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Neuronal avalanche is a spontaneous neuronal activity which obeys a power-law distribution of

population event sizes with an exponent of –3/2. It has been observed in the superficial layers of

cortex both in vivo and in vitro. In this paper, we analyze the information transmission of a novel

self-organized neural network with active-neuron-dominant structure. Neuronal avalanches can be

observed in this network with appropriate input intensity. We find that the process of network

learning via spike-timing dependent plasticity dramatically increases the complexity of network

structure, which is finally self-organized to be active-neuron-dominant connectivity. Both the entropy

of activity patterns and the complexity of their resulting post-synaptic inputs are maximized when

the network dynamics are propagated as neuronal avalanches. This emergent topology is beneficial

for information transmission with high efficiency and also could be responsible for the large

information capacity of this network compared with alternative archetypal networks with different

neural connectivity. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3701946]

Recent neurophysiological experiments report that scale-

invariant dynamics known as neuronal avalanches can be

broadly observed in spontaneous cortical activities. These

dynamics exhibit a mixture of ordered and disordered pat-

terns and are believed to be highly efficient for informa-

tion processing in the neocortex. In this paper, we

investigate neuronal avalanches in a novel active-neuron-

dominant neural network which is self-organized by

spike-timing-dependent plasticity—a model of neural de-

velopment which is also strongly supported by direct phys-

iological evidence. The refinement process of network

learning selectively strengthens or weakens synaptic con-

nections based on the intrinsic excitability of individual

neurons. We find that neuronal avalanches can be

observed in this network with medium external excitation.

Moreover, activity entropy measured from population dy-

namics is maximized when neuronal avalanches exist.

Meanwhile, the active-neuron-dominant network connec-

tivity dramatically enhances the activity entropy of neuro-

nal population and displays large complexity of network

structure compared with alternative archetypal networks

with different neural connectivity. This result may have

important implications on understanding the potential

functions of network learning for improving the efficiency

of information processing.

I. INTRODUCTION

It has been widely believed that brain dynamics are col-

lective processes involving synaptic integrations from thou-

sands of neurons in cortical networks. There is evidence

showing that healthy spontaneous brain dynamics originating

from collective processes are not composed of either com-

pletely random activity patterns or periodic oscillations.1,2

Recent studies by Beggs and Plenz reported a type of sponta-

neous activity with critical dynamics, where spatiotemporal

patterns are distributed in sizes according to a power law

with a slope of �1.5.3–5 These experimental results exactly

agree with the mean-field theoretical analysis for self-

organized criticality (SOC), which is a critical branching

process observed in many systems.6,7 This critical dynamic

represents spatially irregular patterns of propagated medium

synchronization in neural circuits. It has been found in super-

ficial layers of cortex both in vivo and in vitro.3,5,8–11 Neuro-

nal avalanches play a substantial role in cortical circuits,

especially for information transmission. It has been shown

that there is a close relationship between SOC and synchro-

nization in neural networks.12 Information capacity and

transmission, as well as dynamic range, are maximized in

cortical networks with neuronal avalanches.13,14

Computational models with respect to neuronal ava-

lanches have been investigated in recent years. The small-

world topology was identified from network reconstruction

of experimental data with neuronal avalanches.15 A neuronal

network model with scale-free topology was developed to

investigate the generation of avalanches distribution.10

Besides these networks with predefined structures, self-

organized neural networks with synaptic plasticity can also

achieve critical neuronal dynamics.16–23 However, few stud-

ies consider the relationship or the interaction between the

development of network structure and the dynamics of neu-

ronal population. In our recent papers,24,25 we proposed a

novel neural network refined from spike-timing-dependenta)Electronic mail: freexmin@gmail.com.
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plasticity (STDP). Due to the existence of heterogeneity in

the excitability degrees of neurons, the network finally

evolves into a sparse and active-neuron-dominant structure.

That is, strong connections are mainly distributed to the out-

ward links of a few highly active neurons. Such synapse dis-

tribution renders these active cells a powerful drive to trigger

the other neurons firing synchronously, thus spreading the

excitation of the whole network activity. The refinement of

synaptic connectivity encodes well the heterogeneity of

intrinsic dynamic and significantly promotes network syn-

chronization.24 A recent experimental study26 found that a

small population of highly active neurons may dominate the

firing in neocortical networks, suggesting the existence of

active-neuron-dominant connectivity in the neocortex.

In this paper, neuronal avalanches have been observed in

a self-organized neural network with active-neuron-dominant

structure by changing the applied external excitation. This

finding is consistent with the experimental results that cortex

operates in critical regime with appropriate local excitability.8

Both the entropy of activity patterns and the complexity of

their resulting post-synaptic inputs are maximized when the

network dynamics are propagated as neuronal avalanches. We

find that the process of activity-dependent synaptic plasticity

dramatically increases the complexity of network structure,

which is self-organized as active-neuron-dominant connectiv-

ity after the learning process. This emergent network has high

complexity of network topology which benefits for enhancing

information transmission of neural circuits.

II. SELF-ORGANIZED NEURAL NETWORK WITH
SYNAPTIC PLASTICITY

Here, the self-organization of the neuronal network

through the STDP learning is briefly introduced. The net-

work used in this paper is composed of 100 synaptically con-

nected regular spiking neurons which are modeled by the

two-variable integrate-and-fire (IF) model of Izhikevich.27 It

is described by

_vi ¼ 0:04v2
i þ 5vi þ 140� ui þ I þ Isyn

i

_ui ¼ aðbvi � uiÞ þ Dni;
(1)

if vi > 30 mV; then

(
vi  c

ui  ui þ d;
(2)

where i¼ 1, 2,…, N, vi represents the membrane potential,

and ui is a membrane recovery variable. The parameters a, b,

FIG. 1. Self-organized neural network with active-neuron-dominant structure. (a) Left: Strong outward synaptic connections of active neurons with high excit-

ability. Right: Strong inward synaptic connections of less-active neurons with low excitability. Arrows represent the directions of synaptic connectivity. (b)

Image of the normalized matrix of synaptic weights. Both x axis and y axis represent the index of neurons which is sorted with increasing value of the parame-

ter b (i.e., increasing excitability degree). (c) Node strength which is the summation of all inward or outward synaptic weights for each node is proportional to

the node degree. (d) Probability distribution of synaptic weights is almost power law except for some extremely large synaptic weights.
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c, d are dimensionless. The variable ni is the independent

Gaussian noise with zero mean and intensity D that repre-

sents the noisy background. I stands for the externally

applied current, and Isyn
i is the total synaptic current through

neuron i and is governed by the dynamics of the synaptic

variable sj

Isyn
i ¼ �

XN

1ðj 6¼iÞ
gjisjðvi � vsynÞ

_sj ¼ aðvjÞð1� sjÞ � sj=s

aðvjÞ ¼ a0=ð1þ e�vj=vshpÞ;

(3)

FIG. 2. Raster of neuronal activities (left panel) and corresponding avalanche size distributions (right panel) for subcritical (top), critical (middle), and super-

critical (bottom) dynamical state with different bin width Dt. The slope a for three cases when Dt ¼ 4 ms is calculated as the slope of linear function fitted

from the nearly linear part of the distribution (with avalanche size ranged from about 2 to 10 for I¼ 4, 4 to 20 for I¼ 5.5 and 3 to 30 for I¼ 6).

023104-3 X. Li and M. Small Chaos 22, 023104 (2012)
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here the synaptic recovery function aðvjÞ can be taken as the

Heaviside function. When the presynaptic cell is in the silent

state, vj < 0; sj can be reduced to _sj ¼ �sj=s, otherwise sj

jumps quickly to 1 and acts on the postsynaptic cells. The

synaptic conductance gji from the jth neuron to the ith neuron

will be updated through the STDP learning rule. Here, the

excitatory synaptic reversal potential vsyn is set to be 0. The

degree of neuron’s excitability is governed by the parameter

b. Neurons with larger b are prone to exhibit larger excitabil-

ity and fire with a higher frequency than others. In order to

establish a heterogenous network, bi is uniformly distributed

in [0.12, 0.2].

In our simulation, synapses between neighboring neu-

rons are updated by the STDP modification function F,

which selectively strengthens the pre-to-post synapses with

relatively shorter latencies or stronger mutual correlations,

while weakening the remaining synapses.28 The synaptic

conductance is updated by

Dgij ¼ gijFðDtÞ

FðDtÞ ¼
(

Aþexp ð�Dt=sþÞ if Dt > 0

�A�exp ðDt=s�Þ if Dt < 0
;

(4)

where Dt ¼ tj � ti; ti and tj are the spike time of the presyn-

aptic and postsynaptic cell, respectively. FðDtÞ ¼ 0 if Dt ¼ 0.

sþ and s� determine the temporal window for synaptic modi-

fication. The parameters Aþ and A� determine the maximum

amount of synaptic modification. Here, we set s� ¼ sþ ¼ 20,

Aþ ¼ 0:05, and A�=Aþ ¼ 1:05 as used in Ref. 28. The peak

synaptic conductance is restricted to the range ½0; gmax�, where

gmax ¼ 0:03 is the limiting value. Other parameters used in

this paper are a ¼ 0:02; c ¼ �65; d ¼ 8; a0 ¼ 3; s ¼ 2;
Vshp ¼ 5;D ¼ 0:1. The time step is 0.05 ms.

In the initial state, each neuron is all-to-all bidirectionally

connected with the same conductance of gmax=2. The whole

network is subject to an external current (I¼ 6) as a learning

environment. After sufficient time (about 20 s), the connec-

tions evolve into a steady state and exhibit the locally active-

neuron-dominant property as we have described in our previ-

ous work.24 Most of the synapses are rewired to be either 0 or

gmax. Competition within this heterogenous network causes

the active cells to have high out-degree synapses and low in-

degree synapses, while the inactive ones are just the opposite

(Figs. 1(a) and 1(b)). During the STDP learning process, the

synaptic strengths of the network are renewed by increasing

the influence of active cells over the others and the

FIG. 3. Neuronal avalanches of the STDP network. (a) Size distributions for avalanche sizes ranging from the subcritical state to supercritical state of the net-

work activity by increasing the stimulus current (I). Avalanche size (S) is the number of neurons which are activated during each avalanche. Time bin width Dt
is 4 ms. (b) Raster of neuronal activity with different spatiotemporal scales. (c) Avalanche lifetime distribution computed as the number of time bins in each av-

alanche. Fitting slope of the distribution for I¼ 5.5 is about �2.2.
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dependence of inactive cells on the active cells. Note that

there is a nearly linear relationship between the node degree

and node strength (Fig. 1(c)), indicating the connections from

active neurons to less-active neurons have both high degree

and strong weight. The probability distribution of synaptic

weights is almost power law except for some extremely large

synaptic weights, suggesting the presence of hub-nodes with

high capability of synaptic transmission (Fig. 1(d)). In this

way, the internal dynamics of different neurons is encoded

into the topology of the emergent network and, therefore, the

communication between active neurons and inactive neurons

is improved.24 In the following simulations (except for Fig.

8), the STDP network has no update process but has a fixed

structure which was finally obtained until the network reaches

stationary state in the STDP learning (shown in Fig. 1).

III. NEURONAL AVALANCHES OF THE
SELF-ORGANIZED NEURAL NETWORK

The left panel of Fig. 2 shows the network activity with

different levels of external excitation. The average firing fre-

quency and synchronization of network activity are improved

by increasing the external current, which can be achieved by

increasing the concentration of dopamine or the ratio of exci-

tatory to inhibitory synaptic inputs in the cortex.8 Due to the

existence of synaptic connectivity, the spatiotemporal patterns

of these synchronized network activities are propagated

through cascades that initiated from several excited neurons.

A sequence of consecutive active frames that is preceded by a

blank frame and ended by a blank frame is called an ava-

lanche, where frame is the spatial pattern of active neurons

during one time bin Dt.3 Avalanche size (S) is the number of

activated neurons during each avalanche. Probability distribu-

tions of avalanche sizes for corresponding network activities

are shown in the right panel of Fig. 2. The curves take on the

form of a power law: PðSÞ / Sa when synchronized patterns

are produced in the network activity (for cases I¼ 5.5 and

I¼ 6 shown in Fig. 2). Neuronal avalanche occurs when the

network activity reaches medium synchronization with the

slope a ¼ �1:5. Note that this scale-free property for the crit-

ical state of network synchrony is very robust for the change

of time bin width Dt. In the following calculations, Dt is set to

FIG. 4. (a) Examples of activity binary patterns for subcritical, critical, and supercritical states when the 100 neurons are arranged as a 10� 10 array. Active

sites are marked as black squares. (b) The entropy of activity patterns is maximized when the stimulus current is about 5.5, which is robust for the changes of

unit size. Here time bin is set to be 4 ms. (c) Entropy of activity patterns is maximized when a is –1.5 (i.e., critical state). Here unit size is 10.

023104-5 X. Li and M. Small Chaos 22, 023104 (2012)
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be 4 ms as in the studies.3,4,15 Fig. 3(a) demonstrates that the

propagation of dynamic patterns of this self-organized neural

network can be transferred from the subcritical state to critical

and finally to the supercritical state by increasing the stimulus

excitatory current (I). In the critical regime, large diversity of

avalanche patterns can be found at many different scales (see

Fig. 3(b)). Moreover, the duration of an avalanche which is

usually called avalanche lifetime and is expressed in number

of time bins also follows a power law distribution when

I¼ 5.5 (Fig. 3(c)). The exponent is about �2.2, very close to

the value of �2 for lifetime distribution reported in Ref. 3.

For the subcritical case, the exponential distribution indicates

that only very few neurons are activated during the excitation

propagation, whereas in the supercritical state, most of the

network is activated synchronously, causing a long tail at the

end of the distribution. These observations are consistent

with the results obtained both experimentally and com-

putationally.3,10,15 This critical state of information

processing makes the network achieve medium synchroniza-

tion neither to be incoherent spiking nor highly coherent ac-

tivity, which indicates its high flexibility and sensitivity to

external signals.

FIG. 5. Complexity of synaptic conductance generated from the integration of network activity reaches maximum during the critical state. (a) Rasters of net-

work activity and corresponding post-synaptic conductance for different states. (b) Symbolization strategy of the synaptic conductance signal. (c) Lempel-Ziv

complexity of the symbolized synaptic data is maximal at the critical state (I¼ 5.5).

023104-6 X. Li and M. Small Chaos 22, 023104 (2012)
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IV. ENTROPY OF NETWORK ACTIVITY
AND STRUCTURE

Examples of population events represented as binary pat-

terns are shown in Fig. 4(a), which indicate that temporally

sub-synchronous neuronal activity occurring during the criti-

cal state can induce complex distributions of spacial patterns.

In order to measure the complexity of activity patterns, en-

tropy H is introduced and defined as H ¼ �
Xn

i¼1
pilog 2pi,

where n is the number of unique binary patterns and pi is the

probability that pattern i occurs.14 For calculation conven-

ience, neuronal activities are measured in pattern units con-

sisting of a certain number of neurons. In each time bin, if any

cell of the unit is firing then the event of this unit is active,

otherwise it is inactive. Fig. 4(b) shows that the activity en-

tropy of neuronal population is obviously maximized when

the external current I is about 5.5 where neuronal avalanches

occur (a ¼ �1:5 for Fig. 4(c)). This result is robust for the

changes of unit size and highly consistent with the analysis of

cortical in-vitro recordings studied in Ref. 14. To investigate

how the complex population events of this neural network

influence downstream neurons, we calculate the summation of

all post-synaptic conductance integrated from each pre-

synaptic neuron in the network (Fig. 5(a)). Each single syn-

apse is the standard kinetic model as described in Ref. 29 with

a peak conductance of 0.1 nS and rise and decay time constant

of 0.5 ms and 2 ms, respectively. Then time series of synaptic

conductances are symbolized as numbers between 0 and 5 by

equally sorting the peak values of synaptic signals into six

levels (Fig. 5(b)). Based on the symbolized data, we calculate

the Lempel-Ziv complexity for cases with various external

current (shown in Fig. 5(c)). Lempel-Ziv complexity gives a

measure of complexity based on an estimated number of dis-

tinct patterns in symbolic sequences especially binary sig-

nals.30 The peaked Lempel-Ziv complexity at about I¼ 5.5

where critical dynamics exist further illustrates that informa-

tion can be maximally transmitted in neural networks in the

form of neuronal avalanches. The sub and supercritical events

of neuronal population produce either weak or regular post-

synaptic signal with less encoded information that can be

propagated to downstream neurons.

To examine the influence of self-organized network con-

nectivity updated by synaptic plasticity (STDP) on the net-

work population events, we compare the critical dynamics of

neuronal activities for four different networks (Figs.

6(a)–6(d)). STDP network is the network updated by the

STDP learning rule as described previously in this paper;

prior STDP network is globally coupled with constant synap-

ses gmax=2, where gmax is the maximal value of synaptic con-

ductance used in the STDP network; random network has

synapses uniformly distributed in ½0; gmax�; the shuffled

FIG. 6. Entropy of network activity and structure for networks with different topologies. (a) Rasters of network activity for different networks (where I¼ 5.5):

(a) STDP network; (b) network before STDP update; (c) network with shuffled synaptic weights of the STDP network; (d) network with randomly distributed

synaptic weights. All of these networks share the same individual neurons. (e) The STDP network exhibits much larger activity entropy than the other net-

works. The unit size is 10. (f) Avalanche size distributions of neuronal activities for different networks when I¼ 5.5, where Dt ¼ 4 ms. (g) Structure entropy of

both inward and outward synaptic weights are greatly increased through the STDP update.

023104-7 X. Li and M. Small Chaos 22, 023104 (2012)
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network shares the same synaptic weights with the STDP

network but all of these values are shuffled across the

whole network. All these four types of network are com-

posed of the same heterogeneous cells and share the same

average synaptic weight being about gmax=2. Fig. 6(e) shows

that all of these networks reach the maximal activity entropy

as neuronal avalanches occur when external current is about

5.5. However, the activity entropy of the STDP network is

much larger than that of the other networks, indicating the

high information capacity of the STDP-refined neural net-

work. Moreover, avalanche size distributions of the other

networks are not power-law, which means that STDP learn-

ing could be essential for the emergence of criticality in neu-

ral networks (Fig. 6(f)). Meanwhile, structure entropy is used

to characterize the complexity of synaptic connectivity dis-

tribution, where the entropy has the same definition as the

activity entropy but with pk as the probability that the aver-

age value of inward or outward synaptic strength gi (normal-

ized) lies within bin k (k 2 ½0; 1� with a step of 0.005). It can

be clearly seen from Fig. 6(g) that structure entropy for both

in-strength and out-strength of the STDP network is dramati-

cally enhanced during the synaptic refinement process. The

reason for that is that the distinct differences of both inward

and outward links between active neurons and inactive neu-

rons in the STDP network make the mean inward or outward

synaptic strengths still broadly distributed within the range

of [0, 1] even after averaging, whereas for the other net-

works, the mean inward or outward synaptic strengths are

averaged to be around 0.5 with little diversity. Hence, the

synaptic weights of STDP network have higher entropy than

the random or shuffled networks. The active-neuron-domi-

nant structure with high complexity actually encodes the

intrinsic heterogeneity of individual neuronal dynamics. This

complex network structure in turn contributes to the high ac-

tivity entropy of neuronal population as shown in Fig. 6(e).

Figs. 7(a)–7(c) demonstrate that when external stimulation is

strong enough to make the network reach the critical state,

the active-neuron-dominant structure entails excitation to be

FIG. 7. Structure properties of the STDP network. (a)–(c) Relationship between the individual neuron’s excitability (represented by the parameter b) and its

probability of being first excited (blue) or last excited (red) for different states.

FIG. 8. Raster of neuronal activity during STDP learning process. Network dynamics indicate that the dynamic of neuronal activity has been changed from

the subcritical state to the critical state and finally to the supercritical state during the update of network structure. Here, the driving current is I¼ 6.

023104-8 X. Li and M. Small Chaos 22, 023104 (2012)
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first expressed on the most active neurons and then trans-

ferred to neighboring cells through the strong outward synap-

tic connections. Moreover, during the STDP synaptic

updating process, the dynamic of neuronal activity has been

changed from the subcritical state to the critical state and

finally to the supercritical state (Fig. 8). This indicates a nat-

ural phenomenon emerging from synaptic organisation of

neural networks.

V. CONCLUSION

In this paper, information transmission of a self-

organized neural network with active-neuron-dominant

structure is investigated. Neuronal avalanches where activity

propagation obeys a power-law distribution of population

event sizes with an exponent of �3/2 can be observed in this

network. During this critical dynamic state, excitation of the

network activity originating from the most active neurons

can be spread efficiently and exhibits the largest activity en-

tropy, thus providing the most complex post-synaptic inputs

to downstream neurons. Specifically, the active-neuron-dom-

inant structure emerging from synaptic plasticity dramati-

cally increases both the activity and the structure entropy

compared with alternative archetypal networks with different

neural connectivity. This self-refinement of network struc-

ture is beneficial for improving information capacity of the

neural network.

A recent study has reported that information retention in

neuronal avalanches can be optimized by appropriately

skewing synaptic weight distribution, with many weak

weights and only a few strong ones.31 This kind of network

model correctly matches the activity patterns observed in ex-

perimental data. Similarly, in our model, the STDP learning

process selectively strengthens the outward connections of

active neurons with high excitability and meanwhile weak-

ens or removes their redundant inward connections. The

resulted distribution of refined synaptic weights is highly

consistent with the above mentioned observations in Ref. 31

and further demonstrates its effect on improving information

capacity of neural circuits. Besides the measure of entropy,

another efficient measure of the complex dynamics accom-

panied adaptive behavior called Causal Connectivity Analy-

sis was proposed and used to predict the functional

consequences of neural network lesions.32 They suggested

that lesions to input neurons with strong causal projections

to outputs have a profound impact on network function.

Moreover, learning and memory has been observed during

the critical state in a computational study.33 Neuronal activ-

ity as a collective process requires flexible and efficient

branched paths of signal propagation, which could be

achieved by self-organization of neural network. The effect

of synaptic adaptation involving both facilitation and depres-

sion in short-term plasticity on the occurrence of neuronal

avalanches could be investigated in our future work.
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