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Abstract 

Successful speech perception requires accurate mapping of speech signals to linguistic 

categories despite talker variation in signals. Although factors like intrinsic and context cues 

have been identified, a full understanding of talker normalization remains to be achieved. In 

particular, it is important to examine the co-contribution of intrinsic, extrinsic and other cues 

in an integrative way. In Experiment 1, we examined the effect of intrinsic cues and typicality 

of a talker’s F0 range relative to population F0 range on word identification in isolation. In 

Experiment 2, we compared the effects of four contexts to identify those that consistently 

facilitate talker normalization. We found that without contexts, word identification accuracy 

was low and variable depending on talker typicality. Contexts improved performance across 

all talkers regardless of typicality. But only meaningless and meaningful speech contexts with 

cues to a talker’s acoustic-phonological space showed consistent effects. We proposed a new 

model, integrating talker typicality, talker familiarity and context. Whereas speech signals 

from familiar or typical talkers may be accurately identified standing alone, a context with 

cues to a talker’s acoustic-phonological space is necessary in the case of unfamiliar and 

atypical talkers. It is thus the first model that integrates memory and context effects. 

Keywords: Talker normalization, intrinsic normalization, extrinsic normalization, talker 

typicality, lexical tone 
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A fundamental question in speech perception is how listeners manage to recognize 

speech sounds produced by different talkers. Due to differences between talkers such as 

pitch, voice quality and vocal tract length, the same speech sound produced by different 

talkers is acoustically different (Koenig, 2000; Morris, McCrea, & Herring, 2008; Peterson & 

Barney, 1952; Peng, 2006; Remez, Fellowes, & Rubin, 1997). Talker variation has been 

widely observed in the acoustics of segmentals such as vowels (e.g., Peterson & Barney, 

1952) and consonants (e.g., Koenig, 2000; Morris et al., 2008), and suprasegmentals such as 

lexical tones (e.g., Peng, 2006). Talker differences increase variation within the same 

linguistic category and create overlap between different categories, leading to complexities in 

the mapping of speech signals to linguistic categories (e.g., Peng, Zhang, Zheng, Minett, & 

Wang, 2012).  

Despite the large amount of talker variation in speech signals, listeners manage to 

accurately perceive speech sounds produced by different talkers. The process of accurately 

mapping speech signals to linguistic categories despite talker variation is referred to as talker 

normalization in the current study. Although a full understanding of talker normalization 

remains to be achieved, several mechanisms have been proposed in the literature, each 

focusing on different types of cues in the speech signal. 

One mechanism is to reduce or ‘normalize’ acoustic variation of speech sounds by 

rescaling/transforming the acoustic cues relative to intrinsic acoustic cues within the same 

speech signal (e.g., Syrdal & Gopal, 1986; Fujisaki & Kawashimi, 1968; Monahan & Idsardi, 

2010; Johnson, 1990; Slawson, 1968). For example, whereas the absolute frequencies of the 

first two vowel formants (F1 and F2), which are critical for vowel perception, vary 

dramatically due to talker variation (e.g., Peterson & Barney, 1952), other intrinsic cues such 

as the frequency of the third formant (F3) and fundamental frequency (F0) also vary but in a 
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way indicative of a specific talker’s voice characteristics. Syrdal & Gopal (1986) found that 

rescaling the F1 and F2 frequencies relative to the frequency of F3 and F0 in bark scale 

reduced talker variation, and increased the accuracy of binary vowel classification in each 

dimension (high/low, front/back). The F1-F0 dimension is found to represent vowel height, 

and the F3-F2 dimension represents vowel frontness/backness. Because of its emphasis on 

intrinsic talker cues, this mechanism is called intrinsic normalization. 

A second mechanism emphasizes the cues from outside the speech signal, i.e., a 

context (e.g., Holt, 2005, 2006a, 2006b; Holt, Lotto, & Kluender, 1996; Kingston, Kawahara, 

Mash, & Chambless, 2011; Laing et al., 2012; Mann, 1980; Mann & Repp, 1981; Gerstman, 

1968; Huang & Holt, 2012; Ladefoged & Broadbent, 1957; Nearey, 1989; Nearey & 

Assmann, 1986; Shankweiler, Strange, & Verbrugge, 1977; Sjerps et al., 2011a, 2011b, 2012; 

Chen & Peng, 2015; Francis, Ciocca, Wong, Leung, & Chu, 2006; Huang & Holt, 2009; 

Leather, 1983; Lin & Wang, 1984; Moore & Jongman, 1997; Wong & Diehl, 2003; Zhang et 

al., 2012, 2013). With context carrying information of extremes of a phonological space (e.g., 

/a/, /i/, /u/ of the vowel space), listeners can build a talker-specific acoustic-phonological 

space, which serves as a frame/reference to estimate the location/identity of a target speech 

signal (e.g., Joos, 1948). For example, Ladefoged and Broadbent (1957) found that the 

identification of synthetic /bVt/ stimuli depended on the relative F1 distance between the 

target vowel and the carrier sentence. The same target vowel was more frequently identified 

as /ɪ/ when the carrier sentence had a high F1, and more frequently identified as /ɛ/ when the 

carrier sentence had a low F1. The effect of context is contrastive, since the shift of 

contextual F1 cues elicited a contrastive change in the perception of the target vowel. This 

indicates that the location/identity of the target vowel is evaluated according to the 

distribution of formant frequencies in the context. When a talker’s acoustic-phonological 
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space is shifted to a region with higher F1 values, the target vowel is perceived as having 

lower F1, and vice versa. Because of its emphasis on extrinsic cues, this mechanism is 

referred to as extrinsic normalization. 

Though both intrinsic and extrinsic normalization have gained support in the 

literature, the approach to look at individual cues separately (intrinsic or extrinsic cues) while 

ignoring other cues is not without problems. In order to solve the task of accurately mapping 

speech signals to linguistic categories, listeners must make use of all cues available, intrinsic 

and extrinsic, to assist talker normalization. It is therefore important to take an approach that 

integrates different cues to understand their co-contribution to talker normalization, which is 

the aim of the current study. 

We use Cantonese level tones to investigate this question in the current study. There 

are three lexically contrastive level tones in Cantonese, high level tone (e.g., 醫 /ji551/ ‘a 

doctor’), mid level tone (e.g., 意 /ji33/ ‘meaning’) and low level tone (二 /ji22/ ‘second’) 

(Chao, 1947). We chose Cantonese level tones for two reasons. Firstly, there is great talker 

variation in the acoustics of Cantonese level tones, such that the F0 of these tones produced 

by talkers with different F0 ranges overlap substantially (Peng, 2006; Peng et al., 2012). It 

therefore allows us to examine how various factors, intrinsic, extrinsic and other cues, 

contribute to the normalization of lexical tones. Secondly, level tones are primarily 

distinguished by a simple phonetic cue, i.e., pitch height, while other cues such as the pitch 

contour and phonation type are largely similar. Cantonese level tones are therefore easy to 

control. Although many previous studies on talker normalization focused on vowel or 

consonant perception (Syrdal & Gopal, 1986; Fujisaki & Kawashimi, 1968; Monahan & 
                                                        
1 Note that a tone is annotated using Chao’s tone letters, which are in the range of 1-5, with 5 being the highest 
pitch and 1 being the lowest pitch (Chao, 1930). Each tone is described using two or more numbers, which 
indicate the pitch at the beginning and end of a syllable. 
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Idsardi, 2010; Johnson, 1990; Slawson, 1968; Joos, 1948; Sjerps, Mitterer, & McQueen, 

2011a, 2011b, 2012), the mechanism of accommodating talker variation in the perception of 

speech sounds is probably general. Therefore findings generated from the investigation of 

lexical tones may also be informative for research on other types of speech sounds. In the text 

below, we will first review studies on intrinsic and extrinsic normalization with a focus on 

tone normalization, and then discuss the aim of the current study in detail. 

Intrinsic Normalization 

In order to accurately identify lexical tones, it is critical to be able to estimate a 

particular talker’s F0 range (e.g., Wong, 1998; Wong and Diehl, 2003). This is because 

though the absolute F0 value of a tone produced by a talker can vary dramatically, it tends to 

be located close to the upper bound of a talker’s F0 range if it is a high tone, and close to the 

lower bound if it is a low tone (Peng, 2006; Peng et al., 2012). However, so far the findings 

are mixed regarding whether a talker’s F0 range can be estimated based on intrinsic cues. 

Honorof and Whalen (2005) examined whether English listeners can identify where 

an isolated pitch sample is located within a speaker’s pitch range (i.e., relative pitch height 

rating) based on intrinsic cues only. The authors found that the pitch location judgment 

correlated well with the actual location within each talker’s pitch range, even though those 

talkers were unfamiliar to the listeners. This finding seemingly indicates that English listeners 

can judge pitch location with intrinsic cues. The authors speculated that intrinsic cues such as 

voice quality might have aided pitch location judgment. 

However, Bishop and Keating (2012) failed to find a direct link between voice quality 

and pitch location judgment. Voice quality measures played a very limited role in the 

correlation with pitch location judgment, which was actually most strongly correlated with 

the absolute F0 value of the pitch stimuli. This suggests that listeners based their pitch 
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location judgment primarily on the absolute F0 values instead of F0 range. Nonetheless, 

voice quality could influence pitch location judgment indirectly via gender judgment. It is 

found that listeners judged the pitch location differently depending on a speaker’s gender, 

such that a pitch sample was rated as having higher pitch when it was perceived to be from a 

male speaker than a female speaker. Voice quality, which was significantly correlated with 

explicit speaker gender judgment, thus could influence pitch location judgment indirectly. In 

a nutshell, pitch location judgment was mostly strongly contributed to by the absolute F0 

values, and the effect of voice quality was indirect and small. This also means that other cues, 

such as extrinsic cues, are probably important for talker normalization in pitch perception. 

Extrinsic Normalization 

There is plenty of evidence that listeners estimate the location/identity of a lexical 

tone according to the distribution of a talker’s speaking F0 in a speech context (Chen & Peng, 

2015; Francis, Ciocca, Wong, Leung, & Chu, 2006; Huang & Holt, 2009; Leather, 1983; Lin 

& Wang, 1984; Moore & Jongman, 1997; Wong & Diehl, 2003; Zhang et al., 2012, 2013). 

Lin and Wang (1984) investigated how the relative F0 height of a single-word context 

affected the perception of Mandarin tones. An identical target word was perceived more 

frequently as having low tones when attached to a context produced with high F0, and more 

frequently as having high tones when attached to a context with low F0. 

Leather (1983) explicitly examined the effect of speech context on the 

accommodation of between-talker variability. Talker-ambiguous Mandarin tone stimuli were 

embedded in speech utterances produced by two male talkers with different F0 ranges. 

Identical stimuli were perceived as different tones in a contrastive way, depending on which 

talker, high-pitch talker or low-pitch talker, was perceived to ‘produce’ them. 

Moore and Jongman (1997) also found that speech contexts with a talker’s F0 
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information affected the identification of talker-ambiguous tone stimuli in a contrastive way. 

The same word was more frequently identified as having a low tone if the context was 

produced by a talker with high mean F0, and more frequently as having a high tone in the 

context produced by a talker with low mean F0. 

The aforementioned studies examined tone normalization in Mandarin. Wong and 

Diehl (2003) investigated this question in Cantonese. The authors also reported a contrastive 

context effect, i.e., raising and lowering the contextual F0 changed the perception of the 

target word with mid level tone to words to low level tone and high level tone in a contrastive 

way. Moreover, within the carrier sentence, words adjacent to the target word had a greater 

effect than those far away (Wong and Diehl, 2003). 

Although the context effect has been widely found, it remains unclear whether the 

listeners actually estimate a talker’s acoustic-phonological space from the context. A number 

of studies have found that nonspeech contexts matched with speech contexts in the long-term 

average spectrum elicit similar normalization effects as speech contexts do (Huang & Holt, 

2009; 2012; Holt et al., 1996; Holt, 2005, 2006a, 2006b; Lotto & Kluender, 1998; Lotto, 

Sullivan, & Holt, 2003; Watkins, 1991; Watkins & Makin, 1996) or even stronger effects 

sometimes (e.g., Laing et al., 2012). Because nonspeech contexts only contain auditory cues, 

it is argued that listeners rely on a general auditory mechanism in talker normalization, rather 

than a talker’s acoustic-phonological space built from the context. 

Holt et al. (1996) found that a nonspeech context synthesized using 

frequency-modulated sine-wave glides that modeled the center frequency of formants in a 

speech context elicited a contrastive effect as the speech context did. However, it is possible 

that the nonspeech context may have been processed in the speech mode. The authors argued 

against this possibility, showing that listeners failed to label the glides as /b/ or /d/ 



 

9 
 

consistently. Moreover, it is found that Japanese quail trained to peck in response to /da/ to 

/ga/ sounds showed a contrastive shift in the responses according to the preceding speech 

contexts as human listeners do (Lotto, Kluender, & Holt, 1997). Since it is unlikely for the 

Japanese quail to process the sounds in the human speech mode, the authors claimed that the 

results favored the broad generality of perceptual processes underlying the context effect. 

As far as lexical tone perception is concerned, Huang and Holt (2009) found that 

nonspeech contexts (harmonic tones and pure tone contexts), which modeled the mean F0 of 

speech contexts, elicited a similar effect on the identification of tone stimuli ranging from 

Mandarin Tone 1 (high level tone) to Tone 2 (high rising tone). For both speech and 

nonspeech contexts, the effect was contrastive, such that the contexts with raised F0 led to 

more Tone 2 responses and vice versa (the mean F0 of Tone 2 was lower than that of Tone 

1). Similarly contrastive effects of speech and nonspeech contexts led the authors to suggest 

that the general perceptual mechanism is engaged in lexical tone normalization. 

However, it has also been argued that similar response patterns do not imply identical 

perceptual processes underlying the effect of speech and nonspeech contexts (Fowler, 2006; 

Viswanathan, Magnuson, & Fowler, 2013). While the effect of nonspeech context may be 

mediated by general auditory processing, affecting speech perception via general contrasts of 

auditory cues between the context and the target speech sound, the effect of speech context is 

likely mediated by more specific, speech-related processing. In support of this claim, it has 

been found that nonspeech contexts often show weaker or null effects on lexical tone 

normalization. 

Chen and Peng (2015) compared the effect of speech and nonspeech contexts on the 

categorization of tone stimuli ranging from Mandarin Tone 1 to Tone 2. Inconsistent with the 

findings of Huang and Holt (2009), Chen and colleague found that only F0 shift in the speech 
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context had an effect on the categorization of Mandarin tones. 

Francis et al. (2006) compared the normalization effects of a speech context and a 

‘nonspeech’ context generated with a ‘hummed’ neutral vocal tract (/əә/ like) on the 

categorization of Cantonese level tones. Whereas shifting the F0 of a speech context upward 

and downward changed the perception of a target word carrying Cantonese mid level tone to 

words with low level tone and high level tone contrastively, the neutral vocal tract context 

showed no such effect – the perception of the target word remained unchanged irrespective of 

the F0 height of the context. However, it should be noted that the ‘nonspeech’ status of the 

neutral vocal tract context is debatable, because it contained at least some formant structure. 

Despite its speech-likeness, the neutral vocal tract context did not affect tone normalization as 

speech contexts did. 

In two studies, Zhang et al. (2012, 2013) further confirmed that the effects of speech 

and nonspeech context were unequal on the perception of Cantonese level tones, with a more 

careful design of the nonspeech context (using a triangle wave to generate the nonspeech 

context). The findings of Francis et al. (2006) were largely replicated. The speech context 

showed a contrastive effect on the perception of the target word, consistently for the target 

words produced by four talkers with different F0 ranges. However, the effect of the 

nonspeech contexts was small, almost negligible, and not consistent on the perception of the 

target word produced by all four talkers. 

To summarize, the effect of speech context on tone normalization has been 

consistently found in different studies, whereas the effect of nonspeech context is sometimes 

smaller or even absent. It remains unclear whether talker normalization relies on a general 

perceptual mechanism or the estimation of a talker’s acoustic-phonological space. 

The Current Study 
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As discussed above, intrinsic and extrinsic normalization mechanisms have each 

gained support in the literature. But there are also some unresolved issues within each 

mechanism. More importantly, the approach to look at individual cues separately (intrinsic or 

extrinsic cues) is not without problems. 

Firstly, in order to solve the task of accurately and quickly mapping speech signals to 

linguistic categories, listeners must make use of all cues available, intrinsic and extrinsic, to 

assist talker normalization. However, previous models of talker normalization tend to focus 

on one source of cues (intrinsic or extrinsic), while ignoring the other cues. The existing 

evidence calls for an approach that integrates different cues in talker normalization. Such an 

integrative approach is especially important, because isolating a component from the whole 

and studying it could change its behavior from when it functions within the whole. Putting 

back isolated components together does not guarantee an accurate view of the whole picture. 

For example, in studying intrinsic cues and extrinsic cues in isolation, we could have 

overlooked the relationship between the two when they function together in talker 

normalization. Where intrinsic cues fall short of fully accommodating talker variation, 

extrinsic cues might be especially useful. In order to fully understand talker normalization, it 

is thus important to study it from a more integrative perspective. 

Secondly, many previous studies on extrinsic normalization focused on whether 

speech and nonspeech contexts elicited similarly contrastive effects. Though this question is 

important, more emphasis should be placed on finding a mechanism that sufficiently enables 

listeners to accurately map speech signals with talker variation to linguistic categories. By 

‘sufficient’, we mean a consistent context effect in all conditions. Given that null effects of 

nonspeech contexts have been reported in some studies (cf. Chen & Peng, 2015; Francis et 

al., 2006; Zhang et al., 2012; 2013), it might be the case that the general contrast of auditory 



12 

cues between the context and the target speech sound is not sufficient for accommodating 

talker variation. Whether the estimation of a particular talker’s acoustic-phonological space is 

sufficient requires further investigation, especially via a comparison of two contexts with and 

without cues to a talker’s acoustic-phonological space. 

Thirdly, previous models assume that the same normalization mechanism is used in 

the perception of speech sounds produced by different talkers, without considering the 

typicality of a talker’s voice characteristics. Bishop and Keating (2012) found that an F0 

stimulus was rated as having higher pitch when it was from a male speaker than a female 

speaker. The authors speculated that English listeners have expectations of F0 ranges for 

general male and female talkers respectively, which affected the pitch rating. Within each 

gender, it is conceivable that some talkers are more typical with F0 range closer to that of 

general male/female talkers than other talkers. This raises the question of how the typicality 

of a talker’s F0 within each gender affects speech perception, and most importantly, whether 

listeners would adopt different mechanisms in accommodating speech signals of typical and 

atypical talkers. However, the effect of talker typicality has not been investigated before. 

In this study we aim to address the aforementioned issues and propose a new model to 

integrate different cues. In Experiment 1, we examined intrinsic normalization, i.e., whether 

Cantonese listeners can accurately identify isolated words carrying Cantonese level tones 

based on intrinsic cues only. We also examined whether the identification accuracy is 

correlated with the typicality of a talker’s F0 range in terms of its distance from an estimated 

population F0 range, such that level tones produced by typical talkers would be more likely to 

be correctly identified. In Experiment 2, we examined extrinsic normalization, by comparing 

four types of context with incrementally more cues (nonspeech, reversed speech, meaningless 

speech and meaningful speech) to find those that provide sufficient cues for fully 
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accommodating talker variation. In particular, we included two contexts, a reversed speech 

context without cues to a talker’s acoustic-phonological space, and a normal speech context 

with cues to a talker’s acoustic-phonological space for comparison. Lastly, based on our 

results, we proposed a new model that integrates various cues to account for talker 

normalization. 

Experiment 1 

Methods 

Experimental design. As mentioned earlier, it remains unclear whether listeners can 

estimate an unfamiliar talker’s pitch range based on intrinsic cues only (Bishop and Keating, 

2012; Honorof and Whalen; 2005). Moreover, this question has not been tested on speakers 

of a tone language, who have to estimate a particular talker’s F0 range in order to judge the 

location/identity of a tone. In this experiment, we aim to examine whether Cantonese 

listeners can accurately identify isolated words carrying Cantonese mid level tone produced 

by unfamiliar talkers. If listeners can estimate the F0 location within an unfamiliar talker’s F0 

range with only intrinsic cues (cf. Honorof and Whalen, 2005), we expect the word with mid 

level tone to be accurately recognized. We also aim to examine whether the identification 

performance can be explained by the typicality of a talker’s F0 range relative to the 

population F0 range, which was estimated from a large Cantonese speech corpus (Lee, Lo, 

Ching, & Meng, 2002). To this end, we selected four native Cantonese speakers (2 female, 2 

male) with large differences in their F0 ranges, covering a wide range of F0 distribution. 

Bishop and Keating (2012) speculated that English listeners may have expectations of 

gender-specific F0 ranges, e.g., female speakers with a higher F0 range than male speakers, 

which affect the pitch location rating. However, the effect of gender-specific F0 ranges has 

not been examined in the correlation with the identification performance. It is also possible 
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that listeners might rely on a non-gender-specific F0 range. In this experiment, we also 

examine whether the perceptual performance is better explained by the typicality of a talker’s 

F0 range relative to an estimated gender-specific population F0 range, or non-gender-specific 

population F0 range. 

Participants. Sixteen native speakers of Cantonese (8 female, 8 male; mean age = 

22.6 yr, SD = 2.6 yr) participated in this experiment. No subjects had hearing impairment or 

music training. The subjects were all students at the Chinese University of Hong Kong. All 

subjects gave informed consent in compliance with a protocol approved by the Survey and 

Behavioral Research Ethics Committee of The Chinese University of Hong Kong. 

Stimuli. Four native Cantonese speakers with different F0 ranges (2 male speakers: 

M01 and M02; 2 female speakers: F01 and F02) were recruited to record the stimuli. Each of 

the four talkers was asked to read aloud six words carrying six Cantonese unchecked tones 

and repeat each word six times. A speaker's F0 range was estimated from the production of 

two words, 醫 (/ji55/ ‘a doctor’), which carries the highest tone in Cantonese, and 兒 

(/ji21/ ‘a son’), which carries the lowest tone. The upper F0 range was measured from the 

maximal F0 of six repetitions of 醫 /ji55/, and the lowest tone was obtained from the 

minimal F0 of six repetitions of 兒 /ji21/2. Figure 1A shows the F0 range of the four talkers 

(F01: 212~331 Hz; F02: 198~280 Hz; M01: 128~190 Hz; M02: 91~122 Hz). 

The word with mid level tone – 意 (/ji33/ ‘meaning’) – was used as the sole listening 

materials. The reason for using only one word with mid level tone, instead of all words with 

six tones, is to prevent listeners from estimating a talker’s F0 range from extrinsic cues, i.e., 

the presentation of high and low tones from the same talker. The word with mid level tone 

2 In order to avoid extreme F0 values that might be outliers, we chose the F0 value located at the 90% highest 
and lowest end of all F0 measurements of six repetitions of /ji55/ and /ji21/ respectively. 
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was selected, because mid level tone is most ambiguous, which can be misidentified as either 

high level tone or low level tone depending on talker variation (Peng et al., 2012; Zhang et 

al., 2012). For each talker, one clear token of the word with mid level tone was selected. The 

target word produced by four talkers was normalized in duration to 450 ms and in average 

intensity level to 60 dB using Praat (Boersma & Weenink, 2012). The F0, F1, and F2 of the 

test words are shown in Table 1. 

Filler items were included to maintain listeners’ interest in the speech stimuli. We 

ensured that words with the highest and lowest tone were excluded in order to minimize the 

information of a talker’s F0 range revealed by filler words. One filler item was a different 

repetition of the target word (意 /ji33/ ‘meaning’) and the other filler item was the syllable 

/ji/ carrying low level tone (二 /ji22/ ‘second’). Each filler item was produced by one talker 

in each gender. The four filler items were normalized in duration and intensity accordingly. 

For the filler item with mid level tone, its mean F0 was very similar to that of the target word 

(only 1.5~1.7 Hz difference); as for the filler item with low level tone, its mean F0 was lower 

than the target word by 1.5~3.3 semitones. The ratio of test words and filler items was 1:1. 

The population F0 range was estimated for male and female Cantonese talkers 

separately from a large-scale speech corpus, which contains read speech materials from 68 

native Cantonese speakers, with half of the speakers in each gender (Lee et al., 2002). The 

upper and lower F0 range was measured from the average F0 of words carrying the highest 

tone and lowest tone produced by all female and male speakers respectively. Only 

sentence-initial words were considered in order to minimize the effect of intonation. The 

estimated mean F0 range of female talkers is approximately 220~290 Hz, and male talkers is 

approximately 110~160 Hz. We also estimated a non-gender-specific population F0 range 

(165~225 Hz), by averaging the estimated mean F0 range of female and male talkers. We 
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then calculate the distance of the four talker’s F0 range from the gender-specific and 

non-gender-specific population range in semitones respectively. 

Procedure. Target and filler words produced by four talkers were mixed and 

randomly presented in a sub-block and each sub-block was repeated seven times. The task 

was three-alternative forced choice identification. Subjects were instructed to identify the 

heard word (target or filler) as any of the three Cantonese words, 醫 (/ji55/ ‘a doctor’), 意 

(/ji33/ ‘meaning’), and 二 (/ji22/ ‘second’) by pressing labeled buttons on a computer 

keyboard as soon as possible. 

Data analysis. The results were analyzed in terms of identification accuracy and 

perceptual height scores. The reason that we did not use percent phoneme identification 

analysis, as many previous studies did (e.g., Holt, 2005, 2006a, 2006b; Huang & Holt, 2009; 

2012), is because our task is three-alternative forced choice, which is less straightforward to 

analyze using percent phoneme identification. For identification accuracy, we analyzed the 

percent of correct responses (i.e., mid level tone responses) to a target word produced by each 

talker. The perceptual height analysis was to code each response (correct and incorrect) 

according to the perceptual height of the selected tone, and calculate the mean height score of 

all responses to the target word produced by each talker. A high level tone response was 

coded as ‘6’, a mid level tone response as ‘3’, and a low level tone response as ‘1’, for the 

reason that the high level tone is 3 semitones higher than the mid level tone, which is again 2 

semitones higher than the low level tone, according to previous descriptions (Chao, 1947). If 

the average perceptual height score was close to ‘1’, it indicates that the target word was 

primarily identified as having the low level tone; if it was close to ‘6’, it indicates that the 

target word was primarily identified as having the high level tone. 

Results 
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Figure 2A shows the identification accuracy and Figure 2B-C show the perceptual 

height scores plotted as a function of the distance of each talker’s F0 range relative to the 

estimated gender-specific population F0 range. 

We first tested whether the identification accuracy was better than chance (0.33) for 

the target word produced by all four talkers. If subjects can estimate an unfamiliar talker’s F0 

range based on intrinsic cues only, they are expected to be able to correctly identify the target 

word above chance across all four talkers, irrespective of talker typicality in F0 range. The 

data were analyzed using a generalized mixed-effects model for each talker respectively, with 

the responses to each trial (correct and incorrect) as the input and subjects as a random effect. 

Results show that only the target word produced by the female talker F02 was accurately 

recognized above chance (mean = 0.62, SD = 0.26, z = 4.0, p < 0.001). It indicates that 

intrinsic cues alone may not be enough for listeners to fully accommodate talker variation in 

the perception of Cantonese mid level tone. 

We then examined whether the perceptual performance can be explained by the 

typicality of a talker’s F0 range relative to the estimated population range. Two linear 

regression analyses were carried out on the perceptual height scores, one analysis on 

gender-specific population range and the other analysis on non-gender-specific population 

range. The purpose is to examine to what extent the target word's likelihood of being 

misidentified as having high level tone or low level tone is related to a talker’s F0 range being 

higher or lower than the gender-specific or non-gender-specific population range. For the 

linear regression analysis on gender-specific population range, the dependent variable was 

perceptual height scores and two independent variables were the distance of a talker’s upper 

and lower F0 range relative to the gender-specific population range (two distance values per 

talker). The linear regression model reached significance and accounted for 68.3% of the 
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variance in perceptual height scores (adjusted R2 = 0.672, p < 0.001). Typicality of a talker’s 

lower F0 range contributed most strongly to the perceptual heights scores (t = 3.853, p < 

0.001), while typicality of a talker’s upper F0 range was also significant but the effect was 

less strong (t = 2.039, p = 0.045). For the linear regression analysis on the 

non-gender-specific population range, the model also reached significance, but accounted for 

overall less variance in perceptual height scores than gender-specific population range 

(adjusted R2 = 0.549, p < 0.001). Typicality of both lower and upper F0 ranges in terms of 

non-gender-specific population range contributed significantly to the perceptual heights 

scores (ps < 0.001). 

When subjects were included as a random effect, the mixed effects model with 

gender-specific population range also outperformed the model with non-gender-specific 

population range, according to the model selection criterion – Akaike Information Criterion 

(AIC; gender-specific model AIC = 197.39; non-gender-specific model AIC = 219.32; the 

smaller the AIC, the better a model). Again, the model with gender-specific population range 

accounted for more variance than the model with non-gender-specific population range. 

Following the methods described by Nakagawa and Schielzeth (2013), we calculated 

marginal R2 that describes the proportion of variance explained by fixed effects, and 

conditional R2 that describes the proportion of variance explained by fixed and random 

effects. The model on gender-specific population range accounted for 67.5% of variance with 

fixed effects considered and 72.9% of variance with both fixed and random effects 

considered, whereas the model on non-gender-specific population range accounted for 55.6% 

of variance with fixed effects considered and 56.9% of variance with fixed and random 

effects considered. This indicates that the perceptual height scores of the target word were 

most heavily influenced by talker typicality in terms of gender-specific population range. The 
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higher a talker’s F0 range relative to gender-specific population range, the higher the 

perceptual height scores, meaning that the target word is more likely to be identified as 

having high level tone, and vice versa. 

Discussion 

In this experiment, we examined whether Cantonese listeners can accurately identify 

isolated words carrying Cantonese mid level tone produced by four unfamiliar talkers with 

different F0 ranges. If listeners can estimate the F0 location within an unfamiliar talker’s F0 

range with intrinsic cues alone (cf. Honorof and Whalen, 2005), the level tone produced by 

all four talkers is expected to be identified accurately. On the contrary, we found that only the 

target word produced by one talker was accurately identified above chance. This indicates 

that intrinsic cues alone may not be enough for fully accommodating talker variation, a 

finding consistent with the finding of Bishop and Keating (2012). Moreover, we compared 

the effects of gender-specific and non-gender-specific population F0 range and found that the 

gender-specific population F0 range contributes more to the perception of Cantonese level 

tones. Although the model with non-gender-specific population range also reached 

significance, it accounted for less variance of perceptual height scores. It confirms that the 

perception of isolated words carrying Cantonese level tone is primarily influenced by talker 

typicality relative to the gender-specific population F0 range. 

We found that target words produced by typical talkers were more likely to be 

correctly recognized, whereas target words produced by less typical talkers were biased to the 

perception of neighboring high/low level tones, depending on whether the talker’s F0 range is 

higher or lower than the population F0 range. This finding may imply that Cantonese 

listeners have built-in tone templates that are shaped by typical talkers’ F0 range. The target 

words produced by typical talkers presumably match the built-in tone templates and were 
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thus correctly recognized, whereas the target words produced by less typical talkers deviated 

from the tone templates and were thus misrecognized. It appears that the tone templates are 

gender-specific, with the tone templates for general female talkers carrying higher F0 than 

those for general male talkers (cf. Bishop and Keating, 2012). It is not totally clear how such 

tone templates are built and stored. But it is likely that the templates are built from the 

auditory experience of verbally interacting with many female and male talkers in a speech 

community. The F0 of typical female and male talkers close to the center of the population 

F0 distribution, who probably occur most frequently, determines the F0 of the tone templates. 

This indicates that the representation of lexical tones is not totally abstract or deprived of 

phonetic details, but at least preserves the F0 information of typical female and male talkers. 

We found that the lower bound of gender-specific F0 range is a better predictor of 

perceptual height scores than the upper bound. This result is intriguing, because the 

between-talker variability is usually greater at the upper bound than at the lower bound 

(Bishop & Keating, 2012; Keating & Kuo, 2012), meaning that the upper bound might be 

more indicative of between-talker differences. However, the upper bound also varies more 

within a talker. For example, a talker’s upper F0 range can be inflated by factors such as 

emotional status (e.g., Protopapas & Lieberman, 1997). Therefore, the lower F0 range might 

be a more reliable indicator of a talker’s speaking F0. 

This experiment is a first attempt to examine the effect of talker typicality on speech 

perception and leaves open a few questions for future investigation. Firstly, only four talkers 

were examined in this experiment. Future studies should include more talkers covering a 

broader range of the population F0 distribution, to zoom in on the effect of talker typicality. 

Secondly, this experiment only considered one syllable that contrasts six Cantonese tones. 

Future studies may increase the phonological coverage with more syllables to further 
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examine the effect of talker typicality. 

Experiment 2 

Methods 

Experimental design. Experiment 1 showed that intrinsic cues alone might not be 

enough for fully accommodating talker variation in the perception of Cantonese level tones. 

Identification accuracy varied depending on the typicality of a talker’s F0 range relative to 

the gender-specific population F0 range. It thus calls for the investigation of the effect of 

other cues, especially extrinsic cues, on talker normalization. To this end, we examined 

extrinsic normalization in Experiment 2, with a context (nonspeech, reversed speech, 

meaningless speech and meaningful speech) × F0 shift (raised, unshifted and lowered) × 

talker (F03, F04, M03 and M04) design. 

We compared the effects of four types of contexts with incrementally more cues – 

nonspeech, reversed speech, meaningless speech and meaningful speech context (see Table 

2), to find a context sufficient for accommodating talker variation in perception of Cantonese 

level tones. By 'sufficient', we mean that a context elicits above-chance speech identification 

accuracy across all talkers, irrespective of the typicality of a talker’s F0 range. The nonspeech 

context contained only auditory cues of pitch for general auditory contrast between the 

context and a target word (cf. Huang & Holt, 2009; Holt et al., 1996). The reversed speech 

context contained some phonetic cues such as vowels, apart from auditory cues, but the 

phonetic cues can hardly be associated with native consonants, vowels, lexical tones or 

syllables in Cantonese. Thus this context likely allows listeners to estimate the range of 

general phonetic variation of a talker, but such phonetic variation is not associated with 

phonological cues in Cantonese. The meaningless and meaningful contexts, which were 

composed of native Cantonese syllables, contained cues to estimate a talker’s 
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acoustic-phonological space. The meaningful context further contained valid and coherent 

semantic and syntactic information. These four contexts were tested in two sub-experiments 

(see Table 2), in order to control the experiment length. Nonspeech, reversed speech and 

meaningful speech contexts were tested in Experiment 2A, and nonspeech, meaningless and 

meaningful speech contexts were tested in Experiment 2B. 

Participants. Sixteen native speakers of Cantonese (9F, 7M; age = 21±1.2 yr) 

participated in Experiment 2A and another group of 16 native speakers of Cantonese (8F, 

8M; age = 21.3 ± 2.0 yr) participated in Experiment 2B with monetary compensation. All 

subjects reported normal hearing and no musical training. The subjects were students at the 

Chinese University of Hong Kong. Informed written consent was obtained in compliance 

with the experiment protocol approved by the Joint Chinese University of Hong Kong-New 

Territories East Cluster Clinical Research Ethics Committee. 

Stimuli. Stimuli were recorded from four native Cantonese speakers with different F0 

ranges (2 male speakers: M03 and M04; 2 female speakers: F03 and F04), who were different 

from the talkers of Experiment 1. The F0 range of these four talkers is shown in Figure 1B. 

From each talker, a meaningful sentence, 呢個字係意 /li55 ko33 tsi22 hɐi22 ji33/ (‘This 

character is meaning’) and a meaningless sentence, 呢錯視幣意 /li55 tsʰo33 si22 pɐi22 ji33/ 

(‘This mistake sees money meaning’) were recorded. The meaningful sentence was 

semantically neutral, to minimize the effect of semantic expectation on the identity of the 

target word. The meaningless sentence was a semantically meaningless combination of real 

morphemes in Cantonese. In both sentences, the final word carrying mid level tone was the 

target word. Meaningful and meaningless contexts were matched in rhymes and tones. 

Each talker was asked to read aloud these sentences six times. One typical token of 

the target word close to the average F0 of all six repetitions was selected for each talker. Each 
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target word was normalized in duration to 450 ms and in average intensity level to 55 dB 

using Praat. The F0, F1 and F2 of the target word are shown in Table 3. 

One clearly produced meaningful context and meaningless context roughly matched 

in the mean, minimal and maximal of F0 were selected for each talker. The average intensity 

level of all the contexts was normalized to 55 dB, identical to the target word. Following the 

design of previous studies (Zhang et al., 2012; 2013), the overall F0 trajectory of each context 

was lowered by 3 semitones, kept unshifted and raised by 3 semitones, giving rise to three 

contextual F0 heights. The F0 manipulation has very little, if any, influence on the formant 

trajectories of the context. Acoustic characteristics of the meaningful speech context with the 

three F0 heights are shown in Table 3. 

In addition, four filler sentences were included. The reason for including filler 

sentences is to increase context variability so that listeners would not lose interest in the 

contexts and only attend to the target word. Unless it is known that the extrinsic 

normalization process is automatic and mandatory even without attention, such a control 

seems necessary. A meaningful context, 請留心聽  /ʦʰiŋ25 ləәu21 sɐm55 tʰiŋ55  / ‘Please 

carefully listen to  ’ was recorded from two of the above four talkers, and a second context, 

我以家讀  /ŋo23 ji21 ka55 tuk2  / ‘Now I will read  ’ from the other two talkers. Two 

meaningless contexts 頂留金青_ /tiŋ25 ləәu21 kɐm55 ʦiŋ55 _/ ‘top maintains gold green _’ 

and 我時花俗_ /ŋo23 si21 fa55 ʦuk2 _/ ‘I time flower convention _’ were recorded 

accordingly. The target words were syllable /ji/ with either mid level tone or low level tone 

produced by the same four talkers. One clearly produced meaningless and meaningful filler 

sentence was also selected. The average intensity level of filler contexts was normalized to 55 

dB, similar to the test contexts. The F0 of filler contexts was not manipulated in order to keep 
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the experiment short. The ratio of test and filler sentences was 3:1. 

Reversed speech contexts were then generated by time-reversing the meaningful 

speech contexts with the three F0 heights – lowered F0, unshifted F0 and raised F0 using 

Praat. Reversed speech contexts were also generated for filler meaningful contexts. 

Nonspeech contexts were generated using a triangle wave that has a different 

harmonic structure but roughly similar acoustic complexities (i.e., containing only odd 

number of harmonics) as speech sounds. The triangle wave context modeled the F0 and 

intensity profiles of meaningful speech contexts with three F0 heights. The average intensity 

level of the nonspeech contexts was set to be 75 dB, higher than the speech contexts, because 

nonspeech contexts sound softer than speech contexts (cf. Zhang et al., 2012; 2013). 

Nonspeech contexts were also generated for filler contexts. 

Lastly, the target word was attached to the end of four types of contexts after a jittered 

interval of 300-500 ms for each talker. The F0 contour of four types of contexts and the target 

word from one talker are shown as an example in Figure 3. 

Procedure. Stimulus presentation was blocked by the context, with each block 

comprising only trials from one context condition. Within a block, 16 trials ((3 test sentences 

+ 1 filler sentence) × 4 talkers) were presented randomly in a sub-block and each sub-block 

was repeated nine times. Subjects were instructed to identify the target word (test or filler) as 

any of the three Cantonese words, 醫 (/ji55/ ‘doctor’), 意 (/ji33/ ‘meaning’), and 二 

(/ji22/ ‘two’) by pressing labeled buttons on a computer keyboard within two seconds. 

The way that trials with three contextual F0 heights from four different talkers were 

mixed and randomly presented in a sub-block means that listeners have to re-normalize talker 

variation from trial to trial. To normalize between-talker variation (i.e., four talkers) and 

within-talker variation (i.e., thee contextual F0 heights from the same talker), listeners have 
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to obtain a most updated estimate of a talker’s F0 range from an immediate context. Including 

filler sentences added more variation into the stimuli, which perhaps also drives listeners to 

re-normalize from trial to trial. 

In Experiment 2A, subjects listened to nonspeech, reversed speech and meaningful 

speech contexts. In Experiment 2B, subjects listened to nonspeech, meaningless speech and 

meaningful speech contexts. The presentation order of three blocks was counterbalanced 

across the subjects as much as possible. Before each experiment, one practice block with 

meaningful speech contexts from two extra talkers not used in the experiment was given to 

the subjects to familiarize them with the procedure. 

Data analysis. The results were analyzed in terms of identification accuracy and 

perceptual height scores. As mentioned before, we did not use percent phoneme identification 

analysis as previous studies did (e.g., Holt, 2005, 2006a, 2006b; Huang & Holt, 2009; 2012), 

because our task is three-alternative forced choice instead of two-alternative forced choice, 

which is less straightforward to analyze using percent phoneme identification. For 

identification accuracy, the rate of expected responses was analyzed for each talker, each 

context F0 height, and each type of context. Given the contrastive context effect (e.g., 

Ladefoged & Broadbent, 1957; Francis et al., 2006; Zhang et al., 2012, 2013), the target word 

was expected to be identified as having high level tone (/ji55/, ‘doctor’) in the lowered F0 

condition, as having mid level tone (/ji33/, ‘meaning’) in the unshifted F0 condition, and as 

having low level tone (/ji22/, ‘two’) in the raised F0 condition. A response was deemed as 

correct if it was the expected response and incorrect if not. The perceptual height analysis 

was to code each response (correct and incorrect) according to the perceptual height of the 

selected tone (6 for high level tone, 3 for mid level tone, and 1 for low level tone), and 

calculate the mean height score of all responses to each target word. If the average perceptual 
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height score was close to ‘1’, it indicates that the target word was primarily identified as 

having the low level tone; if it was close to ‘6’, it indicates that the target word was primarily 

identified as having the high level tone. 

Results 

Experiment 2A. As mentioned above, three contexts were examined in Experiment 

2A, nonspeech, reversed speech and meaningful speech contexts. Figure 4A shows the 

identification accuracy for each talker condition within each F0 shift and context condition.  

We tested whether the identification accuracy was better than chance (0.33) across all 

talkers and all F0 shift conditions for each type of context. If a certain type of context 

facilitates talker normalization, the identification accuracy is expected to be significantly 

higher than the chance level (0.33) consistently across all talkers and all F0 shift conditions, 

irrespective of the typicality of a talker and the manipulation of F0 shift. To that end, the 

identification accuracy was analyzed using a generalized mixed-effects model for each talker 

(within each F0 shift and context condition), with the response to each trial (correct and 

incorrect) as the input and subjects as a random effect. The model compared the rate of 

correct responses with chance level accuracy. 

For the nonspeech context, the identification accuracy was only significantly higher 

than chance level in two conditions: female talker F03 in the unshifted F0 condition (mean = 

0.66, SD = 0.48, z = 3.20, p = 0.001), and female talker F04 (mean = 0.78, SD = 0.42, z = 

6.65, p < 0.001) in the raised F0 condition. As for the reversed speech context, more 

conditions reached significance, but still not all conditions were significant. The 

identification accuracy was significantly higher than chance in six conditions: female talker 

F03 (mean = 0.72, SD = 0.45, z = 2.58, p = 0.01) and male talker M04 (mean = 0.53, SD = 

0.50, z = 2.21, p = 0.027) in the unshifted F0 condition, and all four talkers F03 (mean = 0.75, 
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SD = 0.43, z = 6.11, p < 0.001), F04 (mean = 0.84, SD = 0.37, z = 2.69, p = 0.007), M03 

(mean = 0.82, SD = 0.39, z = 3.69, p < 0.001) and M04 (mean = 0.79, SD = 0.41, z = 4.84, p 

< 0.001) in the raised F0 condition. It is only in the meaningful speech context that the 

identification accuracy was significantly higher than the chance level in all conditions (ps < 

0.05). It indicates that only the meaningful speech contexts consistently facilitate talker 

normalization, irrespective of talker typicality and F0 shift manipulations. 

Experiment 2B. As mentioned above, nonspeech, meaningless speech and meaningful 

speech contexts were examined in Experiment 2B. Figure 4B shows the identification 

accuracy for each talker, F0 shift and context condition. 

We tested whether the identification accuracy was better than chance (0.33) across all 

talkers and all F0 shift conditions for each type of context. Similar to Experiment 2A, the 

responses were analyzed using a mixed-effects logistic regression model for each talker 

(within each F0 shift and context condition), with the response to each trial (correct and 

incorrect) as the input and subjects as a random effect. 

For the nonspeech context, the identification accuracy were significantly higher than 

the chance level only in three conditions: female talker F03 and male talker M04 in the 

unshifted F0 condition (mean = 0.65, SD = 0.48, z = 4.68, p < 0.001; mean = 0.54, SD = 0.50, 

z = 3.01, p = 0.003), and female talker F04 in the raised F0 condition (mean = 0.67, SD = 

0.47, z = 3.89, p < 0.001). As for the meaningless and meaningful speech contexts, the 

identification accuracy was significantly higher than the chance level in all conditions (ps < 

0.01). It suggests that the nonspeech context and two speech contexts have unequal effects on 

the perception of Cantonese level tones. Whereas the two speech contexts consistently 

facilitate talker normalization irrespective of talker typicality and F0 shift manipulations, the 

effect of nonspeech context is not consistent on talker normalization. 
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Experiment 2A and 2B combined. Since the results of Experiment 2A and 2B were 

largely similar (in terms of the effects of nonspeech and meaningful speech contexts), the two 

experiments were grouped together for further analysis. 

Firstly, the overall effects of four types of contexts were compared, using a 

mixed-effects logistic regression model with the response to each trial (correct and incorrect) 

as the input, context type (nonspeech, reversed speech, meaningless speech and meaningful 

speech), F0 shift (lowered F0, unshifted F0 and raised F0) and talker (F03, F04, M03, M04) 

as three fixed effects and subjects as a random effect. Two-way and three-way interactions 

were also included in the full model. Although both nonspeech and reversed speech contexts 

failed to elicit significantly higher-than-chance accuracy across all conditions, it appears that 

the overall effect of the reversed speech context was stronger than that of the nonspeech 

context (see Figure 4A). Moreover, although both meaningless and meaningful speech 

contexts elicited significantly higher-than-chance accuracy across all conditions, the overall 

effect of the meaningful context might be stronger than that of the meaningless context (see 

Figure 4B). 

All the main and interaction effects are significant and reported in Table 4. Here we 

focused on reporting the comparison of four types of context. The main effect of context type 

reached significance by likelihood ratio tests (χ2(3) = 2515.6, p < 0.001; nonspeech: mean = 

0.337, SD = 0.35; reversed speech: mean = 0.473, SD = 0.398; meaningless speech: mean = 

0.771, SD = 0.263; meaningful speech: mean = 0.889, SD = 0.187). Pairwise comparisons 

show that the reversed, meaningless and meaningful speech contexts elicited significantly 

higher identification accuracy than the nonspeech context (ps < 0.01). The meaningless and 

meaningful speech contexts elicited significantly higher identification accuracy than the 

reversed speech context (ps < 0.001). No significant difference was found between 
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meaningless and meaningful speech contexts (z = 0.071, p = 0.483). However, the difference 

between meaningful and meaningless speech contexts was actually significant (z = -10.36, p 

< 0.001) when the interaction effects were not included in the full model. This indicates that 

there might be significant differences between these two contexts, but this effect is subject to 

the influence of model specifications. 

Secondly, a linear regression model was conducted to examine whether the perceptual 

performance in each context was correlated with talker typicality. Since the nonspeech and 

reversed speech context failed to elicit higher-than-chance accuracy in all conditions, it is 

worth examining whether the perceptual performance was actually influenced by the 

typicality of a talker’s F0 range. 

Similar to Experiment 1, a linear regression model was fit to the perceptual height 

scores of each context, with the distance of a talker’s lower and upper F0 range from the 

gender-specific population F0 range as two predictors. The purpose is to examine to what 

extent the target word's likelihood of being identified as having high level tone or low level 

tone is related to the typicality of a talker’s F0 range in a context. Only the model on the 

nonspeech context reached significance, which accounted for 9.6% of variance in the 

perceptual height scores (adjusted R2 = 0.097, p < 0.001). If subjects were included as a 

random effect, again, only the linear mixed effects model on the nonspeech context was 

significant: the typicality of a talker’s lower F0 range contributed significantly to perceptual 

heights scores in the nonspeech context (t(360.8)=4.475, p < 0.001), whereas the typicality of 

a talker’s upper F0 range was not significant (t(360.8)=-1.089, p = 0.277). The typicality of a 

talker’s lower and upper F0 range together accounted for 9.87% of variance with fixed effects 

considered and accounted for 29.7% of variance with both fixed and random effects 

considered (Nakagawa & Schielzeth, 2013). This indicates that perceptual performance in the 
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nonspeech context was significantly influenced by talker typicality in F0 range. 

To summarize, the magnitude of effects of the four contexts fell in this order: 

nonspeech context < reversed speech context < meaningless speech context ≤ meaningful 

speech context. Moreover, only perceptual performance in the nonspeech context was 

influenced by talker typicality. 

Discussion 

In Experiment 2, we compared the effects of four types of contexts – nonspeech, 

reversed speech, meaningless and meaningful speech contexts, in order to find a mechanism 

sufficient for accommodating talker variation in the perception of Cantonese level tones. We 

discuss the four types of contexts one by one in the text below. 

As mentioned before, the effect of nonspeech context is primarily mediated by a 

general auditory mechanism, affecting speech perception via the general contrast of auditory 

cues across the context and target word (Huang & Holt, 2009; 2012; Holt et al., 1996; Holt, 

2005, 2006a, 2006b; Lotto & Kluender, 1998). We found that the nonspeech context failed to 

elicit significantly higher-than-chance accuracy in a number of conditions. Moreover, the 

perceptual performance was influenced by talker typicality in F0 range, despite the contextual 

F0 cues. This indicates that general contrast of auditory cues may not be sufficient for talker 

normalization in the perception of Cantonese level tones, which is consistent with the 

findings of previous studies (Chen & Peng, 2015; Francis et al., 2006; Zhang et al., 2012; 

2013; Sjerps et al., 2012). 

Within speech contexts, contexts with different cues could affect speech perception 

via different mechanisms. In particular, not all speech contexts necessarily contain cues to 

estimate a talker’s acoustic-phonological space. The reversed speech context, for example, 

only contained cues of a talker’s phonetic variation. One may argue that some phonological 
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information could be gleaned from the reversed speech context. For example, listeners might 

be able to identify the monophthongs and level tones even when they were time-reversed, 

especially since the original context was primarily composed of words with monophthongs 

and level tones (呢個字係 /li55 ko33 tsi22 hɐi22/). But it should be noted that the reversed 

context deviates from Cantonese phonology in the following ways, which probably hinders 

the extraction of phonological information. Firstly, reversing the context creates a foreign 

syllable structure that differs from Cantonese (/ia his (n)o kin/). Note that consonant coda /s/ 

is not allowed in Cantonese syllables. Secondly, although level tones are phonologically 

described as ‘level’, they are often phonetically realized with a slightly falling F0 contour. 

Tonal coarticulation also modifies the phonetic realization of a level tone, such that a level 

tone could be produced with a rising/falling contour due to F0 transition between neighboring 

tones (e.g., Xu, 1997). Thus when reversed, it is difficult to identify the level tones as they 

are. Thirdly, time-reversing a speech utterance creates unnatural formant transitions between 

consonants that do not occur in natural human production. Given the above three factors, we 

estimate that it is difficult for the reversed speech context to be mapped to native speech 

sounds in Cantonese. 

We found that the reversed speech context failed to elicit significantly 

higher-than-chance accuracy across all conditions, which indicates that the range of a talker’s 

phonetic variation is not sufficient for talker normalization in the perception of Cantonese 

level tones. Although insufficient, the reversed speech context elicited higher identification 

accuracy than the nonspeech context. Moreover, the perceptual performance was not 

influenced by talker typicality any more, unlike the nonspeech context, which also indicates 

an effect of the contextual F0 cues. It appears that the reversed speech context has some 

effect, though insufficient, on talker normalization (especially in the raised F0 condition 
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where the identification accuracy was significantly higher than chance across all four talkers, 

see Figure 4A). 

One may argue that the reversed speech context is similar to a foreign speech context, 

in that both contain non-native speech sounds. However, Sjerps and Smiljanic (2013) found 

that foreign speech contexts have a similar effect on vowel perception as native speech 

contexts (see Wong, 1998 for a similar finding). Native English, Dutch and Spanish listeners 

compensated for F1 shift in the contexts in a contrastive way, irrespective of whether the 

context (English, Dutch and Spanish) was in their native language. Overall, shifting the F1 in 

a native/non-native context appears to change the identification rate by approximately 5~20% 

across all context types and listener groups (see Figure 6 of Sjerps and Smiljanic, 2013). 

Why did foreign speech context affect vowel perception, whereas the reversed speech 

context failed to affect tone perception consistently? We believe several technological 

differences could have contributed to this discrepancy. Firstly, we compared the 

identification accuracy of each context against chance-level accuracy, according to the 

criterion that a context should elicit significantly higher-than-chance accuracy consistently 

across all talkers and all F0 shift conditions. It turns out that the reversed speech context only 

elicited significantly higher-than-chance accuracy in some conditions. But if we look at the 

overall identification accuracy in the reversed speech context (mean = 0.473, SD = 0.398), 

the magnitude of context effect is approximately 14% higher than the chance level accuracy, 

which actually overlaps with the amount of context effect (5~20%) reported by Sjerps and 

Smiljanic (2013). This means that the overall effect of the reversed speech context and 

foreign speech context might be largely similar. Secondly, as mentioned before, the reversed 

speech context contained unnatural acoustic properties that do not occur in human production 

such as time-reversed formant transitions, whereas a foreign speech context obeyed the 
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constraints of natural speech production. Such unnatural acoustic properties could have 

impeded the context effect to some extent. 

On the other hand, meaningless and meaningful contexts contained real morphemes 

with native consonants, vowels and lexical tones in Cantonese, which allowed listeners to 

estimate a talker’s acoustic-phonological space. In addition, the meaningful context contained 

valid semantic and syntactic cues. We found that both meaningless and meaningful contexts 

elicited significantly higher-than-chance accuracy across all conditions, which indicates that a 

talker’s acoustic-phonological space is sufficient for talker normalization in perception of 

Cantonese level tones. Moreover, the effect of meaningful speech context was even stronger 

than that of the meaningless speech context (the difference reached significance when 

interaction terms were not included in the model). This is probably because valid and 

coherent semantic and syntactic cues help to disambiguate some potentially ambiguous words, 

enabling listeners to obtain a more accurate estimation of a talker’s acoustic-phonological 

space. For example, the word 字 /tsi22/ ‘character’ could be confused with words with high 

level tone (e.g., 知 /tsi55/ ‘know’) or mid level tone (e.g., 志 /tsi33/ ‘aspiration’). But 

within the context 呢個字係 /li55 ko33 tsi22 hɐi22/ ‘This character is’, the interpretation of 

this sound is constrained by semantic and syntactical cues to the word 字 /tsi22/, which 

helps listeners to accurately identify it as having low level tone, and to estimate the lower 

bound of a talker’s F0 range. This indicates that valid semantic and syntactic cues, though not 

necessary, can further facilitate talker normalization. 

General discussion: A new model of talker normalization 

Here we propose a first formulation of a new model that integrates different factors to 

explain the processes of talker normalization, based on our experimental results and other 
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studies in the literature. Although we focused on lexical tones in the experiments, we believe 

that this model may apply to speech sounds in general. Figure 5 shows the model. 

As mentioned earlier, previous models of talker normalization did not consider the 

effect of talker typicality. Another factor that has been ignored by previous models is talker 

familiarity, probably because most models focus on unfamiliar talkers. It has been found that 

speech perception is sensitive to talker familiarity (Nygaard & Pisoni, 1998; von Kriegstein 

& Giraud, 2004). Nygaard and Pisoni (1998) found that listeners showed better performance 

in the identification of isolated words and words in sentences, if the words were produced by 

familiar talkers whose voices were presented to the listeners in the training phase. This 

indicates that talker-specific vocal characteristics, once learned, could be stored in memory to 

assist speech recognition later on. Craik and Kirsner (1974) found that listeners were more 

accurate at detecting whether an auditory word was a repeated word or a new word, when the 

‘repeated’ words were produced by the same talker than when the words switched to a new 

talker. This indicates that exemplars of words stored in memory preserved a talker’s voice 

information implicitly. Altogether, these findings suggest that a learned talker’s voice 

characteristics can be stored in memory (e.g., Craik & Kirsner, 1974; Goldinger, 1991; 1996; 

1997; 1998; Hintzman et al., 1972; Johnson, 1997; 2007; Palmeri et al., 1993). 

Based on the above discussion, we speculate that a space of learned talker models, 

i.e., voice characteristics of previously encountered talkers and maybe exemplars of speech 

sounds from those talkers, is stored in the memory of listeners. When a speech signal enters 

the auditory system, spectro-temporal characteristics of the signal are processed to extract the 

linguistic information (see the first arrow in Figure 5). Acoustic parameters carrying talker 

information such as F0, F3 and voice quality will be analyzed (Green, Tomiak, & Kuhl, 

1997; Kaganovich, Francis, & Melara, 2006; Magnuson & Nusbaum, 2007; Mullennix & 
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Pisoni, 1990; Mullennix, Pisoni, & Martin, 1989; Nusbaum & Magnuson, 1997; Nusbaum & 

Morin, 1992; Wong & Diehl, 2003; Wong, Nusbaum, & Small, 2004; Zhang, Pugh, Mencl, 

Molfese, Frost, Magnuson, Peng, & Wang, 2016). The analyzed talker characteristics are 

likely checked against learned talker models stored in memory to see if the characteristics 

match any familiar talkers. If the analyzed talker characteristics of the incoming speech signal 

match that of a familiar talker, whose acoustical-to-phonological mapping is already learned, 

the speech signal probably can be recognized accurately (Nygaard & Pisoni, 1998; von 

Kriegstein & Giraud, 2004). 

But if the voice characteristics do not match any existing talker model, in which case 

the talker is unfamiliar, the listeners likely resort to the mental templates of speech sounds 

that are shaped by gender-specific population voice distribution, according to our results of 

Experiment 1. If an unfamiliar talker turns out to be a typical talker, the speech sound 

produced by that talker would match the mental templates of speech sounds, and thereby be 

recognized accurately. However, if an unfamiliar talker turns out to be atypical, whose 

production deviates from the mental templates, the speech signal would be incorrectly 

recognized. The less typical a talker’s F0, the more likely that talker’s speech signal would be 

misrecognized. 

In the case of unfamiliar and atypical talkers, the speech signal would be misidentified 

temporarily, but it probably can be corrected when more information of a talker’s 

acoustic-phonological space becomes available. For example, our findings show that a speech 

signal with the mid level tone can be misrecognized as carrying the high level tone, if its F0 

is higher than the mental template of mid level tone. But the misrecognized speech signal can 

be re-evaluated, if the subsequent speech signal carries even higher F0. According to 

previous studies, it is preferable for a speech context to cover extremes of a phonological 
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space (e.g., /a/, /i/, /u/ of a vowel space, or high and low tone of a tonal space), in order for 

listeners to accurately estimate a talker’s phonological space (e.g., Wong & Diehl, 2003; 

Joos, 1948; Sjerps et al., 2011a, 2011b, 2012; Zhang et al., 2012). In Experiment 2, the 

meaningless and meaningful speech contexts (呢個字係 /li55 ko33 tsi22 hɐi22/; 呢錯視幣 

/li55 tsʰo33 si22 pɐi22/) contained words with high level tone (/55/) and low level tone (22). 

It is likely that listeners may have achieved a quite accurate estimation of a talker’s tonal 

space when they reached the third syllable of the context. We found that both meaningless 

and meaningful speech contexts are sufficient for talker normalization, but the meaningful 

speech context elicited even higher identification accuracy. This indicates that the dynamic 

estimation of a talker’s acoustic-phonological space can be done purely by the comparison of 

phonological cues in neighboring speech signals, and semantic information is not necessary. 

But the presence of coherent semantic and syntactic content must make the estimation of a 

talker’s acoustic-phonological space more accurate, probably by disambiguating ambiguous 

sounds in the context and correcting any inaccurate estimation of a talker’s 

acoustic-phonological space. The estimated talker-specific acoustic-phonological space then 

serves as a reference for the recognition of incoming speech signals from the same talker, 

ensuring accurate perception despite the atypicality of this talker’s F0. 

For familiar or typical talkers, although the identification accuracy is already high 

without a context, it should be noted that the dynamic context process might still apply. 

When the speech signals of a familiar or typical talker match the stored talker models or 

speech templates, the context process might apply without leading to a change of the 

categorization of the speech signal. But when a familiar and typical talker speaks in an 

extreme voice (e.g., in extreme emotional states) (Protopapas & Lieberman, 1997), which 

sometimes happens, the speech signal would deviate from the stored talker models or speech 
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templates. In that case, the dynamical context process would be important to update the 

estimation of a talker’s acoustic-phonological space in order to ensure accurate perception. 

The newly learned talker model (and continually updated via the context process) is 

probably added to the memory space of learned talker models. It is not totally clear how long 

a new talker model will stay in memory and how large the memory space is. Some studies 

indicate that the implicit memory traces of words with a talker’s voice characteristics may be 

retained in memory for up to a day and for at least ten talker’s voices. As mentioned earlier, 

listeners were more accurate at detecting repeated/new words, when the repeated words were 

produced by the same talker (Craik and Kirsner, 1974). Goldinger (1996) tested various 

lengths of time lag between the first and second time of word presentation, and found that the 

same-voice advantage in the recognition of repeated words disappeared if the lag was longer 

than a day, which indicates that implicit memory of voice information within words might be 

retained up to a day. Moreover, it is found that the detection accuracy was similar no matter 

whether subjects listened to word lists produced by two talkers, six talkers or ten talkers, 

indicating that at least ten talkers’ word productions can be retained in memory implicitly. 

Interestingly, even when a word was repeated by two voices, if these two voices were 

perceptually similar to each other, it still elicited the same-voice advantage in detection 

accuracy. This suggests that the same-voice advantage is mediated by the acoustic 

characteristics of a talker (e.g., F3 and F0) stored in memory, rather than discrete talker labels 

(e.g., ‘John’). 

According to the above discussion, the acoustic characteristics of at least ten talkers 

can be implicitly stored in the memory space for about a day. However, this is a very 

conservative estimate based only on words learned implicitly. The memory space must be 

larger and can retain talker models for a much longer time, if the speech signals are learned 
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explicitly and with effort (e.g., explicitly associating the speech signals with a specific 

talker), and if the memory traces are reinforced by repetitive encounter of speech signals 

from the same talker, as in the case of highly familiar talkers. 

We found that the mental templates of speech sounds are shaped by the F0 range of 

typical male and female talkers. How are such templates built? It is possible that 

talker-specific exemplars of speech sounds are a prerequisite to build the more abstract 

speech templates. As the number of talker-specific exemplars increases, cross-talker 

similarity in the phonetic form likely strengthens whereas talker-specific aspects of the 

exemplars decay. Thus the speech templates become gradually shaped by the phonetic form 

of typical male and general female talkers, who presumably occur more frequently in a 

speech community. It is even possible that each listener may develop individualized tone 

templates, for the reason that each listener has unique auditory experiences. If so, each 

listener would also perceive the same speech sounds slightly differently. But if the sample of 

talker-specific exemplars is large and overlaps across listeners, the speech templates might 

converge across listeners eventually. Since the subjects examined in this study were all adults 

living in Hong Kong, it is possible that the speech templates have converged among them. 

But the question of the formation and convergence of speech templates in individual listeners 

require further investigation. 

Conclusion 

To conclude, we presented a first formulation of a model that integrates three major 

factors – talker familiarity, talker typicality and context, to explain the processes of talker 

normalization. Such an integrative approach is important in order to fully understand talker 

normalization. Speech sounds produced by familiar or typical talkers can be recognized 

accurately without any context. In the case of unfamiliar and atypical talkers, a context with 
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cues to estimate a specific talker’s acoustic-phonological space is necessary for talker 

normalization. 

The current model is a first step towards developing a more fully specified model of 

talker normalization, and will be refined on the basis of future results. It leaves open a couple 

of questions for future studies. Firstly, it is speculated that a space of learned talker models is 

stored in the memory of listeners. Future studies should examine this question, and the 

formation and convergence of speech templates in individual listeners. Secondly, future 

studies may use a gating paradigm to examine the minimal amount of context needed to 

accurately estimate a talker’s acoustic-phonological space. Previous studies suggest that it is 

preferable for the context to cover the extremes of the phonological space (e.g., Joos, 1948; 

Sjerps et al., 2011a, 2011b, 2012; Zhang et al., 2012). But this question warrants further 

investigation. Thirdly, this model was proposed primarily based on studies on lexical tones. 

Future studies may investigate to what extent this model applies to the perception of vowels 

and consonants. Fourthly, future studies may examine the relative contribution of talker 

familiarity, talker typicality and context to the probabilistic mapping of speech signals to 

linguistic categories using computational modeling (cf. Kleinschmidt & Jaeger, 2015). In this 

model, we proposed these factors without examining their contribution to probabilistic 

mapping. Lastly, other cues contributing to talker normalization but not discussed in the 

current formulation of the model can be considered to be included based on future evidence. 
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Table 1. Mean and standard deviation (SD) of F0, F1 and F2 of the target words produced by 

four talkers in Experiment 1. 

Talker F0 (SD) F1 (SD) F2 (SD) 
Female F01 257.0 (14.6) 307.8 (20.0) 3167.3 (66.6) 
Female F02 225.5 (5.1) 286.8 (21.9) 2708.6 (25.6) 
Male M01 156.8 (3.6) 253.5 (28.8) 2267.0 (30.9) 
Male M02 104.8 (2.8) 241.8 (13.5) 2498.0 (72.4) 
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Table 2. An overview of the four context conditions in Experiment 2A and 2B.  

Context Type of cue Experiment 
Nonspeech Auditory only 2A, 2B 
Reversed speech Auditory+Phonetic 2A 
Meaningless speech 
(呢錯視幣_. /li55 tsʰo33 si22 pɐi22 _/.  
‘This mistake sees money _.’) 

Auditory+Phonetic+Phonological 2B 

Meaningful speech 
(呢個字係_. /li55 ko33 tsi22 hɐi22 _/.  
‘This character is _.’) 

Auditory+Phonetic+Phonological 
+Semantic+Syntactic 

2A, 2B 

 

  



 

51 
 

Table 3. Mean, minimal and maximal F0 of the meaningful speech context, and the mean and 

SD of the F0, F1 and F2 of the target words produced by four talkers in Experiment 2. The 

other three types of contexts (meaningless speech, reversed speech and nonspeech) were 

matched with the speech context in terms of the mean, minimal, maximal F0. 

Talker Context Target 
 Lowered: 

Mean F0  
(min, max) 

Unshifted: 
Mean F0 
(min, max) 

Raised: 
Mean F0  
(min, max) 

F0  
(SD) 

F1  
(SD) 

F2  
(SD) 

Female 
F03 

198.2  
(151.9, 275.9) 

236.8  
(190.2, 314.4) 

280.5  
(233.7, 357.7) 

234.0 
(4.9) 

285.0 
(15.9) 

3026.4 
(32.5) 

Female 
F04 

173.9  
(116.0, 265.6) 

208.1  
(148.7, 300.1) 

246.3  
(193.4, 337.8) 

206.8 
(3.0) 

304.3 
(40.8) 

2608.4 
(30.7) 

Male 
M03 

124.5  
(84.8, 184.9) 

148.4  
(108.1, 208.7) 

174.6  
(134.7, 234.6) 

143.6 
(5.6) 

281.5 
(24.5) 

2586.3 
(186.1) 

Male 
M04 

96.8  
(75.0, 137.7) 

113.8  
(88.8, 157.1) 

134.5  
(110.0, 177.5) 

114.8 
(1.7) 

265.4 
(20.1) 

2426.2 
(9.0) 
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Table 4. A summary of the results of statistical analyses of Experiment 2A and 2B combined. 

 Chi square DF p value 
Main effects 
Context 2516.6 3 p < 0.001 
F0 shift 487.67 2 p < 0.001 
Talker 19.593 3 p < 0.001 
Two-way interaction effects 
Context by F0 shift 245.88 6 p < 0.001 
Context by Talker 596.07 6 p < 0.001 
F0 shift by Talker 25.869 9 p = 0.002 
Three-way interaction effect 
Context by F0 shift by Talker 160.92 18 p < 0.001 
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Figure 1. F0 range of four talkers. (A) Experiment 1. (B) Experiment 2. The dotted line 

indicates the estimated population F0 range for female and male talkers. 
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Figure 2. Results of Experiment 1. (A) Accuracy of word identification for the four talkers. 

The dotted line indicates the chance-level accuracy (0.33). (B) Perceptual height score plotted 

as a function of the distance of each talker’s upper F0 range from the gender-specific 

population F0 range. (C) Perceptual height score plotted as a function of the distance of each 

talker’s lower F0 range from the gender-specific population F0 range. The dotted lines 

indicate the perceptual height score of high level tone ‘6’, mid level tone ‘3’ and low level 

tone ‘1’. 
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Figure 3. The F0 trajectory of contexts with raised, unshifted and lowered F0, followed by the 

target word superimposed on the spectrogram. (A) Nonspeech context. (B) Reversed speech 

context. (C) Meaningless speech context. (D) Meaningful speech context. The red line 

represents the raised F0 context, the black line represents the unshifted F0 context and the 

blue line represents the lowered F0 context. 
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Figure 4. Results of Experiment 2. (A) Rate of expected responses for the nonspeech, 

reversed speech and meaningful speech context in Experiment 2A. (B) Rate of expected 

responses for the nonspeech, meaningless speech and meaningful speech context for 

Experiment 2B. Dotted lines indicate the chance level accuracy (0.33). Asterisks refer to the 

significance level of generalized mixed-effects models comparing the identification accuracy 

with chance-level accuracy (see the text for details): *, p<0.05, **, p<0.01; ***, p<0.001. 
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Figure 5. An integrative model of talker normalization. 
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