
Multi-agent scheduling on a single machine to

minimize total weighted number of tardy jobs

T.C.E. Cheng1∗, C.T. Ng1 and J.J. Yuan2

1Department of Logistics, The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong, People’s Republic of China
2Department of Mathematics, Zhengzhou University,

Zhengzhou, Henan 450052, People’s Republic of China

Abstract: We consider the feasibility model of multi-agent scheduling on a single
machine, where each agent’s objective function is to minimize the total weighted number of
tardy jobs. We show that the problem is strongly NP-complete in general. When the num-
ber of agents is fixed, we first show that the problem can be solved in pseudo-polynomial
time for integral weights, and can be solved in polynomial time for unit weights; then we
present a fully polynomial-time approximation scheme for the problem.

Keywords: Scheduling; multi-agent deterministic sequencing.

1 Introduction and Problem Formulation

The following single-machine multi-agent scheduling problem was introduced by Agnetis
et al. (2004) and Baker and Smith (2003). There are several agents, each with a set of
jobs. The agents have to schedule their jobs on a common processing resource, i.e., a
single machine, and each agent wishes to minimize an objective function that depends
on the completion times of his own set of jobs. The problem is either to find a schedule
that minimizes a combination of the agents’ objective functions or to find a schedule that
satisfies each agent’s requirements for his own objective function.

Scheduling is in fact concerned with the allocation of limited resources over time.
Scheduling situations involving multiple customers (agents) competing for a common pro-
cessing resource arise naturally in many settings. For example, in industrial management,
the multi-agent scheduling problem is formulated as a sequencing game, where the ob-
jective is to devise some mechanisms to encourage the agents to cooperate with a view
to minimizing the overall cost (see, for example, Curiel et al. (1989) and Hamers et al.

∗Corresponding author

1

This is the Pre-Published Version.



(1995)). In project scheduling, the problem is concerned with negotiation to resolve con-
flicts whenever the agents find their own schedules unacceptable (Kim et al. (1999)). In
telecommunication services, the problem is to do with satisfying the service requirements
of individual agents, who compete for the use of a commercial satellite to transfer voice,
image and data files to their clients (Schultz et al. (2002)).

In the following we define the single-machine multi-agent scheduling problem in terms
of common scheduling terminology. We are given m families of jobs J (1),J (2), ...,J (m),
where, for each i with 1 ≤ i ≤ m,

J (i) = {J (i)
1 , J

(i)
2 , ..., J (i)

ni
}.

The jobs in J (i) are called the i-th agent’s jobs. Each job J
(i)
j has a positive integral

processing time (length) p
(i)
j , a positive integral due date d

(i)
j , and a positive integral

weight w
(i)
j . All the jobs have a zero release time. The jobs will be processed on a

single machine starting at time zero without overlapping and idle time between them. A
schedule is a sequence of the jobs that specifies the processing order of the jobs on the
machine. Under a schedule σ, the completion time of job J

(i)
j is denoted by C

(i)
j (σ); job

J
(i)
j is called tardy if C

(i)
j (σ) > d

(i)
j , and early otherwise; U

(i)
j (σ) = 1 if J

(i)
j is tardy, and

zero otherwise. For each job J
(i)
j , let f

(i)
j (·) be a nondecreasing function of the completion

time of job J
(i)
j (such an objective function is called regular in the scheduling literature).

In general, the i-th agent’s objective function F (i)(σ) has either one of the following
two forms:

max-form F (i)(σ) = max1≤j≤ni
f

(i)
j (C

(i)
j (σ)),

sum-form F (i)(σ) =
∑

1≤j≤ni
f

(i)
j (C

(i)
j (σ)).

Furthermore, the single-machine multi-agent scheduling problem includes the following
two models:

• Feasibility model: 1||F (i) ≤ Qi, 1 ≤ i ≤ m. In this model, the goal is to find a
feasible schedule σ that satisfies F (i)(σ) ≤ Qi, 1 ≤ i ≤ m.

• Minimality model: 1||∑1≤i≤m F (i). In this model, the goal is to find a schedule σ
that minimizes

∑
1≤i≤m F (i)(σ).

In this paper we always assume that f
(i)
j = w

(i)
j U

(i)
j and F (i) =

∑
1≤j≤ni

w
(i)
j U

(i)
j . Under

this assumption, the above minimality model is equivalent to the classical scheduling
problem 1||∑ wjUj, which has been well studied. Especially, when the weights of all The
jobs are unit, Moore’s algorithm (Moore, 1968) solves the problem in O(n log n) time.
Hence, we study the feasibility model

1|| ∑

1≤j≤ni

w
(i)
j U

(i)
j ≤ Qi, 1 ≤ i ≤ m

in the following.

2



When m = 2 and w
(i)
j = 1 for each job J

(i)
j , by Agnetis et al. (2004), the feasibility

model 1||∑1≤j≤ni
U

(i)
j ≤ Qi, 1 ≤ i ≤ m can be solved in polynomial time.

This paper seeks to extend the above result to a more general context. The idea
for the algorithms in this paper partially comes from Agnetis et al. (2004). This paper
is organized as follows. In section 2 we present a simple approach that eliminates the
agents i with Qi = 0. In section 3 we give an exact algorithm to solve the problem
1||∑1≤j≤ni

w
(i)
j U

(i)
j ≤ Qi, 1 ≤ i ≤ m in general. It is shown that, when m is fixed, the

algorithm runs in pseudo-polynomial time, and when m is fixed and w
(i)
j = 1 for each job

J
(i)
j , the algorithm runs in polynomial time. In section 4 we present a fully polynomial-

time approximation scheme for the considered problem when m is fixed. In section 5 we
show that the problem 1||∑1≤j≤ni

w
(i)
j U

(i)
j ≤ Qi, 1 ≤ i ≤ m is strongly NP-complete in

general.

2 Eliminating the agents i with Qi = 0

To save the computational effort, we first present an approach to eliminate the agents i
with Qi = 0. The following Lemma can be observed.

Lemma 2.1 1||∑1≤j≤ni
w

(i)
j U

(i)
j ≤ Qi, 1 ≤ i ≤ m is equivalent to

1|pmtn| ∑

1≤j≤ni

w
(i)
j U

(i)
j ≤ Qi, 1 ≤ i ≤ m.

Suppose Q1 ≥ Q2 ≥ ... ≥ Qm ≥ 0. Let m′ ≤ m be the maximum such that Qm′ > 0.
Without loss of generality, we suppose m′ < m.

Write
J ∗ = J (m′+1) ∪ J (m′+2) ∪ ... ∪ J (m),

and suppose |J ∗| = n∗ and J ∗ = {J1, J2, ..., Jn∗}. The due date of a job Jj ∈ J ∗ is
denoted by Dj. Since all the jobs in J ∗ must be early in a feasible schedule, we call Dj

the deadline of Jj.

We re-label the jobs in J ∗ in the earliest due date (EDD) order, i.e., D1 ≤ D2 ≤
... ≤ Dn∗ . Then we define a sequence of numbers (t1, t2, ..., tn∗) by the following dynamic
programming recursion:

tn∗ = Dn∗ ,

tj = min{Dj, tj+1 − pj+1}, j = n∗ − 1, n∗ − 2, ..., 1.

Clearly, the sequence (t1, t2, ..., tn∗) can be obtained in O(n∗) time.

3



Lemma 2.2 If 1|pmtn|∑1≤j≤ni
w

(i)
j U

(i)
j ≤ Qi, 1 ≤ i ≤ m is feasible, then there is

an optimal schedule σ such that the jobs in J ∗ are processed non-preemptively in non-
decreasing order of their deadlines (EDD), and for each job Jj ∈ J ∗, 1 ≤ j ≤ n∗, the
time interval occupied by the job Jj under σ is exactly [tj − pj, tj).

Proof By Lemma 2.1, there must be a feasible schedule for 1|pmtn|∑1≤j≤ni
w

(i)
j U

(i)
j ≤

Qi, 1 ≤ i ≤ m such that (all the jobs, and so) the jobs in J ∗ are processed non-
preemptively. Let x ∈ {0, 1, ..., n∗} be the minimum such that there is a feasible schedule
π for the problem, such that the jobs in J ∗ are processed non-preemptively and, for every
job Jj with x + 1 ≤ j ≤ n∗, the time interval occupied by job Jj under σ is exactly
[tj − pj, tj). We only need to show that x = 0.

Suppose to the contrary that x > 0. If there is some job Jy with 1 ≤ y ≤ x such that
Cy(π) > tx, then Dx ≥ Dy ≥ Cy(π) > tx. By the definition of tj, 1 ≤ j ≤ n∗, we have

tx = tx+1 − px+1, where we assume tn∗+1 =
∑

1≤i≤m,1≤j≤ni
p

(i)
j and pn∗+1 = 0. So, at least

one job Jj with j > x is processed before Jy. Suppose that the last of such jobs is Jz.
Then, Dz ≥ Dy ≥ Cy(π) and tz+1 − pz+1 ≥ Cy(π). Thus, we must have

tz = min{Dz, tz+1 − pz+1} ≥ Cy(π) > Cz(π) = tz,

a contradiction. Hence, for every job Jy with 1 ≤ y ≤ x, we must have Cy(π) ≤ tx.
By shifting the processing of job Jx later to the interval [tx − px, tx), we obtain another
feasible schedule, which contradicts the choice of π. The result follows. 2

It should be pointed out that, by the above lemma, if t1−p1 < 0, then the multi-agent
scheduling problem has no feasible schedules.

By Lemma 2.2, we can assume that each job Jj ∈ J ∗, 1 ≤ j ≤ n∗, has been processed
in the time interval [tj − pj, tj) in advance. Follow the terminology in Scharbrodt et al.
(1999), the jobs in J ∗ are called fixed jobs. Then the remaining matter is to schedule the
other jobs (called free jobs in the following) in J (1)∪J (2)∪ ...∪J (m′) preemptively in the

time space not occupied by the fixed jobs such that
∑

1≤j≤ni
w

(i)
j U

(i)
j ≤ Qi, 1 ≤ i ≤ m′.

The corresponding problem is denoted by

1|FB, pmtn| ∑

1≤j≤ni

w
(i)
j U

(i)
j ≤ Qi, 1 ≤ i ≤ m′.

For each due date d
(i)
j of a free job J

(i)
j , let l

(i)
j be the sum of the length of the time

slots occupied by the fixed jobs before the time instant d
(i)
j . Applying the same technique

as in Yuan and Lin (2005), we can without loss of generality delete the fixed jobs from
consideration and modify the due dates in the following way:

d
(i)
j := d

(i)
j − l

(i)
j , 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

After deleting the fixed jobs, preemption need not be considered. Hence, we have

4



Lemma 2.3 1|FB, pmtn|∑1≤j≤ni
w

(i)
j U

(i)
j ≤ Qi, 1 ≤ i ≤ m′ is reducible in linear

time to the problem 1||∑1≤j≤ni
w

(i)
j U

(i)
j ≤ Qi, 1 ≤ i ≤ m′ with modified due dates.

The above discussion means that we can reduce in O(n1+n2+...+nm′+n∗ log n∗) time

the problem 1||∑1≤j≤ni
w

(i)
j U

(i)
j ≤ Qi, 1 ≤ i ≤ m to the problem 1||∑1≤j≤ni

w
(i)
j U

(i)
j ≤

Qi, 1 ≤ i ≤ m′, in which Qi > 0 for each agent.

3 An exact algorithm

In this section we will give an exact algorithm for the problem 1||∑1≤j≤ni
w

(i)
j U

(i)
j ≤

Qi, 1 ≤ i ≤ m when the weights of all the jobs and the values Qi of all the agents are
positive integers. By Lawler and Moore (1969), this problem is binary NP-complete even
when m = 1.

The following is an easy observation. The proof is the same as Lemma 7.1 in Agnetis
et al. (2004).

Lemma 3.1 If the problem 1||∑1≤j≤ni
w

(i)
j U

(i)
j ≤ Qi, 1 ≤ i ≤ m is feasible, then

there is a feasible schedule under which all the early jobs are scheduled consecutively in
the EDD order at the beginning of the schedule.

Now, suppose that the jobs are re-labelled in the EDD order, i.e., ∪1≤i≤mJ (i) =
{J1, J2, ..., Jn} such that d1 ≤ d2 ≤ ... ≤ dn. This needs O(n log n) time. Write Jk =
{J1, J2, ..., Jk}.

We consider the multi-agent scheduling problem M(k; X1, ..., Xm):

1|| ∑

j:J
(i)
j ∈Jk

w
(i)
j U

(i)
j ≤ Xi, 1 ≤ i ≤ m,

subject to the jobs in Jk = {J1, J2, ..., Jk}. Let C(k; X1, X2, ..., Xm) be the minimum
completion time of the last early job in a feasible schedule for the problem. If no feasible
schedule exists, we set C(k; X1, X2, ..., Xm) = +∞.

Let σ be a feasible schedule for the problem M(k; X1, ..., Xm) such that the completion
time of the last early job is C(k; X1, X2, ..., Xm). If Jk is an early job, it must be the last
early job, and so we have C(k; X1, X2, ..., Xm) ≤ dk. In this case, we have

C(k; X1, X2, ..., Xm) = C(k − 1; X1, X2, ..., Xm) + pk.

If Jk is a tardy job and Jk ∈ J (i), then we must have

C(k; X1, X2, ..., Xm) = C(k − 1; X1, ..., Xi−1, Xi − wk, Xi+1, ..., Xm).

5



The above discussion implies the following dynamic programming recursion.

• Initial condition:

C(0 : X1, ...Xm) = 0, if all Xi ≥ 0,

C(k; X1, X2, ..., Xm) = +∞, if k < 0 or some Xi < 0 or some Xi > Qi.

• Recursion function:

If Jk ∈ J (i) for some i with 1 ≤ i ≤ m, then

C(k; X1, X2, ..., Xm) =

= min





C(k − 1; X1, X2, ..., Xm) + pk + f(k; X1, X2, ..., Xm),

C(k − 1; X1, ..., Xi−1, Xi − wk, Xi+1, ..., Xm),

where f(k; X1, X2, ..., Xm) = 0 if C(k; X1, X2, ..., Xm) ≤ dk, and +∞ otherwise.

The above recursion function has O(nQ1Q2...Qm) states. Each iteration needs con-

stant computational time. The problem 1||∑1≤j≤ni
w

(i)
j U

(i)
j ≤ Qi, 1 ≤ i ≤ m is feasible if

and only if C(n; Q1, Q2, ..., Qm) < +∞. We conclude the following result.

Theorem 3.2 The problem 1||∑1≤j≤ni
w

(i)
j U

(i)
j ≤ Qi, 1 ≤ i ≤ m can be solved in

O((n1 + n2 + ... + nm)Q1Q2...Qm) time. When m is fixed, it is pseudo-polynomial.

When all the weights are unit, it is reasonable to assume Qi ≤ ni. Hence, we further
have

Corollary 3.3 The problem 1||∑1≤j≤ni
U

(i)
j ≤ Qi, 1 ≤ i ≤ m can be solved in

O((n1 + n2 + ... + nm)n1n2...nm) time. When m is fixed, it is polynomial.

4 A fully polynomial-time approximation scheme

In this section we present an approximation algorithm for the problem

P := 1|| ∑

1≤j≤ni

w
(i)
j U

(i)
j ≤ Qi, 1 ≤ i ≤ m.

Suppose that the weights of all the jobs and the values Qi of all the agents are positive
numbers (but not necessarily integers). For any given constant ε > 0, the algorithm either
finds a feasible schedule for the problem

P ′ := 1|| ∑

1≤j≤ni

w
(i)
j U

(i)
j ≤ (1 + ε)Qi, 1 ≤ i ≤ m,

6



or determines that problem P has no feasible schedule. Note that problem P ′ is a relax-
ation of problem P in which each Qi is enlarged by a factor of (1 + ε).

Let ε > 0 be a given constant. The weights of all the jobs J
(i)
j , 1 ≤ j ≤ ni, 1 ≤ i ≤ m,

are rounded in the following way:

v
(i)
j =





d2ni

ε
e+ ni + 1, if w

(i)
j > Qi

d2niw
(i)
j

εQi
e, otherwise.

The threshold values Qi, 1 ≤ i ≤ m, are rounded in the following way:

Q∗
i = d2ni

ε
e+ ni.

We define problem P∗ as

1|| ∑

1≤j≤ni

v
(i)
j U

(i)
j ≤ Q∗

i , 1 ≤ i ≤ m.

Theorem 4.1 If problem P∗ has a feasible schedule π, then π is a feasible schedule
for problem P ′; otherwise, problem P has no feasible schedule.

Proof If problem P∗ has a feasible schedule π, then
∑

1≤j≤ni

v
(i)
j U

(i)
j (π) ≤ Q∗

i , 1 ≤ i ≤ m.

By the definition of v
(i)
j and Q∗

i , we see that the following three statements hold:

(1) If w
(i)
j > Qi, then J

(i)
j is an early job in π;

(2) If w
(i)
j ≤ Qi, then

w
(i)
j ≤ v

(i)
j (εQi/2ni);

(3) Q∗
i (εQi/2ni) ≤ (1 + ε)Qi.

Hence, for each agent i,

∑
1≤j≤ni

w
(i)
j U

(i)
j (π)

≤ (εQi/2ni)
∑

1≤j≤ni
v

(i)
j U

(i)
j (π)

≤ (εQi/2ni)Q
∗
i

≤ (1 + ε)Qi.

It follows that π is a feasible solution for problem P ′.
On the other hand, if problem P has a feasible schedule h, then, for each agent i,

∑

1≤j≤ni

w
(i)
j U

(i)
j (h) ≤ Qi,

7



and so ∑

1≤j≤ni

(2niw
(i)
j /εQi)U

(i)
j (h) ≤ 2ni/ε.

Since v
(i)
j ≤ 2niw

(i)
j /εQi + 1, we deduce that

∑

1≤j≤ni

v
(i)
j U

(i)
j (h) ≤ 2ni/ε + ni ≤ Q∗

i

for each agent i. It follows that h is a feasible schedule for problem P∗. The result follows.
2

Since Q∗
i = O(2ni/ε) for each agent i, by the discussion of the last section, problem

P∗ can be solved in O((n1 + n2 + ... + nm)n1n2...nm(2/ε)m) time. Consequently, we have
the following result.

Theorem 4.2 For any given constant ε > 0, there is a polynomial-time algorithm
running in O((n1+n2+ ...+nm)n1n2...nm(2/ε)m) time that either finds a feasible schedule

for problem 1||∑1≤j≤ni
w

(i)
j U

(i)
j ≤ (1 + ε)Qi, 1 ≤ i ≤ m, or determines that the problem

1||∑1≤j≤ni
w

(i)
j U

(i)
j ≤ Qi, 1 ≤ i ≤ m has no feasible schedule.

When m is a fixed constant, Theorem 4.2 implies that, for the problem 1||∑1≤j≤ni
w

(i)
j U

(i)
j ≤

Qi, 1 ≤ i ≤ m, there is a fully polynomial-time approximation scheme running in O((n1 +
n2 + ... + nm)n1n2...nm(1/ε)m) time for any ε > 0.

5 Strong NP-completeness

We show in this section that the problem 1||∑1≤j≤ni
w

(i)
j U

(i)
j ≤ Qi, 1 ≤ i ≤ m is strongly

NP-complete when m is arbitrary.

Theorem 5.1 1||∑1≤j≤ni
w

(i)
j U

(i)
j ≤ Qi, 1 ≤ i ≤ m is strongly NP-complete.

Proof By Garey and Johnson (1979), the 3-Partition Problem is strongly NP-
complete. In an instance I of the 3-Partition problem, we are given a set of 3t positive
integers a1, a2, ..., a3t, each of size between B/4 and B/2, such that

∑3t
i=1 ai = tB. The

decision asks whether there is a partition of the ai’s into t groups of 3, each summing
exactly to B?

Given an instance I of the 3-Partition problem, we first re-label the 3t numbers in I
such that a1 ≤ a2 ≤ ... ≤ a3t. We construct an instance I∗ of the scheduling problem
1||∑1≤j≤ni

w
(i)
j U

(i)
j ≤ Qi, 1 ≤ i ≤ m as follows.

• t agents and 3t2 jobs with each agent having exactly 3t jobs, i.e.,

J (i) = {J (i)
1 , J

(i)
2 , ..., J

(i)
3t }, 1 ≤ i ≤ t.

8



• Processing times of the jobs are defined by

p
(i)
j = X + aj, 1 ≤ i ≤ t, 1 ≤ j ≤ 3t,

where X = 3t2B.

• Due dates of the jobs are defined by

d
(i)
j = (t− 1)Xj + (t− 1)Aj, 1 ≤ i ≤ t, 1 ≤ j ≤ 3t,

where Aj = a1 + a2 + ... + aj.

• The weights of jobs are defined by

w
(i)
j = X + aj, 1 ≤ i ≤ t, 1 ≤ j ≤ 3t.

• Threshold values are defined by Qi = 3X + B, 1 ≤ i ≤ t.

• The decision asks whether there is a schedule π such that
∑

1≤j≤3t w
(i)
j U

(i)
j (π) ≤ 3X +B

for each i with 1 ≤ i ≤ t.

If I has a solution, then there is a t-partition I1, I2, ..., It of {1, 2, ..., 3t} (i.e., I1 ∪ I2 ∪
... ∪ It = {1, 2, ..., 3t} and Ii ∩ Ij = ∅ for i 6= j) such that |Ii| = 3 and

∑
j∈Ii

aj = B for
each i with 1 ≤ i ≤ t. Define

U = {J (i)
j : j ∈ Ii, 1 ≤ i ≤ t}.

Let J be the set of all the jobs. The job subset J \ U has the property that, for each j
with 1 ≤ j ≤ 3t, the total length of the jobs with a due date at most (t−1)Xj +(t−1)Aj

is exactly (t− 1)Xj + (t− 1)Aj. Hence, under the EDD sequence, every job in J \ U is
early. The total weight of the i-th agent’s jobs in U is

∑

j∈Ii

w
(i)
j =

∑

j∈Ii

(X + aj) = 3X + B = Qi.

Hence, an EDD sequence of the jobs in J \ U , followed by an arbitrary sequence of the
jobs in U , is a feasible schedule for I∗.

Conversely, suppose that there is a feasible schedule π for I∗. We can assume without
loss of generality that the early jobs are scheduled in the EDD sequence before the pro-
cessing of any tardy job. The set of all the tardy jobs under π is denoted by U . For each
job J , p(J) is used to denote the processing time of J and w(J) the weight of J .

Claim 1 |U| = 3t.

Note that, for each job J , we have X < p(J) = w(J) < X + B. If |U| ≥ 3t + 1, then

∑

j∈U
w(J) > (3t + 1)X > Q1 + Q2 + ... + Qt,

9



exceeding the threshold values, which is a contradiction. If |U| ≤ 3t− 1, then, by noting
that the total processing time of the jobs is 3t2X + t2B, we have

∑

j∈U
p(J) < (3t− 1)X + (3t− 1)B < 3tX + tB = 3tX + A3t,

and so the maximum completion time of the early job is greater than 3t(t−1)X+(t−1)A3t,
the last due date of the jobs. This contradicts the definition of U . We conclude that
|U| = 3t. The proof of Claim 1 is completed.

Suppose that (v0, v1, ..., vk) is the unique index sequence such that 0 = v0 < v1 < v2 <
... < vk = 3t,

avi+1 = avi+2 = ... = avi+1
, i = 0, 1, ..., k − 1

and
a1 = av1 < av2 < ... < avk

= a3t.

For each u with 1 ≤ u ≤ 3t, set Ju = {J (i)
j : 1 ≤ i ≤ t, 1 ≤ j ≤ u}, Nu = U ∩ Ju and

Nu = |Nu|.
Claim 2 Nvs = vs for s = 1, 2, ..., k.

If Nvs < vs for some s with 1 ≤ s ≤ k − 1, then the total length of the jobs in Nvs is
less than (vs − 1)X + (vs − 1)B < vsX + Avs . Hence, the maximum completion time of
the early jobs in Jvs is greater than (t−1)vsX +(t−1)Avs , the maximum due date of the
jobs in Jvs , contradicting the definition of Nvs . Consequently, Nvs ≥ vs for s = 1, 2, ..., k.
We notice that Nvk

= |U| = 3t = vk always holds.

If Nvs > vs for some s with 1 ≤ s ≤ k − 1, then the total length of all the tardy jobs
minus 3tX can be calculated by

∑
J∈U p(J)− 3tX

=
∑

1≤s≤k(Nvs −Nvs−1)avs (here, Nv0 = 0)

=
∑

1≤s≤k(vs − vs−1)avs +
∑

1≤s≤k

(
(Nvs − vs)− (Nvs−1 − vs−1)

)
avs

=
∑

1≤j≤3t ai +
∑

1≤s≤k−1(Nvs − vs)(avs − avs+1)

<
∑

1≤j≤3t ai = A3t.

That is,
∑

J∈U p(J) < 3tX + A3t. Consequently, the maximum completion time of the
early jobs is greater than 3t(t−1)X+(t−1)A3t, the last due date of jobs. This contradicts
the definition of U .

We conclude that Nvs = vs for s = 1, 2, ..., k. The proof of Claim 2 is completed.

By Claim 2, for each s with 1 ≤ s ≤ k, there are exactly ts = Nvs −Nvs−1 = vs − vs−1

tardy jobs in Jvs \ Jvs−1 with a common processing time X + as. We construct a new set
U∗ in the following way.

(1) For s from 1 to k we do the following: Sequencing the ts tardy jobs in Jvs \ Jvs−1

in an arbitrary order, say, Js,1, Js,2, ..., Js,ts . For each j with 1 ≤ j ≤ ts, let x(s, j)

10



be the agent index such that Js,j ∈ J (x(s,j)). We notice that Js,j and J
(x(s,j))
vs−1+j belong

to the same agent and have the same processing time and the same weight. Define
U∗s = {J (x(s,j))

vs−1+j : 1 ≤ j ≤ ts}.
(2) Set U∗ = ∪1≤s≤kU∗s .

By the construction of U∗, we have

Yi :=
∑

J∈U∩J (i)

w(J) =
∑

J∈U∗∩J (i)

w(J) ≤ Qi = 3X + B

for each i with 1 ≤ i ≤ t. For each u with 1 ≤ u ≤ 3t, the job set Ju \ Ju−1 contains
exactly one job in U∗, where J0 = ∅. It follows that

∑

1≤i≤t

Yi = 3tX + A3t = 3tX + tB.

Together with the fact that Yi ≤ 3X + B for 1 ≤ i ≤ t, we deduce that Y1 = Y2 = ... =
Yt = 3x + B. By setting

Ii = {j : J
(i)
j ∈ U∗, 1 ≤ i ≤ t},

we have
|Ii| = 3 and

∑

j∈Ii

aj = B for each i with 1 ≤ i ≤ t.

We conclude that the instance I of 3-Partition has a solution, too. The result follows. 2

When m is arbitrary, it is still open whether the problem 1||∑1≤j≤ni
U

(i)
j ≤ Qi, 1 ≤

i ≤ m is polynomially solvable?

6 Conclusions

In this paper we studied the feasibility model of multi-agent scheduling on a single ma-
chine, where each agent’s objective function is to minimize the total weighted number of
tardy jobs. We showed that the problem is strongly NP-complete in general. When the
number of agents is fixed, we first showed that the problem can be solved in pseudo-
polynomial time for integral weights, and can be solved in polynomial time in unit
weights; then we presented a fully polynomial-time approximation scheme for the prob-
lem. For the future research, the complexity of the problem 1||∑1≤j≤ni

U
(i)
j ≤ Qi, 1 ≤

i ≤ m is still open when m is arbitrary. The approximation algorithm for the problem
1||∑1≤j≤ni

w
(i)
j U

(i)
j ≤ Qi, 1 ≤ i ≤ m also needs to be resolved when m is arbitrary.

Acknowledgements

This research was supported in part by The Hong Kong Polytechnic University under
grant number S818. The third author was also supported in part by NSFC(10371112),

11



NSFHN (0411011200) and SRF for ROCS, SEM.

References

Agnetis, A., P.B. Mirchandani, D. Pacciarelli, and A. Pacifici, “Scheduling problems
with two competing agents”, Operations Research, 52, 229-242 (2004).

Baker, K.R., and J.C. Smith, “A multiple-criterion model for machine scheduling”,
Journal of Scheduling, 6, 7-16 (2003).

Curiel, I., G. Pederzoli, and S. Tijs, “Sequencing games”, European Journal of Op-
erational Research, 40, 344-351 (1989).

Garey, M.R., and D.S. Johnson, Computers and Intractability: A Guide to the The-
ory of NP-Completeness, Freeman, San Francisco, CA, 1979.

Hamers, H., P. Borm, and S. Tijs, “On games corresponding to sequencing situations
with ready times”, Mathematical Programming, 70, 1-13 (1995).

Kim, K., B.C. Paulson, C.J. Petrie, and V.R. Lesser, “Compensatory negotiation
for agent-based project schedule coordination”, CIFE working paper #55, Stanford
University, Stanford, CA, 1999

Lawler, E.L., and J.M. Moore, “A functional equation and its application to resource
allocation and sequencing problems”, Management Science, 16, 77-84 (1969).

Moore, J.M., “An n job, one machine sequencing algorithm for minimizing the num-
ber of late jobs”, Management Science, 15, 102-109 (1968).

Scharbrodt, M., A. Steger, and H. Weisser, “Approximability of scheduling with fixed
jobs”, Journal of Scheduling, 2, 267-284 (1999).

Schultz, D., S.-H. Oh, C.F. Grecas, M. Albani, J. Sanchez, C. Arbib, V. Arvia, M.
Servilio, F. Del Sorbo, A. Giralda, and G. Lombardi, “A QoS concept for packet ori-
ented S-UMTS services”, Proceedings of the 1st Mobile Summit 2002, Thessaloniki,
Greece.

Yuan, J.J. and Y.X. Lin, “Single machine preemptive scheduling with fixed jobs to
minimize tardiness related criteria”, European Journal of Operational Research, 164,
851-858 (2005).

12




