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Community-based Informed Agents Selection for Flocking with

a Virtual Leader

Nuwan Ganganath, Chi-Tsun Cheng, Xiaofan Wang, and Chi K. Tse

Abstract: It has been studied that a few informed individuals in a group of interacting dynamic

agents can influence the majority to follow the position and velocity of a virtual leader. Previously

it has been shown that a cluster-based selection of informed agents can drive more agents to

follow the virtual leader compared to a random selection. However, a practical question is: How

many informed agents to select? In order to address this, here we propose a novel method for

selecting informed agents based on community structures in the initial spatial distribution of

agents. The number of informed agents are decided based on the strongest community structure.

We test and analyze the performance of the proposed method against random and cluster-based

selections of informed agents using extensive computer simulations. Results of our study show

that community-based selection can be useful in deciding an optimum number of informed agents

such that a majority of the group can achieve their common objective.

Keywords: Flocking, informed agents, virtual leader, controllability, communities.

1. INTRODUCTION

Flocking can be identified as a form of collective be-

havior within a large group of dynamic agents which uses

local information and simple rules to achieve common ob-

jectives. Such group behaviors are common in nature, e.g.:

bird flocks, fish schools, mammal herds, bacteria swarms,

and so on [1–4]. In one of the early attempts of model-

ing natural flocks, Reynold [5] introduced three heuristic

rules which enabled agents to stay close to nearby flock-

mates, match their velocities, and avoid collisions. How-

ever, Reynold’s rules fail to model some important and

complex behaviors within flocks such as obstacle avoid-

ance [6,7], terrain adaptation [8,9], and target tracking/goal

seeking behavior [10, 11]. In this paper, our focus is on

the target tracking behavior of groups of dynamic agents.

Such a target or a common objective is commonly repre-

sented by a virtual leader in literature [11–14], which can

be either dynamic or static.

Leonard et al. [15] studied the coordination control in

multi-agent systems with a virtual leader using an artifi-
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cial potential function method. A computational and the-

oretical framework for design and analysis of flocking al-

gorithms was proposed by Olfati-Saber [16]. Among the

three flocking algorithms in [16], the second algorithm

is for flocking in free space, in which a dynamic virtual

leader was used to guide a group of agents in a desired ve-

locity using a navigational feedback mechanism. All the

agents are treated as informed agents who has continuous

access to the information of the virtual leader. Although

having all the agents being informed can guarantee all of

them to keep track of the virtual leader, such an argument

is quite impractical in many engineering applications and

uncommon in natural flocks.

Ren [17] studied the consensus problem in multi-vehicle

systems with a virtual leader. Vehicles were modeled by

single integrator dynamics and only a fraction of the ve-

hicles in the system had been granted access to the virtual

leader. The consensus of multi-agent dynamic systems

with general nonlinear coupling was studied by Chen et

al. [18] based on multiple Lyapunov functions and con-

traction analysis. Su et al. [12] modified the Olfati-Saber’s

second flocking algorithm by providing navigational feed-

back only for a few informed agents that are selected ran-

domly. Their algorithm enabled some of uninformed agents

which do not have direct access to the information of the

virtual leader, to move with the same velocity if they can

be influenced by the informed agents from time to time.

Their simulation results conclude that the larger the group

size, the smaller the proportion of the agents need to have

the information of the virtual leader in order to guide a

given fraction of agents with the desired velocity. In [19],

we showed that selecting informed agents based on initial

clusters in the spatial distribution of agents can lead to a

This is the Pre-Published Version.
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higher percentage of following agents compared with the

traditional random selection.

In this paper, we further investigate how informed agents

selections can affect proportions of agents to achieve the

common objectives. We perform this by varying spatial

distribution of agents for different initial densities. This

enables us to study how initial connections between in-

formed agents and the rest of the group affect the fraction

of the agents achieving the common objective. Our stud-

ies also lead to an observation that a desirable selection

of informed agents based on their initial connections can

help to drive majority of the agents to the group objec-

tive effectively. Based on this observation, we proposed

a novel method for informed agents selection in a group

of dynamic agents using their initial community structure.

Analyses of the proposed method show that it can be very

useful in finding an optimum number of informed agents

to drive a majority of the group to its objective.

The rest of the paper is organized as follows. Rele-

vant background materials that lead to the problem con-

sidered in this paper are recalled in Section 2. We pro-

pose community-based method for effective selection of

informed agents in flocking in Section 3. Results of the

proposed method are presented in Section 4. Concluding

remarks are given in Section 5.

2. BACKGROUND

We consider a group of N dynamic agents moving in

n dimensional Euclidean space with double integrator dy-

namics q̇i = pi and ṗi = ui, where i = 1,2, . . . ,N and qi,pi,

ui ∈ R
n are the position, velocity, and control input of the

agent i, respectively. The configuration of all the agents

is expressed as q = [q1,q2, . . . ,qN ]
T ∈ R

nN . The interac-

tion range between two agents, r > 0, determines their

spatial neighbors. The set of spatial neighbors of agent

i at time t is denoted by Ni(t) = { j : ‖qi− q j‖ < r, j =
1,2, . . . ,N, j 6= i}, where ‖ ·‖ is the Euclidean norm in Rn.

We assume an identical interaction range and communica-

tion capability for all the agents.

2.1. Flocking of Multi-agents with a Virtual Leader

A distributed control scheme for multi-agent dynamic

systems, which only utilizes the information of the neigh-

boring agents and the virtual leader, is proposed by the

second flocking algorithm in [16]. In such algorithm, each

agent applies a control input that consists of three terms:

ui = f
g
i + f d

i + f
γ
i . (1)

In (1), the gradient-based term f
g
i =−∇qi

V (q), is used
to control the position of agent i in its neighbourhood. A

smooth collective potential function V (q) is given by

V (q) = ∑
j∈Ni(t)

ψα(‖q j−qi‖σ ). (2)

The σ -norm is defined as ‖z‖σ = 1
ε

(

√

1+ ε‖z‖2−1
)

,

where ε > 0. In (2), ψα(z) is a smooth pairwise attrac-

tive/repulsive potential which is defined as

ψα(z) =
∫ z

‖d‖σ

φα(s)ds.

Here, ψα(z) reaches its global minimum at a desired dis-

tance z = ‖d‖σ < ‖r‖σ and global maximum at z = 0 with

a finite cut-off at z = ‖r‖σ . It is constant for ‖z‖σ ≥ ‖r‖σ .

An action function is defined as

φα(z) = ph

(

z

‖r‖σ

)

φ(z−‖d‖σ ),

where φ(z) = (1/2)[(a+b)σ1(z+c)+(a−b)]. Here, 0<
a ≤ b, c = |a− b|/

√
4ab, and σ1(z) = z/

√
1+ z2. One

possible choice for a bump function ph(z) is

ph(z) =











1, if z ∈ [0,h)
1
2

[

1+ cos
(

π z−h
1−h

)]

, if z ∈ [h,1]

0, otherwise

where h ∈ (0,1) [16].
The velocity consensus term in (1) is defined as f d

i =

∑ j∈Ni(t) ai j(q)(p j− pi). Here, terms of the adjacency ma-

trix is defined as

ai j(q) =

{

0, if j = i

ph

( ‖q j−qi‖σ

‖r‖σ

)

, otherwise.
(3)

The third term in (1), f
γ
i = −c1(qi− qγ)− c2(pi− pγ)

is a navigational feedback due to mutual objective which

drives agent i to track the virtual leader with double inte-

grator dynamics q̇γ = pγ and ṗγ = fγ(qγ , pγ). Here c1,c2
are positive constants and qγ , pγ , fγ ∈ R

n are the position,

velocity, and acceleration (control input) of the virtual leader,

respectively. One should note that this control protocol

considers all the agents as informed agents which have

the knowledge of (qγ , pγ).

2.2. Random Selection of Informed Agents

In [12], Su et al. modified (1) by assuming that only

some of the agents are given the knowledge of (qγ , pγ):

ui =− ∑
j∈Ni(t)

∇qi
ψα(‖q j−qi‖σ )+ ∑

j∈Ni(t)

ai j(q)(p j− pi)

−hi[c1(qi−qγ)+ c2(pi− pγ)], c1,c2 > 0. (4)

Here, hi = 1 if the agent i is informed, otherwise hi = 0.

M0 agents are randomly selected as informed agents. They

also simplified dynamics of the virtual leader as q̇γ = pd

and qγ(0) = qd . Here, pd is a desired constant velocity

and qd is an initial position of the virtual leader.

Fig. 1 illustrates random assignment of 5 informed agents

in a network of 25 agents as proposed in [12]. Filled cir-

cles represent the informed agents and the rest is unin-

formed. As seen from Fig. 1, the random selection of
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Fig 1: Random selection of 5 informed agents in a net-

work of 25 agents. Solid lines represent the neigh-

boring relations. Filled circles represent the in-

formed agents and empty circles represent unin-

formed agents.

informed agents does not guarantee an even spatial distri-

bution of informed agents, thus leaving certain parts of the

network highly influenced by the virtual leader while the

rest is not.

2.3. Cluster-based Selection of Informed Agents

The random selection of informed agents does not guar-

antee an even spatial distribution of informed agents, thus

leaving certain parts of the network highly influenced by

the virtual leader while the rest is not. In order to achieve

an even distribution of informed agents, a cluster-based

selection method is proposed in [19]. It first groups the

agents into M0 clusters such that ∑
M0
j=1 ∑∀i∈C j

‖qi− µ j‖2
is minimized. The centroid of a cluster C j is denoted as

µ j ∈ R
n. An agent that is closest to the centroid of a clus-

ter is selected as an informed agent.

Fig. 2 illustrates cluster-based assignment of 5 informed

agents for the same network of 25 agents given in Fig. 1.

Agents that are represented by same shape belong to the

same cluster. Filled markers represent the informed agents

and the rest is uninformed. As it is observed from Fig. 2,

the cluster-based method enables a fair distribution of the

informed agents according the initial spatial density of the

agents. According to the results presented in [19], cluster-

based informed agent selection can considerably increase

the number of following agents compared to the random

selection of informed agents. However, one clear draw-

back in this method is that it does not considers the neigh-

boring connections between agents when they are clus-

tered. Therefore, agents which are not directly connected

to each other might be included in the same cluster. For

example, agents {3,19,22} in Fig. 2 belong to the same

cluster even though there are no direct connections exist
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Fig 2: Clusters detected using the k-means algorithm for

the network given in Fig. 1. Agents that are repre-

sented by same shape and color belong to the same

cluster. Solid lines represent the neighboring rela-

tions. Filled markers represent the informed agents

and empty markers represent uninformed agents.

between {3} and {19,22}. Also, the number of clusters is

not an optimized value for each distribution of agents, but

a user defined arbitrary value.

3. PROPOSED COMMUNITY-BASED

SELECTION OF INFORMED AGENTS

In order to avoid the drawbacks of cluster-based method,

in this paper, we propose a community-based method for

selection of informed agents for flocking with a virtual

leader. Community structures present in many networks

where vertices within the same community are more likely

to be connected to each other than vertices in other com-

munities. Properties and dynamics of these networks can

be understood by uncovering such communities. In groups

of dynamic agents, community structures reveal the orga-

nization and interactions among the agents. Recently, a

considerable number of attempts have been devoted for

detecting the community structures in networks [20–22].

Many community detecting methods are based on a ben-

efit function called modularity [23]. Higher values of the

modularity correspond to the existence of stronger com-

munity structures. In this paper, we utilize Newman’s fast

algorithm [24] for community detection in the groups of

agents.

The modularity for quantifying communities in a net-

work of dynamic agents is based on the edge density in a

subnetwork of the network with compared to a null-model.

The null-model can be defined as a subnetwork with the

same number of vertices, edges, and degree distribution

as the original subnetwork, but the edges are randomly

placed. The probability of having vertex i connected to

vertex j in the null-model can be given by Pi j = kik j/4m2,
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Fig 3: The modularity for the hierarchical community

structure detected on the network given in Fig. 1.

The modularity metric reach is maximum of 0.6588

when the number of communities are equal to 5.

where m is the total number of edges in the network. De-

grees of vertices i and j are denoted by ki and k j, respec-

tively. The probability of having vertex i connected to ver-

tex j in the original subnetwork can be given by ai j/2m.

Therefore, the Newman’s modularity is defined as

Q =
1

2m
∑

i, j∈V

(

ai j−
kik j

2m

)

δ (C̆i,C̆ j), (5)

where vertices i and j respectively belong to communities

C̆i and C̆ j. If C̆i = C̆ j then δ = 1, otherwise δ = 0. If Q is

close to 1, a strong community structure can be observed

in the network. The modularity metric Q tends to 0 as the

number of edges within a community gets close to ran-

dom. Also, Q = 0 if all the vertices in a network belong to

a single community.

The Newman’s fast algorithm is an agglomerative algo-

rithm which takes the sole vertices as inputs. These ver-

tices are considered as the initial communities. Then it

iteratively joins these initial communities together in pairs

such that it results in greatest increase or smallest decrease

in Q. Fig. 3 illustrates the resulted modularity metric for

the network of 25 agents given in Fig. 1 by executing the

fast algorithm on it. Hierarchical results of this iterative

process of community merging can be visualized by using

a dendrogram as shown in Fig. 4. A cut-off level of the

dendrogram is decided according to the maximum mod-

ularity value as it corresponds to the strongest commu-

nity structure of the network. Therefore, modularity can

be used as an effective measure of the number of com-

munities. This is a added advantage over cluster-based

method in which number of clusters is an arbitrary value.

In this example, Q reaches its maximum of 0.6588 when

the number of communities are equal to 5.

The strongest community structure obtained by using

the fast algorithm for the network given in Fig. 1 is shown

3 7 24 1 21 11 10 6 18 20 25 23 2 9 15 17 16 8 14 13 4 5 12 22 19 

cut-off line 

Fig 4: A dendrogram illustrating the hierarchical commu-

nity structure of the network given in Fig. 1. The

cut-off line can be decided based on the highest

modularity value.
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Fig 5: Community structures detected using the modular-

ity metric for the network given in Fig. 1. Solid

lines represent the neighboring relations. Filled

markers represent the informed agents and empty

markers represent uninformed agents.

in Fig. 5. Agents that are represented by same shape be-

long to the same community. Filled markers represent the

informed agents and empty markers represent uninformed

agents. The highest degree vertex in each community is

selected as an informed agent such that

hi =







1, if i = argmax
s∈C̆ j

(ks).

0, otherwise.

(6)

Thus, we can summarize the informed agent selection

process as below:

1. Identify the location of each agent.

2. Calculate the adjacency matrix of the group of agents

using (3).

3. Determine the best community structure using the ad-

jacency matrix.
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4. Select the highest degree agent from each community

as an informed agent (6).

As explained in the previous section, initial clusters ob-

tained using k-means algorithm may contain disconnected

components. Therefore, an informed agent assigned for

such a cluster may not be able to influence all the agents

within the cluster to follow the virtual leader, which may

cause to degrade the effectiveness of cluster-based selec-

tion method. However, this is not surprising since connec-

tions between agents are ignored during the clustering pro-

cess. In contrast, while using the proposed community-

based informed agent selection method, the following propo-

sition holds for any initial distribution of the agents.

Proposition 1: All communities in the strongest com-

munity structure that is obtained by optimizing the modu-

larity, are connected components unless a vertex itself is a

community.

Proof: The modularity defined in (5) can be rewritten

as

Q =
1

2m
∑
n

∑
i∈C̆n, j∈C̆n

(

ai j−
kik j

2m

)

.

Without loss of generality, let us assume a network con-

sists of two disconnected communities, C̆1 and C̆2. The

corresponding modularity value to these two communities

can be obtained as

Q1 =
1

2m

2

∑
n=1

∑
i∈C̆n, j∈C̆n

(

ai j−
kik j

2m

)

.

If C̆1 and C̆2 are merged into a single community C̆, the

modularity value is updated as

Q2 =
1

2m
∑

i∈C̆, j∈C̆

(

ai j−
kik j

2m

)

,

and the change in modularity can be obtained as

∆Q = Q2−Q1,

=
1

2m

[

∑
i∈C̆, j∈C̆

(

ai j−
kik j

2m

)

− ∑
i∈C̆1, j∈C̆1

(

ai j−
kik j

2m

)

− ∑
i∈C̆2, j∈C̆2

(

ai j−
kik j

2m

)]

. (7)

Since C̆1 and C̆2 are disconnected communities, one has

∑
i∈C̆

∑
j∈C̆

ai j = ∑
i∈C̆1

∑
j∈C̆1

ai j + ∑
i∈C̆2

∑
j∈C̆2

ai j. (8)

Using (7) and (8), the change in modularity can be reduced

to

∆Q =− 1

4m2



∑
i∈C̆

∑
j∈C̆

kik j− ∑
i∈C̆1

∑
j∈C̆1

kik j− ∑
i∈C̆2

∑
j∈C̆2

kik j



 .

(9)

However, C̆ = C̆1∪C̆2, hence, one has

∑
i∈C̆

∑
j∈C̆

kik j = ∑
i∈C̆1

∑
j∈C̆1

kik j + ∑
i∈C̆2

∑
j∈C̆2

kik j +2 ∑
i∈C̆1

∑
j∈C̆2

kik j.

(10)

Using (9) and (10), ∆Q can be further reduced to

∆Q =− 1

2m2 ∑
i∈C̆

∑
j∈C̆

kik j, (11)

which is always a negative quantity unless C̆1 and C̆2 are

communities with sole vertices. Now, let us assume that

strongest community structure which corresponds to max-

imummodularity contains a community with disconnected

components. However, according to (11), the value of

modularity reduces when disconnected components merged

into a single community. The modularity cannot reached

its maximum in such an occurrence, thus, the assumption

of the strongest community structure contains a commu-

nity with disconnected components cannot hold. There-

fore, the proposition is proved. �

With the proven connectivity in each community corre-

sponding to maximum community structure, the informed

agents selected by using the proposed community-based

method, have a higher possibility to influence uninformed

agents to follow the virtual leader, compared to random

and cluster-based selection methods.

4. SIMULATION STUDY

We evaluate and analyze the performances of the pro-

posed community-based informed agents selection method

against the random [12] and cluster-based [19] selection

methods using computer simulations. Simulation settings

and simulation results are presented in this section. The

main objectives of our simulation study are to understand

the applicability and performances of the proposed informed

agents selection method under different conditions. More-

over, we try to understand the relationship of the fraction

of agents that eventually move with the desired velocity

η with the fraction of informed agents δ = M0/N and

the initial density of the informed agents ρ . Here, we

are not interested in studying the effect on η by changing

N, which has already been studied in previous research

work. According to [3, 12], the larger the group size N,

the smaller the fraction of informed agents δ needed to

guide the group with a given fraction η .

The first set of simulations were performed on 100 agents

(N = 100) moving in a 2-dimensional (n = 2) space under

the influence of the control protocol (4). Initial positions

and velocities of the 100 agents were randomly chosen

from the boxes [0,50]× [0,50] and [−4,4]× [−4,4], re-
spectively. The initial position and velocity of the virtual

leader were set at qγ(0) = [25,25]T and qγ(0) = [1,1]T

correspondingly. The interaction range was chosen as r =
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4.8, the desired distance d = 4, ε = 0.1 for the σ -norm,

h = 0.7 for the bump function, a = 1 and b = 2 for the

action function, and c1 = 0.1 and c2 = 0.4 for the con-

trol protocol. The number of informed agents M0 is de-

cided using the number of communities which returns the

maximum modularity value in the hierarchical commu-

nity structure. For the current setup, the modularity metric

reaches its maximum of 0.8793 when the number of com-

munities is equal to 20, i.e. M0 = 20.

Simulation results for community- and cluster-based se-

lection methods are respectively shown in Figs. 6 and 7.

Solid lines in the figures represent neighboring relations,

arrowheads represent velocities of the agents, and hexa-

grams represent positions of the virtual leaders. The in-

formed agents are marked with circles. The agents repre-

sented in same color arrowheads belong to the same initial

community and cluster in Figs. 6 and 7, respectively. The

20 communities identified at the initial frame (t = 0) are

well-defined as none of the disconnected components be-

long to the same community. When the informed agents

are selected based on the initial community structure, 84

agents move with the desired velocity (η = 0.84) at t = 50.

For the same setup, if the informed agents are selected

based on 20 initial clusters, η = 0.76 (see the frame at

t = 50 in Fig. 7). In this particular case, the community-

based selection method outperformed the cluster-based se-

lection method.

To further substantiate the results shown in Figs. 6

and 7, more simulations were performed by evaluating

η against ρ ∈ [0.01,0.1]. The simulation results given

in Fig. 8 are average results over 50 simulations each.

For a fair comparison, the following parameters remained

fixed throughout all simulations: N = 100, r = 4, d =
3.3, ε = 0.1, a = 1, b = 2, h = 0.6, c1 = 0.1, and c2 =
0.4. Initial positions and velocities of the agents were ran-

domly selected from a [0,L]× [0,L] box (ρ = N/L2) and a

[−0.5,0.5]× [−0.5,0.5] box, respectively. The initial po-

sition and velocity of the virtual leader were set at qγ(0) =
[L/2,L/2]T and pγ(0) = [2,2]T, respectively. Here, δ is

decided using the number of communities which returns

the maximum modularity value in the hierarchical com-

munity structure. The average number of communities for

each initial density is indicated by using the blue dashed

line in Fig. 8.

According to the results given in Fig. 8, when the num-

ber of informed agents are selected based on the best com-

munity structure, the community-based selection method

outperformed the cluster-based selection method in terms

of η for a majority of ρ values. In the given results, the

only time it is outperformed by the cluster-based selection

method is when ρ = 0.01. At ρ = 0.01, 〈k〉 = 0.2284.
i.e. most of the agents are isolated. In such sparse net-

works, obviously, community detection is not very effec-

tive. The simulation results show that the community-

based informed agents selection method can drive more

agents to follow a virtual leader compared to other meth-

ods under test when the best community structure is se-

lected and the highest connection degree nodes in each

community are elected as informed agents.

5. CONCLUSION

In this paper, we proposed a community-based informed

agents selection method for flocking with a virtual leader.

Extensive simulations were performed to test and evalu-

ate the performances of the proposed method against ran-

dom and cluster-based informed agents selection meth-

ods which have been utilized in previous work. Accord-

ing to the results of the simulations, the cluster-based and

community-based selection methods show superior results

over the random selection method. Interestingly, if the

number of informed agents are selected based on the best

community structure which maximizes the modularity, then

the community-based selection method outperforms the

cluster-based selection method. Therefore, modularity op-

timization can be useful in optimizing the number of in-

formed agents to drive majority of the agents to their com-

mon objective.
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