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Abstract—In this paper, Rapidly Replanning A* (RRA*) algo-
rithm is proposed for path planning and replanning in partially
unknown environments. RRA* uses an effective mechanism to
reuse previous search results, which considerably accelerates
its replanning process compared to repetitive replanning from
scratch. RRA* guarantees to find an optimal path from the
current location of an agent to its target location based on the
available information. Simulation results verify the optimality of
the path generated by RRA* and the superior efficiency of RRA*
in path replanning.

Index Terms—A*, RRA*, path planning, replanning, incre-
mental search, heuristic search.

I. INTRODUCTION

Mobile robots are often utilized in partially known envi-

ronments. Paths generated in such environments can be sub-

optimal or even impractical due to incomplete information.

Therefore, initially planned paths might need to be modified

on the fly to obtain feasible optimal paths. Since repetitive

path replanning from the scratch can be a tedious task in many

situations, incremental search algorithms have been introduced

for efficient path replanning as extensions to well-known A*

search algorithm [1].

Stentz introduced Dynamic A* (D*) [2] algorithm which

can be used for path planning with partial or no information. It

allows an agent to learn the surrounding while navigating and

modify the map if any changes in the surrounding are detected.

The planning is carried out using the updated map information.

Later, Focused D* search algorithm [3] was proposed by

combining properties of incremental and heuristic searches.

It improves the efficiency of both initial planning and subse-

quent replanning steps. Koenig et al. proposed an incremental

version of A*, called Lifelong Planning A* (LPA*) [4]. It

replans a shortest path from a source node to a target node in a

given graph whenever a change in the graph is detected. It can

successfully handle changes to costs of edges, node deletions,

and node additions. For a given problem, LPA* finds the same

paths as D* does, but using a different algorithmic procedure.

LPA* is easy to implement and analyze. Consequently, a new

algorithm called D* lite [5] was proposed for path replanning

in goal-directed navigation as an extension to LPA*. D* lite is

algorithmically shorter than LPA* as it avoids many complex

conditional statements, yet all the properties of LPA* are

inherited by D* lite. In contrast to LPA*, D* lite performs

its search from the target node to the source node. Recently,

we proposed Dynamic Z* algorithm [6], [7] as an incremental

version of Z* algorithm [8] for energy-efficient path planning

and replanning.

This paper presents an incremental search algorithm called

Rapidly Replanning A* (RRA*) as a generalization of Dy-

namic Z* [7], which can be used for optimal path planning

and replanning on finite digraphs. The rest of this paper is

organized as follows. Section II formulates the path replan-

ning problem. The proposed RRA* algorithm is described in

Section III. In Section IV, it is proven that RRA* always finds

an optimal path from current location of an agent to a target

location based on the updated map information. In Section V,

the efficiency of RRA* is analyzed using simulations. Some

concluding remarks are given in Section VI.

II. PROBLEM FORMULATION

Assume that a mobile agent is assigned a task of navigating

from a given source location to a target location in an environ-

ment with partial or no information. Here, the path replanning

problem is to find an optimal path from the current location

of the agent to the target location based on the currently

available map information whenever the previously planned

path becomes infeasible. To facilitate the path planning pro-

cess, a map of an environment is represented using a finite

digraph G = {V, E} in which a set of nodes V represents

way points in the environment and a set of edges E represents

connections between them. The traversal cost from a node

n ∈ V to one of its neighboring node n′ ∈ V is represented

using a non-negative edge cost c(n, n′). Assume that G has

been formulated based on currently available map information.

Now, the path replanning problem can be transformed into a

graph search problem in which an optimal path needs to be

found from a node q ∈ V that represents the current location

of the agent to a node t that represents its target, using the

updated G.

III. RRA* ALGORITHM

The proposed RRA* handles path replanning task efficiently

by reusing its previous search results. Inspired by D* lite [5],

the search direction of RRA* is set to be the reverse of A*,

i.e. RRA* always starts its search form t and continues until it

reaches q. RRA* replicates node selection and expansion op-

erations of A* with some modifications to its cost calculations.

In RRA*, the selection of a node n for expansion is based on

the expected cost of traversing from the current location of the
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agent to the target via a node n, which can be obtained by

f(n) = h(q, n) + g(n, t). (1)

Here, g(n, t) is the cost of a path λnt = 〈n, . . . , t〉 from n

to t. An optimal path from n to t is denoted by λ∗nt. In (1),

h(q, n) is a heuristic cost estimate of λ∗qt. Note that g(t, t) =
h(q, q) = 0.

The proposed RRA* algorithm is summarized in Algorithm

1. Initially, the agent’s start location s is same as the current

location, i.e. q ≡ s. In initial planning, nodes with unknown

traversability status are assumed to be traversable. Here, due

to the reverse search direction, for any node ni, ni+1 ∈ V , the

node ni is said to be a successor of ni+1 if (ni, ni+1) ∈ E . If

f -cost of the node selected in Step 2a is infinitely large, there

is no feasible path exists between the current location of the

agent and its target, thus, the algorithm terminates. Otherwise,

it jumps to Step 3 when the search process reaches q.

In the navigation step, the agent starts following the already

found path while updating the traversability of neighboring

nodes until the target is reached. If the preceding node of

its current node in the search tree is unobstructed, the agent

moves to the preceding node and update its position q. If the

preceding node is obstructed, RRA* updates G by setting costs

of all the edges that start and end at the abstracted nodes to

∞. Even though the current path is inaccessible beyond the

obstructed node, the g-costs of the nodes which lie on that path

in between the obstructed node and t are still valid. Therefore,

those costs need not to be recalculated in replanning steps.

This can be identified as the main advantage of searching in

reverse direction.

In order to carry out replanning efficiently, RRA* needs

to make the maximum use of previous search results. On

the other hand, paths resulted in replanning steps must be

feasible and optimal. Based on these concepts, a new method

is proposed for rearranging OPEN and CLOSED lists such

that RRA* can efficiently reuse previous search results to

find optimal paths in replanning steps. The proposed method

rearranges nodes on OPEN and CLOSED lists using the

search tree of the previous search. When an obstructed node

is found on a planned path, the branches of the search tree

which expands through that particular node become invalid

beyond the obstructed node. However, if the nodes in those

branches beyond the obstructed node are removed, the rest of

the search tree can still be used for replanning of the paths. A

rearrangement procedure for OPEN and CLOSED lists based

on this concept is given in Step 4. Once OPEN and CLOSED

lists are rearranged, f -costs of nodes on OPEN are updated

according to the current location of the agent. Since g-costs

of the nodes in OPEN remain the same, only h-costs have

to be recalculated to obtain the corresponding f -costs. After

the cost updates, RRA* recalculates the path with the updated

OPEN and CLOSED lists.

IV. ANALYSIS OF RRA*

This section analyzes the optimality of the paths found by

RRA*. Properties of A*-like search algorithms are clearly

Algorithm 1: RRA* algorithm

1. Initialize:

a. Define two empty lists, OPEN and CLOSED.
b. Set q ← s.

c. Record t on OPEN and define a pointer Pred(t)← NULL.

d. Calculate initial costs, g(t, t)← 0, f(t)← h(q, t).
2. Calculate a path:

a. Remove a node ni from OPEN whose f -cost is minimum and
record it on CLOSED. Resolve ties arbitrarily, but favor q.

b. If f(ni) =∞, exit without a path.
c. If ni = q, go to Step 3.
d. For all successors ni+1 of ni in G that are not on CLOSED,

i. Calculate g(ni+1, t) = c(ni+1, ni) + g(ni, t) and
f(ni+1) = h(q, ni+1) + g(ni+1, t).

ii. If ni+1 is on OPEN and f(ni+1) is smaller than its
previous estimate, update its f -cost and the pointer
Pred(ni+1)← ni.

iii. If ni+1 is not on OPEN, record ni+1 on OPEN and define
a pointer Pred(ni+1)← ni.

e. Go to Step 2a.

3. Navigate:

a. Observe the traversability of neighboring nodes and update G.
b. If Pred(q) is unobstructed, then

i. Move to Pred(q) and set q ← Pred(q).
ii. If q 6= t, go to Step 3a.

4. Rearrange lists:

a. Remove Pred(q) from CLOSED.
b. Define a list TEMP ← {Pred(q)}.
c. Remove an arbitrary node n from TEMP.
d. For all successors n′ of n in G,

i. If Pred(n′) = n and n′ is on OPEN, then remove n′

from OPEN and put it on TEMP.
ii. If Pred(n′) = n and n′ is on CLOSED, then remove n′

from CLOSED and put it on TEMP.
iii. If Pred(n′) 6= n and n′ is on CLOSED, then remove n′

from CLOSED and put it on OPEN.

e. If TEMP is not empty, go to Step 4c.
f. If OPEN is not empty, update the f -costs of all the nodes in

OPEN and go to Step 2.
g. Go to Step 1c.

depend on their heuristics. In A* [9], an admissible heuristic

provides an optimistic estimate of the goal cost whereas in

RRA*, an admissible heuristic provides an optimistic estimate

of the start cost.

Definition 1: A heuristic function h used in RRA* is said

to be admissible if

h(q, n) ≤ k(q, n), ∀n ∈ V.

where k(q, n) is the cost of λ∗nt.

Similarly, the definition of consistency given for the heuristics

used in A* [9], can be adapted for the heuristics used in RRA*

as follows.

Definition 2: A heuristic function h used in RRA* is said

to be consistent if

h(q, n) ≤ h(q, n′) + k(n′, n), ∀n, n′ ∈ V.

By taking n′ = q, it can be shown that all consistent

heuristics are admissible. Here, all heuristics used with RRA*

are assumed to be consistent.



Let Gm be the updated digraph used for mth execution of

Step 2 of RRA* and c∗m be the cost of an optimal path from

q to t in Gm.

Lemma 1: If there exists a path from q to t in Gm, then

there exists an OPEN node ni on λ∗qt = 〈q, . . . , ni, . . . , t〉
with f(ni) ≤ c∗m while Step 2 of RRA* is being executed.

Proof: Initial planning using RRA* is the same as using

A* except the search direction. Hence, using Lemma 1 in [9],

it can be shown that there exists an OPEN node ni on λ∗st =
〈s, . . . , ni, . . . , t〉 with f(ni) ≤ c∗1 before RRA* exits from

Step 2 in initial planning. Before every replanning step, RRA*

rearrange OPEN and CLOSED lists in Step 4. In order to prove

this lemma for replanning, we first prove that there exists an

OPEN node ni on λ∗qt with f(ni) ≤ c∗m when Step 2 of RRA*

is reached while replanning.

First assume that OPEN is empty after rearranging lists.

Then, t will be recorded on OPEN with f(t) = h(q, t) in Step

1c. Using the admissibility of h, we have f(t) ≤ k(q, t) = c∗m.

Now assume that OPEN is not empty but there does not exist

an OPEN node ni on λ∗qt = 〈q, . . . , ni, . . . , t〉 after rearranging

lists. This can be considered under three scenarios: (a) None

of the nodes on λ∗qt is on CLOSED. However, if OPEN is not

empty, t must be on CLOSED at any given time. (b) All of

the nodes on λ∗qt are on CLOSED. However, when rearranging

lists, q is definitely removed from CLOSED. Therefore, there

should be at least one node of λ∗qt which is not on CLOSED.

(c) Some of the nodes on λ∗qt are on CLOSED. Let ni−1 be

the furthest node from t on λ∗qt that is currently on CLOSED.

Since the successor ni of ni−1 on λ∗qt is currently not on

CLOSED, it must have been removed from CLOSED in Step

4(d)iii. Therefore, ni must be on OPEN. However, ni might be

on OPEN with f(ni) > c∗m. In Step 4f, f(ni) is calculated as

f(ni) = h(q, ni) + g(ni, t). Using the admissibility of h, we

have f(ni) ≤ k(q, ni) + g(ni, t). Since ni is on an optimal

path, k(q, ni) + g(ni, t) = c∗m. Thus, there exists an OPEN

node ni on λ∗qt with f(ni) ≤ c∗m when Step 2 is reached

while replanning.

In order to complete the proof, it is necessary to show that

there exists an OPEN node ni on λ∗qt with f(ni) ≤ c∗m while

Step 2 of RRA* is being executed in replanning. It has been

already showed that Step 2 is reached in replanning, there is

an OPEN node ni on λ∗qt with f(ni) ≤ c∗m. Whenever, ni is

moved from OPEN to CLOSED, the successor ni+1 of ni on

λ∗qt will be recorded on OPEN with f(ni+1) = h(q, ni+1) +
c(ni+1, ni) + g(ni, t). Using the admissibility of h, we have

f(ni+1) ≤ k(q, ni+1) + g(ni+1, t). Since, ni+1 is on λ∗qt,

k(q, ni+1) + g(ni+1, t) = c∗m, and therefore, there exists an

OPEN node ni+1 on λ∗qt with f(ni+1) ≤ c∗m while Step 2 of

RRA* is being executed.

Theorem 1: RRA* guarantees to find an optimal path λ∗qt
in Gm if such a path exists.

Proof: A sequence of contradictions are used for this

proof. First, assume that RRA* does not terminate on Gm.

However, any best-first search strategy that prunes cyclic paths

always terminates on finite graphs [9], thus, RRA* must

terminate on Gm. Now assume that RRA* terminates without

a path in Step 2b. If there exists a path from q to t in Gm,

according to Lemma 1, there exists an OPEN node ni on λ∗qt
with f(ni) ≤ c∗m while Step 2 of RRA* is being executed.

In Step 2a, RRA* selects a node from OPEN whose f -cost

is minimum. Therefore, if there exists a path from q to t

in Gm, RRA* cannot terminate at Step 2b without a path.

Even if RRA* finds a path λqt in Gm, assume that λqt is

sub-optimal, i.e. f(t) > c∗m. However, RRA* always select

a node with minimum f -cost from OPEN. Therefore, by the

time that RRA* selects t for expanding along λqt, t should be

minimum f -cost among the nodes in OPEN which contradict

with Lemma 1. Thus, RRA* guarantees to find an optimal path

λ∗qt in Gm if such a path exists.

Here, it is assumed that heuristics used with RRA* are

consistent. Nevertheless, if the heuristics are admissible but

not consistent, then RRA* may need to re-expand the nodes

on CLOSED and improve their costs to find optimal paths.

V. SIMULATIONS

A set of simulations were performed to evaluate the com-

putational efficiency of RRA* and to verify the optimality

of paths found. Benchmark results were obtained using A*

[1] which guarantees to find a shortest path by exploring a

minimum number of nodes when it is guided by consistent

heuristics.

Simulations were performed using two terrain models de-

scribed in [6]. Parameters of two simulation setups are given

in Table I. A grid-based elevation map of a terrain model is

transformed into a finite digraph G = {V, E}. A node n ∈ V
represents a center of a cell in the elevation map. Each node

is connected up to 8 other nodes which represent neighboring

cells. For (n, n′) ∈ E , the edge cost is calculated using

c(n, n′) =

{

∞, if φ(n, n′) > φm,

d(n, n′), otherwise,

where d(n, n′) is the Euclidean distance from n to n′, φ(n, n′)
is the angle of inclination from n to n′, and φm is the critical

impermissible angle for uphill traversal [10]. In simulations,

φm = 44.71◦. The heuristic cost is calculated using the

Euclidean distance, i.e. h(q, n) = d(q, n). Obstacles are

distributed uniformly at random such that 10% of cells in

elevation maps of terrains are obstructed in each simulation.

The simulations were performed under two scenarios to

evaluate performances of RRA* in feasible shortest path

replanning on uneven terrains. In the first scenario, the al-

gorithms under test were provided with locations of obstacles

prior to initial planning and in the second scenario, they were

not. According to the simulation results, RRA* is capable

of finding the same shortest paths as A* does, with or

without having prior knowledge of the obstacle locations. If

the algorithms under test had complete information about the

obstacle locations prior to initial planning, paths generated

do not coincide with any obstacles, thus, no replanning takes

place. If the obstacle locations are unknown prior to the initial

planning, the algorithms under test assume that all the cells in



TABLE I: SIMULATION PARAMETERS AND RESULTS.

Setup
Terrain s t

Path length (m) Number Number of nodes

model [6] (m) (m)
Shortest path with Initially planned path Replanned of expanded in replanning

known obstacles with unknown obstacles path replans A* RRA*

I 1 (13,69) (65,50) 70.35 68.88 72.19 8 1556 31

II 2 (09,73) (89,54) 98.75 95.97 101.37 8 3918 36
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Fig. 1: Shortest paths generated by the algorithms under test using (a) simulation setup I and (b) simulation setup II.

the elevation map are traversable. Both A* and RRA* return

the same paths that are optimal if the terrain is obstacle free.

However, these paths coincide with several obstacles. The

agent cannot reach its target by simply following these paths,

thus, replanning has to be taken place when the agent discovers

that the next node on the path is obstructed. Under each

simulation setup, paths are replanned 8 times. Such replanning

usually results in longer paths compared to the paths that

are found with prior information about obstacle locations.

Nevertheless, RRA* is capable of finding equally optimal

paths when compare to those found by repeatedly applying A*.

According to the results given in Table I, RRA* has expanded

significantly fewer number of nodes for path replanning during

navigation. These results verify the optimality of the path

generated by RRA* and the superior efficiency of RRA* in

path replanning.

VI. CONCLUSION

This paper proposed RRA* algorithm which can be used

for rapid path replanning while navigating in partially known

environments. The search process of RRA* starts from the

target node and proceeds till it reach the current location of

an agent. If the traversability of a node is not available by

the time of planning, it is assumed to be traversable. Once a

path is obtained, the agent follows that till the goal is reached

if all nodes on that path is unobstructed. However, if the

path is obstructed, RRA* reuses the previous search results

to efficiently replan a new path after removing the obsolete

branches in the search tree. The analysis provided in this paper

proves that RRA* always find an optimal path based on the

updated information.
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