ1(s) dsdξ.

Taking the derivative of I(t), we get the differential equation version of this variable in the first
equation of (2.2). The maturation rate should be the birth rate at time t − τ(t), b(t − τ(t)),

multiplied with survival probability to time t, e
−

∫ t
t−τ(t) µ1(s) ds

and corrected with the rate of change
for t− τ(t).
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In parameterizing the delay τ(t), the developmental proportion r(ξ) at time ξ is taken into
consideration (see [38] and subsection 4.1 for estimation of the developmental proportion) such
that the accumulative proportion from t− τ(t) to t reaches unity when the individual moves to the
next stage. Theoretically, we use the following relation to determine τ(t)

1 =

∫ t

t−τ(t)
r(ξ)dξ, (2.4)

where r(ξ) is the time-periodic development proportion at moment ξ. The periodicity of r(ξ) in ξ
implies the periodicity of the delay τ(t) in time variable t. Taking the derivative with respect to t,
we have

0 = r(t)− (1− τ ′(t))r(t− τ(t))

from which we can get

1− τ ′(t) =
r(t)

r(t− τ(t))
,

and hence, the conversion rate in (2.3) can be expressed as

r(t)

r(t− τ(t))
b(t− τ(t))e

−
∫ t
t−τ(t) µ1(ξ) dξ

.

Thanks to this relation, we can always assume that 1 − τ ′(t) > 0 for any biologically reasonable
developmental delay. One interesting scenario for the relationship 1 − τ ′(t) > 0 in plain language
is addressed in [8] to project this inherent relationship to a real life situation. A similar term has
been derived in a state-dependent delay system in the recent work by Kloosterman, Campbell and
Poulin [15].

A similar term was formulated in models proposed by Barbarossa, Hadeler and Kuttler [8] and
Wu et al. [39] as well as some others, see, e.g., [18] and references therein, to describe the population
growth with threshold age τ depending on time t. The introduction of the term 1−τ ′(t) is due to the
incorporation of state-dependent delay in [8, 15]. Another biologically motivated approach to get
the similar term can be derived by following the idea in [18]. We reformulate the similar terms here
as a part of modelling process to develop the whole model system. In the next subsection, we extend
the two-stage model (2.2) to describe host-parasite interaction, where the parasite developmental
duration is dependent on time.

2.2 The model for host-parasite interaction

We extend the fundamental modelling frameworks proposed by Anderson and May [3] and Dobson
and Hudson [10] by considering four stages (see Fig 1): Free living larvae not infective X(t),
free living larvae infective L(t), arrested larvae in the host Y (t) and adult parasites P (t). We
are concerned with two delays in the parasite life cycle, one in the free-living stage and the other
within the host population: (i) the developmental delay τL(t) between the moment when newly shed
parasites enter the environment and the moment they reach the infective larval stage and (ii) the
time period τP (t) needed for the arrested larvae infecting the host to develop to pathogenic adults
[10]. Since the development time to the infectivity stage depends on metabolic rate, and hence
the temperature condition, we assume the developmental duration is a time-periodic parameter
with period one year (365 days) as temperature changes seasonally [19]. Much attention should
be paid to estimate these time-dependent delays and we will employ a theoretically rigorous and
well-accepted approach as shown in the equation (4.2) in Section 4. Other life cycle components
may also be temperature-dependent, and therefore, be periodic in time t.
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Figure 1: Schematic diagram for the parasite life cycle. Arrows show the rates for host H(t) and
parasite in four distinct stages. Solid arrows indicate the rates for gains and losses to respective
compartment while dashed arrows represent developmental time delays for development from new
born to infective larvae τL(t) in the free living stage and the length of prepatent period τP (t) within
the host.

Host population dynamics may be regulated by parasites, which is a crucial assumption for
some host-parasite models [24]. However, in the current project we are more concerned with the
reproduction ratio analysis, and therefore, we ignore the host survival or fecundity affected by the
arrested parasite since the metabolic activity in arrested larvae is very low [10]. This assumption
becomes much more reasonable for farmed animal hosts, which density is largely controlled by the
farm owner [24]. Therefore, the host population H(t) is considered to be seasonal, analogous to
those constant host population assumptions in notable papers [25, 26] and recent work [31]. We
defer inclusion of the host abundance dynamics to the discussion section, which justifies that the
analytic results remain valid under such an assumption.

Based on the diagram (Fig 1) and conversion rate on incorporating the periodic delays (2.3),
we can write down the model system as follows:

dX(t)
dt

= λP (t)− µX(t)X(t)− λ(1− τ ′L(t))P (t− τL(t))e
−

∫ t
t−τL(t) µX (ξ) dξ

, (2.5a)

dL(t)
dt

= λ(1− τ ′L(t))P (t− τL(t))e
−

∫ t
t−τL(t) µX (ξ) dξ − µL(t)L(t)− β(t)H(t)L(t), (2.5b)

dY (t)
dt

= β(t)H(t)L(t)− (µY (t) + µH(t))Y (t) (2.5c)

−(1− τ ′P (t))β(t− τP (t))H(t− τP (t))e
−

∫ t
t−τP (t)(µY (ξ)+µH (ξ)) dξ

L(t− τP (t)),

dP (t)
dt

= (1− τ ′P (t))β(t− τP (t))H(t− τP (t))e
−

∫ t
t−τP (t)(µY (ξ)+µH (ξ)) dξ

L(t− τP (t))

−(µP (t) + µH(t))P (t)− αH

(
1 +

P (t)

H(t)

k + 1

k

)
P (t). (2.5d)

System (2.5) describes the change of densities for the four compartments: (i) The free living larvae
X(t) are regained though the birth of adult parasite at rate λ, lost by either mortality (at rate
µX(t)) or development to free living infected larvae (the last term of equation (2.5a)); (ii) The
density of free living infected larvae L(t) increases from the development of non infected larvae
(the first term of equation (2.5b)) and decreases with the death rate µL(t) and host uptake at
rate β(t)H(t), which is dependent on the host population H(t); (iii) Ingested larvae Y (t) enter
the host population with rate β(t)H(t). They stay in the host for τP (t) unit time, which is the
developmental duration from infecting larvae to adult parasite. The development rate to adult
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parasite is described in the last term of equation (2.5c). Their density decreases due to the natural
death rate µY (t) and host death rate µH(t) as the larvae will also die when hosts die; (iv) The
density of adult parasites P (t) increases with the development from larvae (first term of (2.5d)),
decreases with the mortality, both the natural death at rate µP (t) and host death at rate µH(t).
The burden of adult parasite also decreases due to the aggregated distribution of parasites in the
host population, by assuming the distribution of parasites within the host population to be negative
binomial with exponent k (also known as aggregation parameter) [3]. As argued previously, we can
replace (1− τ ′L(t)) and (1− τ ′P (t)), respectively, with the developmental proportions

1− τ ′L(t) =
rL(t)

rL(t− τL(t))
and 1− τ ′P (t) =

rP (t)

rP (t− τP (t))
,

where rL(t) and rP (t) are the corresponding developmental proportions.

3 The threshold dynamics

In this section, we first introduce the basic reproduction ratio R0 for model (2.5), and then establish
a threshold type result on its global dynamics. We postpone the numerical algorithm for the
computation of R0 to the Appendix.

3.1 The basic reproduction ratio R0

In system (2.5), the equations (2.5a) and (2.5c) can be decoupled since variables X and Y do not
appear in the other two equations. Therefore, we start with the decoupled system:

dL

dt
=λ(1− τ ′L(t))e

−
∫ t
t−τL(t)

µX(ξ) dξ
P (t− τL(t))− µL(t)L(t)− β(t)H(t)L(t),

dP

dt
=(1− τ ′P (t))β(t− τP (t))H(t− τP (t))e

−
∫ t
t−τP (t)

(µY (ξ)+µH(ξ)) dξ
L(t− τP (t))

− (µP (t) + µH(t))P (t)− αH
(

1 +
P (t)

H(t)

k + 1

k

)
P (t).

(3.1)

Note that system (3.1) is the model1 proposed in [19], which motivated us to work on the analysis
from mathematical point of view. Actually, we can rewrite the other two variables into integral
forms:

X(t) =

∫ t

t−τL(t)
λP (ξ)e−

∫ t
ξ µX(s) dsdξ,

Y (t) =

∫ t

t−τP (t)
β(ξ)H(ξ)L(ξ)e−

∫ t
ξ (µY (s)+µH(s)) dsdξ.

(3.2)

Once the dynamics of two variables L(t) and P (t) are obtained, that of X(t) and Y (t) can be
deduced naturally. The dynamics of the full system (2.5) will be discussed in the next subsection.

To address the well-posedness of system (3.1), we introduce some notations. Let τ̂ = max{maxt∈[0,ω] τL(t),maxt∈[0,ω] τP (t)}
and X := C([−τ̂ , 0],R2) equipped with the maximum norm. For a function x(·) ∈ C([−τ̂ ,∞),R2),
we can define xt ∈ X as xt(θ) = x(t + θ), ∀θ ∈ [−τ̂ , 0]. For any φ ∈ X , we define f(t, φ) =
(f1(t, φ), f2(t, φ)) with

f1(t, φ) = λ(1− τ ′L(t))e
−

∫ t
t−τL(t) µX (ξ) dξ

φ2(−τL(t))− µL(t)φ1(0)− β(t)H(t)φ1(0),

f2(t, φ) = (1− τ ′P (t))β(t− τP (t))H(t− τP (t))e
−

∫ t
t−τP (t)(µY (ξ)+µH (ξ)) dξ

φ1(−τP (t))
−(µP (t) + µH(t) + αH)φ2(0)− k+1

k
αH
H(t)

φ2
2(0).

1In the model system of [19], L should be L(t− τP ) in the equation (8b), as well as in (1b).
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Due to the ω-periodicity of τL(t), µL(t), β(t), H(t), τP (t), µP (t), and µH(t), it is easy to see that
f(t + ω, φ) = f(t, φ). Thus, (3.1) is an ω- periodic functional differential system. For notational
simplicity, we rewrite system (3.1) into

dL

dt
= bL(t)P (t− τL(t))− dL(t)L(t),

dP

dt
= bP (t)L(t− τP (t))− dP (t)P (t)− α(t)P 2(t),

(3.3)

with the following combinations

bL(t) = λ(1− τ ′L(t))e
−

∫ t
t−τL(t) µX(ξ) dξ

, dL(t) = µL(t) + β(t)H(t),

bP (t) = (1− τ ′P (t))β(t− τP (t))H(t− τP (t))e
−

∫ t
t−τP (t)(µY (ξ)+µH(ξ)) dξ

,

dP (t) = µP (t) + µH(t) + αH , and α(t) =
αH(k + 1)

kH(t)
.

Clearly, all these coefficients are positive ω-periodic functions.
For a given continuous ω-periodic function g(t), let

ĝ = max
t∈[0,ω]

g(t), g = min
t∈[0,ω]

g(t).

The following result shows that system (3.1) is well-posed on

X+ := C([−τ̂ , 0],R2
+),

and hence, the derived model system is also biologically reasonable.

Lemma 3.1. For any φ = (φ1, φ2) ∈ X+, system (3.1) has a unique nonnegative and bounded
solution v(t, φ) with v0 = φ on [0,∞).

Proof. Note that f(t, φ) is continuous and Lipschitzian in φ in each compact subset of X+. It follows
that for any φ ∈ X+, system (3.1) admits a unique solution u(t, φ) with u0 = φ on its maximal

interval of existence. Let x∗ = (x∗1, x
∗
2) :=

(
b̂L
d̄L

b̂pb̂L
αdL

,
b̂pb̂L
αdL

)
. For any given ρ ≥ 1, let [0, ρx∗]X be the

order interval in X , that is,

[0, ρx∗]X := {φ ∈ X : 0 ≤ φ(θ) ≤ ρx∗,∀θ ∈ [−τ̂ , 0]}.

It is easy to verify that whenever ψ ∈ [0, ρx∗]X , t ∈ R, and ψi(0) = 0 (ψi(0) = ρx∗i ) for some i,
then fi(t, ψ) ≥ 0 (fi(t, ψ) ≤ 0). By [30, Theorem 5.2.1 and Remark 5.2.1], it follows that [0, ρx∗]X
is positively invariant for system (3.1). Since ρ can be chosen as large as we wish, this proves the
positivity and boundedness of solutions in X+.

The basic reproduction ratio has been extensively studied over the decades for autonomous
models of disease transmission, and it has been extended to various epidemic models with periodic
coefficients (see, e.g., [5, 6, 7, 13, 23, 33, 35, 39, 40] and references therein). Below we will use the
recent theory developed in [42] to introduce the basic reproduction ratio for our model system with
periodic time delays.

The parasite free state of the system is (0, 0) and the corresponding linearized system for system
(3.3) is

dL

dt
= bL(t)P (t− τL(t))− dL(t)L(t),

dP

dt
= bP (t)L(t− τP (t))− dP (t)P (t).

(3.4)
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Let

F (t)

(
φ1

φ2

)
=

(
bL(t)φ2(−τL(t))
bP (t)φ1(−τP (t))

)
and V (t) =

(
dL(t) 0
0 dP (t)

)
.

Then the linear system (3.4) can be written as

du(t)

dt
= F (t)ut − V (t)u(t), ∀t ≥ 0.

Note that F (t) and V (t) are ω-periodic in t and the newly “birth” parasites is described by F (t)
while the growth of the parasites except birth is described by the following evolution system

du(t)

dt
= −V (t)u(t).

Let Z(t, s), t ≥ s, be the evolution matrix of the above linear system. That is, for each s ∈ R,
the 2× 2 matrix Z(t, s) satisfies

d

dt
Z(t, s) = −V (t)Z(t, s), ∀t ≥ s, Z(s, s) = I,

where I is the 2× 2 identity matrix. Clearly, we have

Z(t, s) =

(
e−

∫ t
s dL(ξ)dξ 0

0 e−
∫ t
s dP (ξ)dξ

)
.

Recall that the exponential growth bound of Z(t, s) is defined as

Ω(Z) := inf
{
ω̃ : ∃M ≥ 1 such that ‖Z(t+ s, s)‖ ≤Meω̃t, ∀s ∈ R, t ≥ 0

}
.

It is easy to see that Ω(Z) ≤ −min{dL, dP }. Therefore, F (t) and V (t) satisfy the following
assumptions in [42]:

(H1) F (t) : X → R2 is positive in the sense that F (t)X+ ⊆ R2
+;

(H2) The periodic matrix −V (t) is cooperative, and Ω(Z) < 0.

Let Cω be the Banach space of all ω-periodic functions from R to R2, equipped with the
maximum norm and the positive cone C+

ω := {u ∈ Cω : u(t) ≥ 0, ∀t ∈ R}. Suppose v ∈ Cω is the
initial distribution of larval and adult parasites in this periodic environment, then F (t − s)vt−s is
the distribution of newly born parasites at time t − s with t ≥ s ≥ 0, and Z(t, t − s)F (t − s)vt−s
represents the distribution of those parasites who were newly reproduced at time t − s and still
survive in the environment at time t for t ≥ s. Hence,∫ ∞

0
Z(t, t− s)F (t− s)vt−sds =

∫ ∞
0

Z(t, t− s)F (t− s)v(t− s+ ·)ds

gives the distribution of accumulative parasite burden at time t produced by those parasites intro-
duced at all previous time.

We define the next generation operator L : Cω → Cω by

(Lv)(t) =

∫ ∞
0

Z(t, t− s)F (t− s)v(t− s+ ·)ds, ∀t ∈ R, v ∈ Cω.
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According to [42], the basic reproduction ratio is R0 := r(L), the spectral radius of L.
For any given t ≥ 0, let W (t) be the time-t map of the linear periodic system (3.4) on X , that

is, W (t)φ = wt(φ), where w(t, φ) is the unique solution of (3.4) with w0 = φ ∈ X . By [42, Theorem
2.1], we have the following result, which indicates that R0 − 1 is a threshold value for the stability
of the zero solution of system (3.4).

Lemma 3.2. R0 − 1 has the same sign as r(W (ω))− 1.

Based on this lemma, we can characterise the global dynamics of the model system by R0,
which will be investigated in the next subsection.

3.2 The global dynamics in terms of R0

To study the global dynamics of the model system in terms of R0, our strategy is to use the theory
of monotone and subhomogeneous semiflows (see, e.g., [41, Section 2.3]). We start with a new
phase space on which system (3.1) generates an eventually strongly monotone periodic semiflow.

Let
Y := C([−τP (0), 0],R)× C([−τL(0), 0],R),

and
Y+ := C([−τP (0), 0],R+)× C([−τL(0), 0],R+).

Then (Y,Y+) is an ordered Banach space. For a continuous function u : [−τP (0),+∞)×[−τL(0),+∞)→
R2 and t ≥ 0, we define ut ∈ Y by

(ut)1(θ) = u1(t+ θ), ∀θ ∈ [−τP (0), 0], (ut)2(η) = u2(t+ η), ∀η ∈ [−τL(0), 0].

Lemma 3.3. For any φ ∈ Y+, system (3.3) admits a unique nonnegative solution u(t, φ) on [0,∞)
with u0 = φ.

Proof. Let τ̄ = min{τL, τP }. For any t ∈ [0, τ̄ ], since t− τL(t) is strictly increasing, we have

−τL(0) = 0− τL(0) ≤ t− τL(t) ≤ τ̄ − τL(τ̄) ≤ τ̄ − τ̄ = 0,

and hence
P (t− τL(t)) = φ2(t− τL(t)).

Similarly,
L(t− τP (t)) = φ1(t− τP (t)).

Therefore, we have the following equations for t ∈ [0, τ̄ ]:

dL

dt
= bL(t)φ2(t− τL(t))− dL(t)L(t),

dP

dt
= bP (t)φ1(t− τP (t))− dP (t)P (t)− α(t)P 2(t).

Given φ ∈ Y+, the solution (L(t), P (t)) of the above system exists for t ∈ [0, τ̄ ]. In other words, we
obtain the values of u1(θ) = L(θ) for θ ∈ [−τP (0), τ̄ ] and u2(η) = P (η) for η ∈ [−τL(0), τ̄ ].

For any t ∈ [τ̄ , 2τ̄ ], we have

−τL(0) = 0− τL(0) ≤ τ̄ − τL(τ̄) ≤ t− τL(t) ≤ 2τ̄ − τL(2τ̄) ≤ 2τ̄ − τ̄ = τ̄ ,
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and hence, P (t − τL(t)) = u2(t − τL(t)) is known. Similarly, L(t − τP (t))=u1(t − τP (t)) is also
given from the previous step. Solving the following ordinary differential system for t ∈ [τ̄ , 2τ̄ ] with
L(τ̄) = u1(τ̄) and P (τ̄) = u2(τ̄):

dL

dt
= bL(t)u2(t− τL(t))− dL(t)L(t),

dP

dt
= bP (t)u1(t− τP (t))− dP (t)P (t)− α(t)P 2(t),

we then get the solution (L(t), P (t)) on the interval [τ̄ , 2τ̄ ].
We can extend this procedure to [nτ̄ , (n+ 1)τ̄ ] for all n ∈ N. It then follows that for any initial

data φ ∈ Y+, the solution (L(t), P (t)) exists uniquely for all t ≥ 0.

Remark 3.4. By the uniqueness of solutions in Lemmas 3.1 and 3.3, it follows that for any
ψ ∈ X+ and φ ∈ Y+ with ψ1(θ) = φ1(θ), ∀θ ∈ [−τP (0), 0] and ψ2(η) = φ2(η), ∀η ∈ [−τL(0), 0], then
u(t, φ) = v(t, ψ), ∀t ≥ 0, where u(t, φ) and v(t, ψ) are solutions of system (3.3) satisfying u0 = φ
and v0 = ψ, respectively.

Lemma 3.5. Let Qt(φ) = ut(φ), t ≥ 0. Then Qt is an ω-periodic semiflow on Y+ in the sense
that (i) Q0 = I; (ii) Qt+ω = Qt ◦Qω,∀t ≥ 0; and (iii) Qt(φ) is continuous in (t, φ) ∈ [0,∞)×Y+.

Proof. Clearly, property (i) holds true, and property (iii) follows from a standard argument. It
suffices to prove (ii). Denote v(t) = u(t+ ω, φ), we need to show that v(t) = u(t, uωφ),∀t ≥ 0. To
do this, we first check

dv1(t)

dt
=
du1(t+ ω, φ)

dt
=bL(t+ ω)u2(t+ ω − τL(t+ ω), φ)− dL(t+ ω)u1(t+ ω, φ)

=bL(t)u2(t+ ω − τL(t+ ω), φ)− dL(t)u1(t+ ω, φ)

=bL(t)v2(t− τL(t), φ)− dL(t)v1(t, φ).

Similarly, we have

dv2(t)

dt
=bP (t)v1(t− τP (t), φ)− dP (t)v2(t, φ)− α(t)(v2(t, φ))2.

This shows that v(t) is also a solution of system (3.3). Moreover, we have v1(θ) = u1(θ + ω, φ) for
θ ∈ [−τP (0), 0] and v2(η) = u2(η+ω, φ) for η ∈ [−τL(0), 0]. On the other side, let w(t) = u(t, uωφ),
then w(t) is also a solution of system (3.3), and w1(θ) = u1(θ, uωφ) = uω(φ)1(θ)=u1(θ + ω, φ) for
θ ∈ [−τP (0), 0] and w2(η) = u2(η, uωφ) = uω(φ)2(η)=u2(η + ω, φ) for η ∈ [−τL(0), 0]. Thus, v(t)
and w(t) are solutions of system (3.3) with the same initial data. By the uniqueness of solutions,
we see that v(t) = w(t),∀t ≥ 0, that is,

u(t+ ω, φ) = u(t, uωφ), ∀t ≥ 0.

For any t ≥ 0 and θ ∈ [−τP (0), 0], if t + θ ≥ 0, we have u1(t + θ + ω, φ) = u1(t + θ, uωφ), that is,
ut+ω(φ)1(θ) = ut ◦ uω(φ)1(θ); if t + θ < 0, then u1(t + θ, uωφ) = uω(φ)1(t + θ) = u1(t + θ + ω, φ),
which also implies ut ◦ uω(φ)1(θ) = ut+ω(φ)1(θ). Similarly, we can show that ut ◦ uω(φ)2(η) =
ut+ω(φ)2(η) for all η ∈ [−τL(0), 0] and t ≥ 0. It then follows that ut ◦ uω(φ) = ut+ω(φ), and hence,
Qt+ω(φ) = Qt ◦Qω(φ) for all φ ∈ Y+ and t ≥ 0.

The following two lemmas indicate that the periodic semiflowQt is eventually strongly monotone
and strictly subhomogeneous.
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Lemma 3.6. For any φ and ψ in Y+ with φ > ψ (that is, φ ≥ ψ but φ 6= ψ), the solutions
u(t) and v(t) of system (3.3) with u0 = φ and v0 = ψ, respectively, satisfy ui(t) > vi(t) for all
t > 2τ̂ , i = 1, 2, and hence, Qt(φ)� Qt(ψ) in Y for all t > 3τ̂ .

Proof. As in the proof of Lemma 3.3, a simple comparison argument on each interval [nτ̄ , (n+1)τ̄ ],
n ∈ N, implies that ui(t) ≥ vi(t) for all t ≥ 0. By Lemma 3.1 and Remark 3.4, both u(t) and v(t) are
bounded on [0,∞), and hence, there exists a real number b > 0 such that ut and vt are in the order
interval [(0, 0), (b, b)]Y for all t ≥ 0. Thus, we can choose a large number M > 0 such that for each
t ∈ R, g1(t, L) := −dL(t)L+ML is increasing in L ∈ [0, b] and g2(t, P ) := −dP (t)P −α(t)P 2 +MP
is increasing in P ∈ [0, b]. It then follows that both u(t) and v(t) satisfy the following system of
integral equations:

L(t) = e−MtL(0) +

∫ t

0

e−M(t−s)g1(s, L(s))ds+

∫ t

0

e−M(t−s)bL(s)P (s− τL(s))ds,

P (t) = e−MtP (0) +

∫ t

0

e−M(t−s)g2(s, P (s))ds+

∫ t

0

e−M(t−s)bP (s)L(s− τP (s))ds,

(3.5)

for all t ≥ 0. Since both mL(t) := t − τL(t) and mP (t) := t − τP (t) are increasing in t ∈ R, it
easily follows that [−τL(0), 0] ⊆ mL([0, τ̂ ]) and [−τP (0), 0] ⊆ mP ([0, τ̂ ]). Without loss of generality,
we assume that φ2 > ψ2. Then there exists an η ∈ [−τL(0), 0] such that u2(η) > v2(η). In view
of the first equation of (3.5), we have u1(t) > v1(t) for all t > τ̂ . Note that if s > 2τ̂ , then
s− τP (s) > 2τ̂ − τ̂ = τ̂ . By the second equation of (3.5), it follows that u2(t) > v2(t) for all t > 2τ̂ .
This shows that ui(t) > vi(t) for all t > 2τ̂ , i = 1, 2, and hence, the solution map Qt is strongly
monotone whenever t > 3τ̂ .

Lemma 3.7. For any φ � 0 in Y and any γ ∈ (0, 1), we have ui(t, γφ) > γui(t, φ) for all t > τ̂ ,
i = 1, 2, and hence, Qnω(γφ)� γQnω(φ) in Y for all integers n with nω > 2τ̂ .

Proof. Let w(t) = u(t, γφ) and v(t) = γu(t, φ), where u(t, φ) is the unique solution of system (3.3)
with u0 = φ � 0 in Y. As in the proof of Lemma 3.3, we see that u(t) > 0 and v(t) > 0 for all
t ≥ 0. Moreover, for all θ ∈ [−τP (0), 0] and η ∈ [−τL(0), 0], we have

w1(θ) = γφ1(θ) = v1(θ) and w2(η) = γφ2(η) = v2(η).

It is easy to see that v(t) satisfies the following system:

dv1(t)

dt
= bL(t)v2(t− τL(t))− dL(t)v1(t),

dv2(t)

dt
= bP (t)v1(t− τP (t))− dP (t)v2(t)− α(t)

γ
v2

2(t),

and hence,

v1(t) =

[
v1(0) +

∫ t

0

bL(ξ)v2(ξ − τL(ξ)) exp(

∫ ξ

0

dL(η)dη)dξ

]
exp(−

∫ t

0

dL(η)dη), ∀t ≥ 0.

For any 0 ≤ t ≤ τ̄ , we have −τL(0) ≤ t− τL(t) ≤ τ̄ − τL(τ̄) ≤ 0 and

w1(t)

=

[
w1(0) +

∫ t

0
bL(ξ)w2(ξ − τL(ξ)) exp(

∫ ξ

0
dL(η)dη)dξ

]
exp(−

∫ t

0
dL(η)dη)

=

[
v1(0) +

∫ t

0
bL(ξ)v2(ξ − τL(ξ)) exp(

∫ ξ

0
dL(η)dη)dξ

]
exp(−

∫ t

0
dL(η)dη)

=v1(t).
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On the other side, the derivative of v2(t) at t = 0:

dv2(t)

dt

∣∣∣∣
t=0

=bP (0)v1(0− τP (0))− dP (0)v2(0)− α(0)

γ
v2

2(0)

<bP (0)v1(0− τP (0))− dP (0)v2(0)− α(0)v2
2(0)

=bP (0)w1(−τP (0))− dP (0)w2(0)− α(0)w2
2(0)

=
dw2(t)

dt

∣∣∣∣
t=0

.

Since v2(0) = w2(0) > 0, it follows that there exists an ε ∈ (0, τ̄) such that 0 < v2(t) < w2(t) for all
0 < t < ε. We claim that v2(t) < w2(t) for all 0 < t ≤ τ̄ . Assume not, then there exists t0 ∈ (0, τ̄ ]
such that v2(t) < w2(t) for all 0 < t < t0 while v2(t0) = w2(t0), which implies v′2(t0) ≥ w′2(t0).
However, we have

dv2(t)

dt

∣∣∣∣
t=t0

=bP (t0)v1(t0 − τP (t0))− dP (t0)v2(t0)− α(t0)

γ
v2

2(t0)

<bP (t0)v1(t0 − τP (t0))− dP (t0)v2(t0)− α(t0)v2
2(t0)

=bP (t0)w1(t0 − τP (t0))− dP (t0)w2(t0)− α(t0)w2
2(t0)

=
dw2(t)

dt

∣∣∣∣
t=t0

,

a contradiction. This shows that v2(t) < w2(t) for all 0 < t ≤ τ̄ .
Similar arguments for any interval (nτ̄ , (n+ 1)τ̄ ] imply that v1(t) ≤ w1(t) and v2(t) < w2(t) for

all t ∈ (nτ̄ , (n+1)τ̄ ] with n ∈ N. In particular, ξ−τL(ξ) > τ̂−τ̂ = 0 and w2(ξ−τL(ξ)) > v2(ξ−τL(ξ))
for all ξ > τ̂ . Therefore, for any t > τ̂ , we have

w1(t) =

[
w1(0) +

∫ t

0

bL(ξ)w2(ξ − τL(ξ)) exp(

∫ ξ

0

dL(η)dη)dξ

]
exp(−

∫ t

0

dL(η)dη)

>

[
v1(0) +

∫ t

0

bL(ξ)v2(ξ − τL(ξ)) exp(

∫ ξ

0

dL(η)dη)dξ

]
exp(−

∫ t

0

dL(η)dη)

=v1(t).

It follows that v1(t) < w1(t) and v2(t) < w2(t) for all t > τ̂ , that is, ui(t, γφ) > γui(t, φ) for all
t > τ̂ , i = 1, 2. Thus, Qnω(γφ) = Qnω(γφ)� γQnω(φ) = γQnω(φ) for all integer n with nω > 2τ̂ .

For any given t ≥ 0, let G(t) be the time-t map of the linear periodic system (3.4) on Y, that
is, G(t)φ = zt(φ), where z(t, φ) is the unique solution of (3.4) with z0 = φ ∈ Y. The subsequent
result shows that the stability of the zero solution for system (3.4) on X is equivalent to that on Y.

Lemma 3.8. Two Poincaré maps W (ω) : X → X and G(ω) : Y → Y have the same spectral
radius, that is, r(W (ω)) = r(G(ω)).

Proof. We fix an integer n0 such that n0ω > 3τ̂ . By the proof of Lemma 3.6, we see that G(ω)n0 =
G(n0ω) is strongly positive on Y. Further, [11, Theorem 3.6.1] implies that G(ω)n0 is compact.
Then r(G(ω)) > 0 according to the Krein-Rutmann theorem, as applied to the linear operator
(G(ω))n0 , together with the fact that r(G(ω)n0) = (r(G(ω)))n0 . For any given φ = (φ1, φ2) ∈ Y,
we define φ̃ = (φ̃1, φ̃2) ∈ X by

φ̃1(θ) =

{
φ1(−τP (0)) if θ ∈ [−τ̂ ,−τP (0)],

φ1(θ) if θ ∈ [−τP (0), 0];
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and

φ̃2(θ) =

{
φ2(−τL(0)) if θ ∈ [−τ̂ ,−τL(0)],

φ2(θ) if θ ∈ [−τL(0), 0].

Clearly, ‖φ‖Y = ‖φ̃‖X . By Remark 3.4, it follows that for all integer n with nω > τ̂ ,

‖G(nω)φ‖Y ≤ ‖W (nω)φ̃‖X ≤ ‖W (nω)‖X · ‖φ̃‖X = ‖W (nω)‖X · ‖φ‖Y , ∀φ ∈ Y,

and hence, ‖G(nω)‖Y ≤ ‖W (nω)‖X . Since

r(G(ω)) = lim
n→∞

‖G(ω)n‖
1
n
Y = lim

n→∞
‖G(nω)‖

1
n
Y

and

r(W (ω)) = lim
n→∞

‖W (ω)n‖
1
n
X = lim

n→∞
‖W (nω)‖

1
n
X ,

we then have r(W (ω)) ≥ r(G(ω)) > 0.
It remains to prove that r(W (ω)) ≤ r(G(ω)). In view of [30, Theorem 5.1.1] and [11, Theorem

3.6.1], we see that the linear operator W (ω)n0 = W (n0ω) is positive and compact on X . By the
Krein-Rutmann theorem (see, e.g., [12, Theorem 7.1]), r(W (ω)n0) is an eigenvalue of W (ω)n0 with
an eigenvector φ∗ > 0 in X . For any φ ∈ X , we define φ ∈ Y as

φ
1
(θ) = φ1(θ), ∀θ ∈ [−τP (0), 0], and φ

2
(η) = φ2(η), ∀η ∈ [−τL(0), 0].

By Remark 3.4, we have u(t, φ) = v(t, φ), ∀t ≥ 0, where u(t, φ) and v(t, φ) are the unique solutions
of system (3.4) with u0 = φ ∈ X and v0 = φ ∈ Y, respectively. We further claim that φ∗ > 0 in Y.
Otherwise, φ∗ = 0, and hence, u(t, φ∗) = v(t, φ∗) = 0, ∀t ≥ 0. This implies that

(r(W (ω)))n0φ∗ = r(W (ω)n0)φ∗ = W (ω)n0φ∗ = W (n0ω)φ∗ = 0,

and hence, φ∗ = 0 in X , which is a contradiction. Since

G(ω)n0φ∗ = W (ω)n0φ∗ = r(W (ω))n0)φ∗ = (r(W (ω)))n0φ∗,

(r(W (ω)))n0 is a positive eigenvalue of G(ω)n0 with φ∗ being a positive eigenvector in Y. It then fol-
lows that (r(W (ω)))n0 ≤ r(G(ω)n0) = (r(G(ω)))n0 , and hence r(W (ω)) ≤ r(G(ω)). Consequently,
we have r(W (ω)) = r(G(ω)).

Now we are in a position to prove the main result of this section.

Theorem 3.9. The following statements are valid:

(i) If R0 ≤ 1, then (0, 0) is globally asymptotically stable for system (3.3) in Y+.

(ii) If R0 > 1, then system (3.3) admits a unique positive ω-periodic solution (L∗(t), P ∗(t)), and
it is globally asymptotically stable for system (3.3) in Y+ \ {(0, 0)}.

Proof. We fix an integer n0 such that n0ω > 3τ̂ . In view of Lemma 3.5, Qt can be regarded as an
n0ω-periodic semiflow on Y+. By Lemmas 3.6 and 3.7, Qn0ω is a strongly monotone and strictly
subhomogeneous map on Y+. Applying [41, Theorem 2.3.4] to the map Qn0ω, we have the following
threshold type result:

(a) If r(DQn0ω(0)) ≤ 1, then (0, 0) is globally asymptotically stable for system (3.3) in Y+.
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(b) If r(DQn0ω(0)) > 1, then system (3.3) admits a unique positive n0ω-periodic solution (L∗(t), P ∗(t)),
and it is globally asymptotically stable for system (3.3) in Y+ \ {(0, 0)}.

Note that r(DQn0ω(0)) = r(G(n0ω)) = (r(G(ω)))n0 . By Lemmas 3.2 and 3.8, we then see that
sign(R0 − 1) = sign(r(DQn0ω(0))− 1). Thus, it suffices to show that in case (b), (L∗(t), P ∗(t)) is
also ω-periodic. Let ψ∗ = v∗0 ∈ Y with v∗(t) = (L∗(t), P ∗(t)). Then Qn0ωψ

∗ = ψ∗. Note that

Qn0
ω (Qωψ

∗) = Qω(Qn0
ω ψ

∗) = Qω(Qn0ωψ
∗) = Qω(ψ∗).

By the uniqueness of the positive fixed point of Qn0
ω = Qn0ω, it follows that Qωψ

∗ = ψ∗, which
implies that (L∗(t), P ∗(t)) = u(t, ψ∗) is an ω-periodic solution of system (3.3).

In the rest of this section, we deduce the dynamics for the other two variables X(t) and Y (t)
in system (2.5), which do not appear in system (3.1). In the case where R0 > 1, we have

lim
t→∞

[(L(t), P (t))− (L∗(t), P ∗(t))] = 0

for any solution of system (3.1) through nonzero initial data. By using the integral form for the
free living non-infected larvae X(t) and arrested larvae Y (t) in (3.2), we obtain

lim
t→∞

[
X(t)−

∫ t

t−τL(t)
λP ∗(ξ)e−

∫ t
ξ µX(s) dsdξ

]
= 0, and

lim
t→∞

[
Y (t)−

∫ t

t−τP (t)
β(ξ)H(ξ)L∗(ξ)e−

∫ t
ξ (µY (s)+µH(s)) dsdξ

]
= 0.

Moreover, it is easy to verify that both

X∗(t) :=

∫ t

t−τL(t)
λP ∗(ξ)e−

∫ t
ξ µX(s) dsdξ

and

Y ∗(t) :=

∫ t

t−τP (t)
β(ξ)H(ξ)L∗(ξ)e−

∫ t
ξ (µY (s)+µH(s)) dsdξ

are positive ω-periodic functions. In the case where R0 ≤ 1, we have

lim
t→∞

(L(t), P (t)) = (0, 0).

By using the integral form in (3.2) again, we obtain

lim
t→∞

(X(t), Y (t)) = (0, 0).

In summary, we have the following result on the global dynamics of the full model system.

Theorem 3.10. The following statements hold for system (2.5):

(i) If R0 ≤ 1, then (0, 0, 0, 0) is globally asymptotically stable.

(ii) If R0 > 1, then there exists a positive ω-periodic solution

(X∗(t), L∗(t), Y ∗(t), P ∗(t)),

and it is globally asymptotically stable for all nontrivial solutions.
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4 Numerical simulations

In this section, we present numerical simulation results to validate our analytic results on the global
dynamics and investigate the temperature impacts on model prediction.

4.1 Parameters

Most parameters are taken from [19], which justifies the metabolic approach to investigate the
climate change impact on host-macroparasite dynamics. In particular, the authors employed Shape-
Schoolfield models to parameterize the temperature-dependent coefficients, such as the development
time and mortality rate. Interested readers may find more details in this extraordinary reference.
For reader’s convenience, we restate the parameters here. The temperature data (in degrees ◦C) is
taken as a function of time t (in day) in the following form

T (t) = cK + dK × sin

(
2π

365
× (t− t0)

)
. (4.1)

However, we should use the temperature in ◦K on each day of the year to parameterize the
temperature-dependent coefficients in the model system. The immature death rate under the
temperature T = T (t) (in ◦K of day t) can be described by the following Shape-Schoolfield models
[19]:

µL(T ) = µ0 × exp(−Eµ
kB

( 1
T −

1
T0

))× (1 + exp(
ELµ
kB

( 1
T −

1
TLµ

)) +
EHµ
kB

(− 1
T + 1

THµ
))

For simplicity, we assume µX(t) = µL(t) in the model system. To determine the maturation
time τ(t) for the cohort that matures at time t, as shown in equation (2.4), we need to get the
development proportion r(ξ) on the interval ξ ∈ [t−τ(t), t], which can be evaluated as the reciprocal
of the maturation time τ̃L(T (ξ)) needed under temperature T (ξ) of day ξ, that is

r(ξ) =
1

τ̃L(T (ξ))
.

The development duration τ̃L(T ) can be estimated through the Shape-Schoolfield formula [19]:

τ̃L(T ) = τ0 × exp(−Eτ
kB

( 1
T −

1
T0

))× (1 + exp(E
L
τ
kB

( 1
T −

1
TLτ

)) + EHτ
kB

(− 1
T + 1

THτ
)).

In summary, the accumulative development proportions in previous τL(t) days t − 1, t − 2, · · · ,
t− τL(t) should be unity, that is ∫ t

t−τL(t)

1

τ̃L(T (ξ))
dξ = 1. (4.2)

with T (ξ) being the mean temperature at day ξ. The maturation time τL(t) can be estimated from
the above relation (4.2).

For numerical computation, we take the constant parameters from other biological literature.
In the model system, the instantaneous birth rate λ is assumed to be a variable, dependent on the
parasite and host species [14] . The outflow rate µP (t)+µH(t)+αH=dP (t) is taken as 14.9/365 per

day, to be consistent with the report [14]. The survival probability e
−

∫ t
t−τP (t)(µY (ξ)+µH(ξ)) dξ

is 0.655
[14]. The uptake rate βH is assumed to be 1, to keep consistent with the work [19]. Moreover, we
assume k=2 as that reported in [3] and the prepatent period for the matured individuals is τP=18
days, in align with previous work [37]. All related parameters with their biological/metabolic
explanations are summarised in Table 1 in the last page.
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4.2 Curves of time-dependent parameters

Based on the default parameters, the temperature in one year varies in the pattern of Fig 2(a). Then
the metabolic theory in ecology [19] gives the developmental time τ̃L(t) required corresponding to
the temperature of day t, immature death rate dL(t) and survival probability exp(−

∫ t
t−τL(t) µX(ξ) dξ),

respectively, in Figs 2(b), (c) and (d). Comparing Figs 2(a) and (b), the relationship between the
developmental time required under the specific temperature τ̃L(t) on the specific day and tempera-
ture is highly nonlinear, neither positively nor negatively correlated. There is one peak temperature
in one year (at around day 210), while there are roughly two valleys (at around day 100 and day 320)
for τ̃L(t) when the temperature is mild, neither too high, nor too low. These results are consistent
with Fig 2 of the previous work [19], which shows that too high, or too low temperatures will pro-
long the development time. Similar results are reported for the death rate (Fig 2(c)) and immature
survival probability to adult (Fig 2(d)). All these three temperature dependent parameters exhibit
totally distinct patterns from the temperature variation, which call for accurate measurements of
the metabolic relationship between biological parameters and temperature conditions.
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Figure 2: Temperature data and seasonal parameters: development time τ̃L(t) required under
temperature at day t, immature death rate dL(t) and survival probability exp(−

∫ t
t−τL(t) µX(ξ) dξ).

There are two valleys and two local peaks on the developmental duration τL(t) as shown in Fig
3(a), which can also be observed from four points where its derivative is zero in Fig 3(b). The
temperatures for the period before the valley date should be mild to produce a smaller develop-
mental duration τL(t). Moreover, it is clear that the peaks and valleys of Fig 2(b) and Fig 3(a)
are shifted, since it is the accumulating environmental condition that should be evaluated in Fig
3(a) (as in the formula (4.2) to estimate the developmental duration for adults maturing on day
t). Fig 3(b) shows the derivative of τL(t) versus time t (with maximum value being 0.9052), which
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numerically validates the inequality 1− τ ′L(t) > 0, as argued in the previous section. It can also be
observed that the parasite maturing at time t during day 200 and 270 survive through tough time
as very small survival probability is observed (Fig 2(d)), due to the joint effect of a relatively longer
developmental duration (shown in Fig 3(a)) and larger death rate during that period (Fig 2(c)).
One can further claim from Fig 2(b) that the largest duration τ̃L(t) required under the temperature
of a specific date is around 200 days because of the extreme (too low) weather condition in the
45-th day, however, in reality, the largest developmental duration τL(t) is less than 100 days (Fig
3(a)), due to the accumulative effect that the weather condition before the worst weather condition
date is mild. Moreover, the peaking time of Figs 2(b) and 3(a) is observed to be totally different.
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Figure 3: The time-dependent developmental delay τL(t) and its derivative. It is clear from the
simulation that the derivative is always smaller than one and therefore 1− τ ′L(t) > 0 for all t.

4.3 Simulation results

Using parameters presented in previous subsections, we can run simulations for the solutions as
shown in Fig 4 fed with two different initial values, where the instantaneous birth rate is variable,
with λ = 100 (top two figures), 10 (middle figures) and 0.6 (bottom figures). The corresponding
basic reproduction ratio R0 takes the values of 15.2 (λ = 100), 4.8 (λ = 10), and 0.9 (λ = 0.6)
respectively. The solutions always stabilize at a positive seasonal state at a high level (when
λ = 100) or a lower level (when λ = 10), while go to zero when λ = 0.6 (the result can be shown
when more than 100 years simulation is performed). This figure is consistent with theoretical results
in Theorem 3.9, that is, all solutions starting from various initial values either go to zero when
R0 < 1 or stabilize at a periodic state when R0 > 1. When changing the aggregation parameter
k of the model system (2.5) while keeping the basic reproduction number R0 > 1 unchanged,
numerical simulations show that the positive periodic states with different k share almost similar
patterns (figures are not provided here).

The impact of variations in seasonal temperature on population dynamics is predicted in Fig 5,
with the scenario that the annual mean temperature cK changes (two top figures) or the amplitude
dK of annual temperature varies (two bottom figures). The minimum value of the density when
R0 > 1 is very small compared with the maximum density. The relationship between the annual
temperature and maximum population density is neither increasing nor decreasing for both free
living infective larvae L(t) and adult parasites P (t). For instance, when annual temperature is very
small (at around 6◦C), increasing the annual temperature may decrease the maximum density, while
increasing the annual temperature can increase the maximum density when the annual temperature
is relatively high (for example, at around 10◦C). However, when checking the relationship between
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Figure 4: Solution simulations in different birth rates λ show that either the positive periodic state
or the zero solution is globally asymptotically stable.

minimum densities and temperature amplitude, we observed a negative correlation (two bottom
graphs of Fig 5), which implies larger temperature variation amplitudes decrease the minimum
population densities.

5 Discussion

In this paper, with the reference to the host-parasite interaction subject to temperature condi-
tions, we present a mathematical approach to analyzing the temperature impact on the pathogen
transmission in a synthesised way from following components: model development with careful
mathematical reasoning and biological justification, basic reproduction ratio formulation and com-
putation, and global dynamics analysis for the model system. Mathematically, we start with the
widely used age-structured PDE model with periodic parameters, based on the McKendrick von-
Foerster model [9, 36]. Since a direct dynamics analysis is very difficult for this kind of PDE models,
we reduce the PDE equation into a periodic system of delay differential equations with periodic
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Figure 5: The impact of cK and dK in the temperature formula (4.1) on the maximum and minimum
values of the population densities.

delay. Due to the seasonality of developmental duration, the model system involves a term related
to the rate of change for the developmental duration, which becomes zero and disappears when
the developmental duration is independent of time. At first glance, it is a bit surprising to have
this term in the age-structured model. However, a reasonable biological argument, with the help
of an integral equation, justifies the model system. We further show analytically and numerically
that the derivative of this developmental duration must be smaller than one, which is also required
to guarantee the positivity of solutions. The basic reproduction ratio R0 is formulated for the
resultant periodic delay differential system with seasonal delay by using the approach in [42], which
also illustrates that the stability of the linearized system is solely determined by the sign of R0− 1.
Furthermore, we study the population dynamics, which is challenging due to the incorporation of
the periodic delay. By constructing a periodic semiflow on a special functional space and applying
the theory of monotone dynamical systems, we successfully establish the global stability of zero
or the positive periodic state, dependent on the sign of R0 − 1. Here we remark that the general
definition of R0 proposed in [6] has been employed in [7, 23, 39] to introduce the basic reproduction
number for some specific periodic epidemic models with time delays. For example, R0 was success-
fully evaluated in [39] for the Nicholson blowflies equation and four stage Aedes aegypti mosquito
population with temporally periodic delays. However, the global dynamics was not investigated in
[39], which motivates us to use the theory developed in [42] for the current research.

In the model system (2.5), we assume that the host density remains at a stable state H(t).
Normally the host population dynamics N(t) follows a growth model such as that in [17], which
has a globally asymptotically stable periodic solution H(t), that is,

lim
t→∞

(N(t)−H(t)) = 0.

As such, the theory of asymptotically periodic semiflows [41] can be employed to establish the
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global dynamics of the biological system, as illustrated in [17]. In the host-parasite model (2.5), we
describe the host immunity against parasite indirectly by an additional adult parasite death rate,
that is, the level of immunity is determined solely by the adult parasite density, which is different
from some notable efforts in this field [26, 27]. Some other factors [14, 27, 28], such as the host
heterogeneity, multiple host species, host movement, competition between parasite species in the
case where hosts harbour more than one single parasite species, are not included either. We hope
to incorporate the complexity of these aspects in our future work.

Since the constant coefficients, as well as periodic parameters, can affect the basic reproduc-
tion ratio in the biological system, accurate model parameter estimation is necessary. In the
current paper, we employ the metabolic approach [19] to parameterize the periodic coefficients.
Other approaches may also be applicable to the problem in study, for example, the parameteriza-
tion approach used in [20, 38] where the relationship between the development components and
temperature is obtained via fitting experimental datasets. However, further field and laboratory
investigations are needed to improve the accuracy of our parameter estimates.

Beyond the host-parasite systems, our framework also applies to other ecosystems, with appro-
priate modifications to the terminology of developmental duration in the study and we hope this
general approach can be applied to broader contexts than examined here, such as the population
growth where the time needed for development from one stage to the next is periodic, disease
transmission where the incubation period of the pathogen in the host is seasonal, and in-host im-
munology where the time duration required for immune system development is dependent on time.
Moreover, this approach remains valid to explore potential impacts of climate change on biodiver-
sity, as climate change is regarded as a major threat to biodiversity. Furthermore, the framework
is expected to investigate the climate effect on species habitat change [16], such as range expan-
sion, shift or contraction, by incorporating spatial and temporal heterogeneity of environmental
conditions, as well as the species movement. Further extensions are also possible to predict the
risk redistribution of emerging and reemerging infectious diseases. However, the extension of the
current approach to these fields is challenging, but worth further investigation.
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Appendix

To numerically compute the basic reproduction ratio, we are going to rewrite the linear operator L
into the form of equation (3) in [22], where an algorithm is proposed for R0 computation of periodic
ordinary differential systems. We should also note that other algorithms have been proposed, such
as [4], for periodic growth models with time delay. However, here the delay is periodic and therefore,
we first fit our computation into other algorithms. Since

F (t− s)
(
φ1

φ2

)
=

(
bL(t− s)φ2(−τL(t− s))
bP (t− s)φ1(−τP (t− s))

)
,
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we have

[Lv](t)
=

∫∞
0 Z(t, t− s)F (t− s)v(t− s+ ·)ds

=
∫∞

0

(
e−

∫ t
t−s dL(ξ)dξ 0

0 e−
∫ t
t−s dP (ξ)dξ

)(
bL(t− s)v2(t− s− τL(t− s))
bP (t− s)v1(t− s− τP (t− s))

)
ds

=

( ∫∞
0 e−

∫ t
t−s dL(ξ)dξbL(t− s)v2(t− s− τL(t− s))ds∫∞

0 e−
∫ t
t−s dP (ξ)dξbP (t− s)v1(t− s− τP (t− s))ds

)
.

Let t − s − τL(t − s) = t − s1. Since the function y = x − τL(x) is strictly increasing, the
inverse function exists and we can solve x = hL(y). Hence, we obtain t − s = hL(t − s1), that is,
s = t−hL(t− s1), ds1 = d(s+ τL(t− s)) = (1− τ ′L(t− s))ds and ds = 1

1−τ ′L(hL(t−s1))
ds1. Therefore,

∫∞
0 e−

∫ t
t−s dL(ξ)dξbL(t− s)v2(t− s− τL(t− s))ds

=
∫∞
τL(t)

e
−

∫ t
hL(t−s1)

dL(ξ)dξ
bL(hL(t−s1))

1−τ ′L(hL(t−s1))
v2(t− s1)ds1

=
∫∞
τL(t)

e
−

∫ t
hL(t−s) dL(ξ)dξ

bL(hL(t−s))
1−τ ′L(hL(t−s)) v2(t− s)ds.

Similarly, let t− s− τP (t− s) = t− s2. Assume the inverse function of y = x− τP (x) is y = hP (x).
Solving t− s = hP (t− s2), we get

s = t− hP (t− s2), ds2 = (1− τ ′P (t− s))ds and ds =
1

1− τ ′P (hP (t− s2))
ds2.

Therefore, ∫∞
0 e−

∫ t
t−s dP (ξ)dξbP (t− s)v1(t− s− τP (t− s))ds

=
∫∞
τP (t)

e
−

∫ t
hP (t−s2)

dP (ξ)dξ
bP (hP (t−s2))

1−τ ′P (hP (t−s2))
v1(t− s2)ds2

=
∫∞
τP (t)

e
−

∫ t
hP (t−s) dP (ξ)dξ

bP (hP (t−s))
1−τ ′P (hP (t−s)) v1(t− s)ds.

Define

K12(t, s) =

 0, s < τL(t)

e
−

∫ t
hL(t−s) dL(ξ)dξ

bL(hL(t−s))
1−τ ′L(hL(t−s)) , s ≥ τL(t)

and

K21(t, s) =

 0, s < τP (t)

e
−

∫ t
hP (t−s) dP (ξ)dξ

bP (hP (t−s))
1−τ ′P (hP (t−s)) , s ≥ τP (t)

while K11(t, s) = K22(t, s) = 0. Then we can rewrite

[Lv](t) =
∫∞

0 K(t, s)v(t− s)ds

=
∞∑
j=0

∫ (j+1)ω
jω K(t, s)v(t− s)ds

=
∞∑
j=0

∫ ω
0 K(t, jω + s)v(t− s− jω)ds

=
∫ ω

0 G(t, s)v(t− s)ds
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with

G(t, s) =

∞∑
j=0

K(t, jω + s),

which is of the integral form in [22]. Thus, the numerical algorithm in [22] can be used to compute
the basic reproduction ratio for our model system.
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