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Abstract 

A two-dimensional model is developed to study the performance of a planar solid oxide fuel cell 

(SOFC) running on steam/methane mixture.  The model considers the heat/mass transfer, 

electrochemical reactions, direct internal reforming of methane (CH4), and water gas shift 

reaction in an SOFC.  It is found that at an operating potential of 0.8V, the upstream and 

downstream of SOFC work in electrolysis and fuel cell modes, respectively.  At the open-circuit 

voltage, the electricity generated by the downstream part of SOFC is completely consumed by 

the upstream through electrolysis, which is contrary to our common understanding that 

electrochemical reactions cease under the open-circuit conditions.  In order to inhibit the 

electrolytic effect, the SOFC can be operated at a lower potential or use partially pre-reformed 

CH4 as the fuel.  Increasing the inlet gas velocity from 0.5m.s-1 to 5.0m.s-1 does not reduce the 

electrolytic effect but decreases the SOFC performance.   
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1. Introduction 

Solid oxide fuel cells (SOFCs) can directly convert the chemical energy of a fuel into 

electricity through electrochemical reaction in an efficient and environmentally friendly way.  An 

SOFC usually employs oxygen-ion conducting ceramics as electrolyte, like yttrium-stabilized-

zirconia (YSZ) [1-3].  As the electrolyte materials exhibit moderate oxygen ion conductivity at a 

high temperature, the operating temperature of SOFC is usually high (i.e. 873K-1273K).  The 

high working temperature makes SOFC very suitable for combined heat and power co-

generation, as the waste heat from SOFC is of high quality and can be recovered by integrating 

the SOFC stack with absorption heat pumps or other thermodynamic cycles to achieve a higher 

overall efficiency [4-6].  Thermodynamic analyses have been reported that the overall efficiency 

of SOFC/gas turbine system can be higher than 70% [7-9].  In addition, carbon monoxide (CO), 

a poisonous gas for low temperature fuel cells (i.e. proton exchange membrane fuel cell: 

PEMFC) [10], does not poison the anode catalyst of SOFC.  Instead, CO can be used as a fuel in 

an SOFC.  Thus alternative fuels, like methane, methanol, and ethanol, can be used in SOFCs for 

power generation [11-21].  The fuel flexibility makes SOFCs more advantageous than hydrogen-

fueled fuel cells, as it’s still very difficult to produce and store hydrogen effectively and 

economically.  Due to their great prospect for clean power generation, SOFCs have received 

more and more attention and extensive research works have been conducted in recent years to 

improve the SOFC efficiency and its long term stability [22-27].   

Among a lot of alternative fuels, methane (CH4) is extensively studied for SOFC as it is 

the major component in natural gas (about 90%) and one of the major components in biogas 

[28].  As direct electrochemical oxidation of methane is still difficult in SOFC, methane is 

usually reformed either externally or internally.  External reforming requires additional fuel 
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processing units for methane steam reforming and water gas shift (WGS) reactions, thus 

increasing the system’s overall cost and complexity [29-35].  For comparison, direct internal 

reforming (DIR) eliminates the need of an external reformer as the high working temperature 

enables DIR reaction as well as WGS reaction for H2 production [36-52].  Thus the SOFC 

system can be simpler and compact.  In addition, part of the thermal energy requirement for DIR 

reaction can be provided by heat generation in SOFCs, thus a higher overall efficiency can be 

obtained.  However, the endothermic DIR reaction and exothermic WGS reaction complicate the 

SOFC temperature field and more importantly, both DIR and WGS reactions require steam in the 

anode, thus diluting the fuel concentration and reducing the SOFC performance.  In addition, 

carbon deposition may occur in a hydrocarbon-fueled SOFC with DIR and WGS, which in turn 

can deteriorate the SOFC performance considerably [53].  In order to solve the problem of 

carbon deposition and long term stability, extensive research works have been conducted both 

experimentally and theoretically.  In addition to development of new anode materials, one 

common way of tackling the carbon deposition problem is to supply sufficient amount of steam 

in the anode.  Based on thermodynamic analysis in the literature, the steam-carbon ratio of no 

less than 2.0 is usually recommended in order to avoid carbon formation [28,42].           

In this short communication, the performance of a planar SOFC running on H2O/ CH4 

mixture is investigated with a 2D numerical model.  It is found that running on H2O/CH4 mixture 

without any pre-reforming, the upstream of the SOFC works in electrolysis mode thus 

consuming electricity generated in the downstream, at an operating potential of 0.8V.  This 

electrolytic effect in SOFC is due to the non-uniform electrolyte Nernst potential and uniform 

operating potential along the SOFC channel.  This finding is contrary to our common 

understanding that electrochemical reactions should cease under the open-circuit voltage 
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conditions.  The results of the present study suggest that operating the SOFC at a lower potential, 

or use partially pre-reformed CH4 fuel are beneficial to eliminate the electrolytic effect to 

improve the electric output of CH4-fueled SOFC.   

 

2. Model Development 

In this study, H2O/ CH4 mixture with a molar ratio of 2.0 is used in the SOFC anode for 

power generation via direct internal reforming.  The computational domain and working 

mechanism in a planar SOFC is shown in Figure 1.  The computational domain includes the two 

interconnectors, the fuel gas channel, nickel, yttria-stabilized zirconia (Ni-YSZ) anode, YSZ 

electrolyte, and YSZ-LSM (lanthanum strontium manganite) cathode, as well as the air gas 

channel.  Typical dimensions of the gas channel and the cell component thickness are used in the 

modeling study and summarized in Table 1.     

During operation, H2O/ CH4 mixture and air are supplied to the anode and cathode 

channels, respectively.  In the anode, CH4 undergoes DIR to produce H2 and CO (Eq. 1).  

4 2 2CH H O CO 3H         (1) 

Due to a high steam to carbon ratio (2.0 in the present study), WGS reaction occurs in the 

porous anode as well (Eq. 2).  

2 2 2CO H O CO H         (2) 

The H2 fuel produced from DIR and WGS reaction is transported through the porous 

anode of the SOFC to the triple-phase-boundary (TPB) at the electrolyte-electrode interface, 

where H2 molecules react with oxygen ions (O2-) to produce H2O and electrons (Eq. 3).  The 

electrons produced are transported through external circuit to the cathode to produce useful 

power.  In the cathode, O2 molecules are transported through the porous cathode to the 
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electrolyte-cathode interface and react with electrons (coming from anode) to produce oxygen 

ions (Eq. 4), which are subsequently transported through dense electrolyte to the anode side.   

2
2 2H O H O 2e          (3) 

2
20.5O 2 Oe          (4) 

In addition to H2, both CO and CH4 may be electrochemically oxidized in the porous 

anode.  However, since the electrochemical oxidation rates of CO and CH4 are very small 

compared with DIR and WGS reactions, electrochemical oxidation of CO and CH4 can be safely 

neglected [54-56].  In addition, chemical reaction of CO2 with CH4 is assumed to be negligible in 

the present study.   

Based on the working mechanism, a 2D numerical model is developed to capture the 

coupled transport and chemical/electrochemical reactions in a planar SOFC.  The model consists 

of an electrochemical model, a chemical model and a computational fluid dynamics (CFD) 

model.  The details of the sub-models are described in the subsequent sections.   

 

2.1 Electrochemical Model 

The electrochemical model is used to calculate the current density (J) -voltage (V) 

relationship.  It is assumed that the operating potential is constant while the current density varies 

along the gas flow channel.  This is valid as interconnector with high electrical conductivity is 

placed along the gas channel to collect the current produced in an SOFC.  In operation, the J-V 

relationship can be described by,  

, ,act a act c ohmicV E                                                                      (5) 

 
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   (6) 
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where E is the equilibrium potential (Nernst potential), depending on operating temperature and 

gas composition; T is the local temperature (K); ηohmic is the ohmic overpotential of the 

electrolyte (YSZ); ηact,a and ηact,c are the activation overpotentials at the anode and cathode, 

respectively; R is the universal gas constant (8.3145 J.mol-1K-1); and F is the Faraday constant 

(96485 C.mol-1).  PI is the partial pressure at the electrode-electrolyte interface, which means that 

the concentration overpotentials are included in the Nernst potential (E).  The ohmic 

overpotential can be easily calculated by the Ohm’s law.  The activation overpotentials are 

usually calculated with the Butler-Volmer equations.  However, as the activation overpotential 

and current density usually follow a linear relationship according to experimental observations 

[57], the activation overpotentials are calculated as,  

act actJR                                                                         (7) 

where actR  is the resistivity ( 2.m ) of the electrode due to electrochemical reaction.  Based on 

the previous study on activation overpotential, the overall resisitivity of the anode and cathode of 

0.2 2.cm  is used in the present study.   

 

2.2. Chemical model 

The chemical model is developed to calculate the rates of DIR and WGS reaction and the 

resulted heat sink/generation.  In the literature, the rates of DIR and WGS reaction can be 

determined approximately as [58-61],  

  

    
4 2

2

2

3
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CO H
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 
             (8) 
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  
                                               (9) 



7 
 

where DIRR  and WGSR  are the rates (mol.m-3.s-1) of DIR and WGS reaction, respectively; and p is 

the partial pressure (Pa).   

The reaction heat for DIR and WGS reaction can be determined by the enthalpy change 

of the reactions [62].  Assuming linear dependence on temperature, the reaction heat (J.mol-1) for 

DIR and WGS reaction can be calculated as,  

 206205.5 19.5175DIRH T                                                         (10) 

45063 10.28WGSH T                                                                      (11) 

The negative and positive signs in Eqs. (10) and (11) indicate that the DIR and WGS reaction are 

endothermic and exothermic, respectively.   

 

2.3. Computational fluid dynamics model 

The fundamental transport phenomena in an SOFC include fluid flow, heat transfer and 

mass transfer.  In an SOFC, laminar flow conditions are usually applied due to a small Reynolds 

number.  The transport phenomena in SOFCs are governed by the conservation laws for mass, 

momentum, energy, and species, which are summarized below [63,64]: 

   
m

U V
S

x y

  
 

 
      (12) 

   
x

UU VU P U U
S

x y x x x y y

 
 

                        
  (13) 

   
y

UV VV P V V
S

x y y x x y y

 
 

                        
   (14) 
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                     
   (15) 
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   
, ,

i i i i
i m i m sp

UY VY Y Y
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x y x x y y

 
 

                   
   (16) 

where U and V are the velocity components in x and y directions; ρ and μ are the gas density and 

viscosity of the gas mixture respectively, which depends on local temperature and gas 

composition; k and cp are the thermal conductivity and heat capacity respectively; Yi denotes the 

mass fraction of species i, which can be calculated as, 

i
i i

M
Y X

M
   
 

  (17) 

1

N

i i
i

M X M


     (18) 

where Xi and Mi are the molar fraction and molecular weight of species i respectively. 

,i m

effD is the effective diffusion coefficient of species i in gas mixture (both anode and 

cathode) and can be evaluated by Eq. (19)-(21);  

, , ,

1 1 1
eff
i m i m i kD D D



 

   
 

  (19) 

,

1 i
i m

j

j i ij

X
D

X

D





   (20) 

,

2 8

3
p

i k
i

r RT
D

M
    (21) 

where /   is the ratio of tortuosity to porosity of porous electrodes; and rp is the radius of pores.  

Dij is the binary diffusion coefficient of species i and j, which can be determined as,  

1.5

2
, ,

0.0026
ij

i j i j D

T
D

p M 



   (22) 
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2

1 1ij

i j

M

M M




      (23) 

where σi,j is the mean characteristic length of species i and j; ΩD is a dimensionless diffusion 

collision integral, which can be calculated as,  

, 2
i j

i j

 



       (24) 

     89411.3

76474.1

52996.1exp

03587.1

47635.0exp

193.006036.1
1561.0

D   (25) 

,

b

i j

k T


        (26) 

where  23 11.38066 10 J.Kbk     is the Boltzmann’s constant.  The values of i  and ,i j  can be 

used in the present study are summarized in Table 2 [65].   

In the porous electrodes, effective heat conductivity and heat capacity are used [66],  

 1f sk k k     (27) 

 , ,1p p f p sc c c      (28) 

where kf and ks are the heat conductivity (W.m-1.K-1) of the fluid and solid, respectively; cp,f  and 

cp,s are the heat capacity (J.kg-1.K-1) of the fluid and solid, respectively.   

The source term S in continuity equation (Eq. 12) represents the mass change due to 

electrochemical reactions.  As electrochemical reactions are assumed to occur only at the 

electrode-electrolyte interface, the source term is non-zero at the electrode-electrolyte interface 

and zero in other regions.  At the anode-electrolyte interface, the source term for continuity 

equation can be written as [66],  
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2 2 2 2
H O H H O Hact
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S
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 
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            (29) 

where actA  is the active area for electrochemical reaction at the anode-electrolyte interface and 

cV  is the size of control volume.  y  is the width of the control volume in y direction at the 

anode-electrolyte interface.  At the cathode-electrolyte interface, this source term is calculated as,  

2

4
O

m

JM
S

F y
 


  (30) 

where the negative sign above means oxygen is electrochemically consumed.   

The Darcy’s law is used as source terms in momentum equations (Eqs. 13 and 14) so that 

the momentum equations are valid for both the gas channels and the porous electrodes [64];  

x
g

U
S

B


        (31) 

y
g

V
S

B


        (32) 

The source term (W.m-3) in energy equation (Eq. 11) includes: (1) heat generation due to 

electrochemical entropy change and irreversible overpotentials; (2) heat energy demand for DIR 

(Eq. 1); and heat generation due to WGS reaction (Eq. 2).  In the porous anode, both DIR and 

WGS contributes to the source term,  

T DIR DIR WGS WGSS R H R H    (33) 

In the dense electrolyte, the source term includes the irreversible loss through entropy change 

and activation losses via electrochemical reaction (at the electrode-electrolyte interface), as well 

as ohmic overpotential of the electrolyte.  These losses are assumed to evenly distributed in the 

electrolyte and thus the source term can be written as,  
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2
t

T

JJT S
S

FL L


     (34) 

where L is the thickness of electrolyte;  S  is the entropy change of the electrochemical reaction 

(J.K-1.mol-1) and can be calculated as, 

2 2 2
0.5H O O HS S S S                                                               (35)  

where 
2H OS , 

2OS  and 
2HS  are entropy of H2O, O2, and H2, respectively, which can be found in 

reference [62].  The negative S  indicates that heat is released from the electrochemical reaction.  

t  (V) is the total overpotential losses, which can be calculated as,  

t V E          (36) 

The source terms (Ssp) in species equations (Eq. 16) can be calculated in the way similar 

to the source term for continuity equation (Eq. 12).  However, in the anode, the DIR and WGS 

reaction should be included.   

 

3. Numerical Methodology 

The governing equations are solved with the finite volume method [67].  The boundary 

conditions and the detailed calculation procedures can be found in the previous publication [64].  

The electrochemical model and the chemical model are linked with the CFD model through the 

source terms in Eqs. (12)-(16).  In the iteration, the electrochemical model and the chemical 

model are solved to calculate the current density and chemical reaction rates, which are used to 

determine the source terms for the CFD model.  Subsequently, the CFD model is solved to 

update the temperature, gas composition, fluid velocity in SOFC, which are used to solve the 
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electrochemical model and the chemical model.  Computation is repeated until convergence is 

obtained.  The in-house CFD code is written in FORTRAN.   

 

4. Results and Discussion 

The electrochemical model, chemical model and the CFD model have been validated 

respectively in the previous publications, by comparing the modeling results with data from the 

literature [61, 64].  Numerical simulations have been carried out to ensure grid independence of 

the results.  The dimensions and typical structural/operating parameters used are summarized in 

Table 1.  As mentioned in the introduction, a carbon-steam ratio of 2.0 is used in the present 

study in order to avoid carbon deposition.  In terms of molar fraction, 0.667 and 0.333 are used 

for H2O and CH4 at the anode inlet.   

 

4.1. Electrolytic effect in SOFC running on H2O/ CH4 mixture 

One significant finding of the present study is that the current density of SOFC running 

on H2O/CH4 mixture increases sharply from a negative value near the SOFC inlet to be on the 

order of 1000 A.m-2 in the downstream of SOFC, at an operating potential of 0.8V (Fig. 2a).  The 

negative current density near the inlet indicates that the upstream of the SOFC works in the 

electrolysis mode.  The positive current density in the downstream of SOFC indicates that the 

downstream of SOFC works in fuel cell mode and provides the electrical energy needed for H2O 

electrolysis near the inlet, as the electrical conductivity of the current collector (interconnector) 

placed on the entire SOFC channel is very high.  As can be seen from Fig. 2b, the electrolyte 

Nernst potential increases from below 0.8V near the inlet to be slightly higher than 0.9 at the 

outlet of the SOFC.  The low Nernst potential is mainly because the partial pressure ratio of H2 
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to H2O is low near the inlet (Eq. 6).  The non-uniform local Nernst potential and the uniform 

operating potential cause the electrolytic effect found in the present study, since the operating 

potential (0.8V) is higher than the local Nernst potential in the upstream but lower than the local 

Nernst potential in the downstream of SOFC running on H2O/CH4 mixture.  This finding for 

SOFC has not been reported before because almost all modeling studies on CH4 fueled SOFC 

assumes that part of CH4 is externally reformed (typically about 30% pre-reformed) before 

feeding to the anode of SOFC (i.e. [37]-[41]).  The present study also indicates that at open-

circuit voltage condition, the electricity produced in the downstream of SOFC is exactly used up 

through electrolysis in the upstream of SOFC.  It is contrary to conventional understanding that 

electrochemical reactions should cease at open-circuit voltage.  However, this finding is similar 

to the experimental observations in Prof. Zhao’s work on direct methanol fuel cells (DMFCs) 

[68-71].  In their works, electrolytic hydrogen evolution was observed in a DMFC at open-circuit 

voltage [68-71].  The reason is that part of the DMFC works in fuel cell mode, producing 

electricity, while part of DMFC works in electrolytic mode, consuming electricity and producing 

H2 gas, which experimentally supports the finding of the present study.   

In order to better understand the electrolytic effect and the working mechanisms, the 

distributions of DIR and WGS reaction as well as gas composition in the SOFC are studied.  In 

the porous anode, the rate of DIR decreases considerably from about 388mol.m-3.s-1 near the 

inlet to be less than 100mol.m-3.s-1 in about 7mm downstream from the inlet (Fig. 3a).  In the 

further downstream, the rate of DIR does not vary much along the channel.  For comparison, a 

locally high rate (over 80mol.m-3.s-1) of WGS reaction is observed in the porous anode, and in 

most of the anode the rate of WGS reaction is about 30-50 mol.m-3.s-1 (Fig. 3b).  The calculated 

reaction rates are on the same order but a little higher than the data by Lehnert et al. [58].  The 
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higher reaction rate for DIR and WGS may be caused by a higher temperature and a higher H2O 

molar fraction used in the present study.   

Due to the electrolytic effect near the inlet, the DIR and WGS reaction, H2 molar fraction 

increases considerably from 0.0 at the inlet to be higher than 0.23, despite of electrochemical 

reduction of H2 in most part of the SOFC (Fig. 4a).  The molar fraction of CH4 decreases along 

the SOFC channel due to DIR, as shown in Fig. 4b.  The decrease in SOFC temperature along 

the channel indicates that the heat sink due to endothermic internal reforming of CH4 is higher 

than heat generation due to irreversible losses and the WGS reaction (Fig. 5).  The temperature 

difference between the inlet and outlet is more than 73K in the present simulation.   The 

temperature distribution in the present study is different from an SOFC running on partially 

reformed CH4 gas mixture, i.e. work done by Aguiar et al. [39].  In an SOFC fueled with a gas 

mixture of CH4, H2O, H2, CO, CO2 (partially pre-reformed), the temperature decreases near the 

inlet, reaches the minimum, and increases in the downstream [39].  This means that if CH4 is 

partially (i.e. 30%) pre-reformed, the heat generation due to WGS reaction and electrochemical 

reaction can exceed the heat demand for DIR in the downstream of SOFC.    

 

4.2. Effect of operating potential 

Since the electrolytic effect in an SOFC running on H2O/CH4 mixture is caused by the 

higher operating potential than the local Nernst potential, this effect may be eliminated by 

operating the SOFC at a lower potential.  As shown in Fig. 6a and 6b, the local current density 

increases from a positive value along the SOFC channel, indicating that the electrolytic effect is 

removed since the operating potential (0.4V) is lower than the local Nernst potential.  As the 

current density of SOFC at an operating potential of 0.4V (Fig. 2a) is significantly higher than at 
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0.8V (Fig. 6a), heat generation from electrochemical reactions increases, which results in a 

higher temperature in the downstream of SOFC at an operating potential of 0.4V.  As can be seen 

from Fig. 7, the temperature at the outlet of SOFC is increased from 1100K at 0.8V to 1133K at 

0.4V.  As a result, the rates of DIR and WGS reaction in the downstream of the SOFC are 

slightly increased when the operating potential is decreased from 0.8V to 0.4V (Fig. 8a, 8b) 

  

4.3. Effect of inlet gas velocity 

As another important operating parameter, the inlet gas velocity is varied to examine its 

effect on SOFC performance.  It is found that an increase in inlet gas velocity from 0.5m.s-1 to 

5.0m.s-1 has negligible effect on the current density and Nernst potential near the inlet but 

significantly decrease both the current density and Nernst potential in the downstream of the 

SOFC (Fig. 9a, 9b).  This phenomenon is attributed to the fact that the gas composition has 

smaller variation at a higher inlet gas velocity than at a smaller inlet gas velocity, as more gas is 

supplied to the SOFC.   As can be seen from Fig. 10a, the H2 molar fraction increases 

considerably from 0.0 (inlet of SOFC) to about 0.3 (outlet of SOFC) at an inlet gas velocity of 

0.5m.s-1.  For comparison, the H2 molar fraction only increases to about 0.1 at the outlet of SOFC 

at an inlet gas velocity of 5.0m.s-1 (Fig. 10b).  Similarly, the H2O molar fraction in the 

downstream of SOFC is found higher at an inlet gas velocity of 5.0m.s-1 than at an inlet velocity 

of 0.5m.s-1 (Fig. 11).  The higher ratio of H2/H2O (molar fraction) at a higher velocity leads to a 

higher electrolyte Nernst potential as well as a higher current density, as shown in Fig. 9.  In 

addition, the smaller variation in gas composition at a higher inlet gas velocity results in higher 

DIR (Fig. 12) and WGS reaction (Fig. 13) in the downstream than at a smaller inlet gas velocity, 

since more reactants are supplied at a higher velocity.  For example, at an inlet gas velocity of 
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5.0m.s-1, the rates of DIR and WGS reaction near the outlet of SOFC are about 100mol.m-3.s-1 

and 40mol.m-3.s-1, respectively (Figs. 12b, 13b).  At a smaller inlet gas velocity (0.5m.s-1), these 

two reaction rates near the SOFC outlet are about 50mol.m-3.s-1 and 20mol.m-3.s-1, respectively 

(Figs. 12a, 13a).   

 

5. Conclusion 

A numerical model is developed to study the performance of SOFC running on H2O/CH4 

mixture considering DIR and WGS reaction in the porous anode.  It is found that at an operating 

potential of 0.8V, or at the open-circuit voltage, the upstream of SOFC works in electrolysis 

mode while the downstream of SOFC works in fuel cell mode.  The electrolytic effect in SOFC 

is caused by the non-uniform local Nernst potential and uniform operating potential along the 

SOFC channels.  At the open-circuit voltage, both H2O electrolysis and fuel cell reactions take 

place in the SOFC running on H2O/CH4 mixture and the electricity generated from the fuel cell 

part is exactly used up by the electrolysis part.  This finding is contrary to conventional 

understanding that electrochemical reactions should cease at open-circuit voltages.   

The electrolytic effect in the SOFC can be eliminated by operating the SOFC at a 

sufficiently low potential – lower than the local Nernst potential.  At a lower operating potential, 

the current density is considerably increased, which in turn results in higher heat generation 

through electrochemical reaction and thus a higher temperature in the downstream of SOFC.  An 

increase in inlet gas velocity from 0.5m.s-1 to 5.0m.s-1 does not contribute to the reduction of 

electrolytic effect.  Instead, the electrical output of SOFC is reduced at a higher inlet gas velocity, 

as both the average current density and Nernst potential are decreased.   
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This study provides better understanding of the CH4-fueled SOFC with internal 

reforming and indicates that partial pre-reforming of CH4 is beneficial for SOFC considering the 

electrolytic effect.   
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Nomenclature 

cp Heat capactity (J.kg-1.K-1) 

ad  Thickness of anode ( m ) 

cd  Thickness of cathode ( m ) 

,
eff
i mD  Effective diffusion coefficient of species i in gas mixture (cm2.s-1) 

,i kD  Knudsen diffusion coefficient of i (cm2.s-1) 

,i jD  Binary diffusion coefficient of i and j(cm2.s-1) 

E Equilibrium potential (V) 

E0 Reversible potential at standard condition (V) 

F Faraday constant (9.6485x104 C.mol-1) 

DIRH  Heat demand for direct internal reforming of methane (J.mol-1) 

WGSH  Heat generation from water gas shift reaction (J.mol-1) 

J Current density (A.m-2) 

k Thermal conductivity (W.m-1.K-1) 

Mi Molecular weight of species i (kg.mol-1) 

P Operating pressure (bar) 

I
iP  Partial pressure (bar) of species i at electrode-electrolyte interface 

actR  Resistivity due to electrochemical reaction ( 2.m ) 

DIRR  Reaction rate of direct internal reforming of methane (mol.m-3.s-1) 

WGSR  Rate of water gas shift reaction (mol.m-3.s-1) 

pr  Mean pore radius of electrode ( m ) 
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R Universal gas constant (8.3145 J.mol-1.K-1) 

Si Entropy of species i (i represents H2O, H2, and O2) 

Sm Source term in continuity equation (kg.m-3.s-1) 

Sx, Sy Source terms in momentum equations (kg.m-2.s-2) 

ST Source terms in energy equations (W.m-3) 

Ssp Source terms in species equations (kg.m-3.s-1) 

T  Operating temperature (K) 

U Velocity in x direction (m.s-1) 

Uin Gas velocity at the SOFC inlet (m.s-1) 

V SOFC operating potential (V); Velocity in y direction (m.s-1) 

X Molar fraction of species i 

Y Mass fraction of species i 

  Electrode porosity 

  Electrode tortuosity 

,i j  Mean characteristic length of species i and j  

D  Dimensionless diffusion collision integral 

  Density of the gas mixture (kg.m-3) 

  Viscosity of gas mixture (kg.m-1.s-1) 

,act a  Activation overpotential at anode (V) 

,act c
 

Activation overpotential at cathode (V) 

ohmic
  

Ohmic overpotential of the electrolyte (V)  
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Table 1. Parameters used in simulation  

Parameter  Value  

Operating temperature, T (K) 1173 

Operating pressure, P (bar) 1.0 

Electrode porosity, ε 0.4 

Electrode tortuosity, ξ 3.0 

Average pore radius, rp (μm)  0.5 

Anode-supported electrolyte: 

Anode thickness da (μm) 

Electrolyte thickness, L (μm) 

Cathode thickness, dc (μm) 

 

500 

100  

100 

Height of gas flow channel (mm) 1.0 

Length of the planar SOFC (mm) 20 

Thickness of interconnect (mm) 0.5 

Inlet velocity: Uin (m.s-1) 1.0 

Cathode inlet gas molar ratio: O2/N2  0.21/0.79 

Anode inlet gas molar ratio: H2O/CH4 0.667/0.333 

SOFC operating potential (V) 0.8 

Thermal conductivity of SOFC component (W.m-1.K-1) 

Anode 

Electrolyte 

Cathode 

Interconnect 

 

11.0 

2.7 

6.0 

1.1 
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Table 2. Parameters used in calculating the effective diffusion coefficients [65]  

 CO CO2 H2 O2 CH4 N2 H2O 

i  3.69 3.941 2.827 3.467 3.758 3.798 2.641 

/i k  91.7 195.2 59.7 106.7 148.6 71.4 809.1 
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Fig. 4. 
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Fig. 9.  
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