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ABSTRACT 

  A simple and practical hybrid vibration absorber (HVA) is proposed for global vibration 

control of flexible structures under random stationary excitations. The HVA, regulated by a pole 

placement controller, uses a linear translational feedback signal to synthesize active moment via a 

moment actuator. It is shown, analytically and experimentally, capable of damping vibration in the 

entire primary structure. While the passive tuned mass damper (TMD) can suppress tonal vibration 

in the primary structure at the vicinity of the coupling point, it enhances vibration at other locations 

and other frequencies. The presented HVA, in contrast, can provide more than 48% extra broadband 

attenuation on vibrations at multiple points when compared with the passive TMD in experimental 

verification on a beam structure. Up to 85% extra broadband attenuation can be observed at the 

coupling point. The proposed HVA is a simple and economic alternative for engineers to retrofit the 

conventional TMD to a higher performance HVA for damping vibrations at multiple locations of the 

primary structure. 
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1. INTRODUCTION 

The viscous damper is a well-known, effective and economic device for attenuating 

vibrations in structures like frames [1, 2] and bridges [3-6]. Practically, a viscous damper may be 

mounted between two vibrating structures in order to damp relative motion [1-6]. It is also possible 

to mount a viscous damper between a vibrating structure and a relatively “fixed” base such as ceiling 

or ground to be a "hooked damper" [7, 8]. No matter which mounting method is used, a viscous 

damper needs a backed-up point at one end. This restriction may limit the applicability of viscous 

dampers in some mechanical structures with free-end boundaries, or some applications where it is 

impossible to find nearby rigid supports. 

The tuned mass dampers (TMD), on the other hand, are widely used for structural vibration 

control [9-13]. Figure 1 shows a TMD for vibration control in many skyscrapers, such as the "Taipei 

101". It only requires a point of attachment instead of a point of rigid support. The vibration of the 

primary structure will cause the suspended mass to swing. As a result, tensions in the suspension 
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cables are different, creating coupling moment and force to counteract the structural vibration [15]. A 

TMD is extremely effective attenuating vibration in a narrow frequency range in the vicinity of the 

mounting position. It could, however, develop some negative effect at points far away from the 

coupling location [16] or enhance vibration in other frequencies. If one increases damping ratio of a 

TMD to avoid enhancing vibration in other frequencies, the attenuation dip will be deteriorated since 

a TMD requires weak damping to suppress narrow-frequency vibration of the primary structure. 

Some researchers propose to find optimal damping ratio for the TMD based on accurate knowledge 

of eigen-functions, resonant frequencies and modal damping ratios of the primary structure. After 

choosing the optimal damping ratio for a TMD, how to implement it accurately is another practical 

problem.  

The above problems of the TMD may be solved by integrating an active element into a 

conventional TMD. One may retrofit a TMD to a hybrid vibration absorber (HVA) with better 

performance for broadband vibration control [17, 18]. Recent advances in the designs of HVA can be 

found in the literature [17, 23]. Most available active controllers focus on suppressing vibration at a 

single point. A simple HVA is proposed by the authors for broadband vibration control over multiple 

points in a primary structure [23].  

In the literature, most researchers assume accurate knowledge of eigen-functions and 

eigen-state feedback of the primary structures for controller design, implementation and stability 

analysis. In real applications, eigen-functions and eigen-states of primary structures are usually not 

available with sufficient accuracy. Active controller design may be based on identified models like 

discrete-time transfer functions. The design and stability analysis of controllers will be different due 

to different models and mathematical tools. This problem is addressed here. A simple active 

controller is designed and implemented based on a TMD similar to the one shown in Fig. 1. The new 

system only uses a linear accelerometer and a moment actuator to form a practical and economic 

HVA for structural vibration control. The proposed HVA is able to damp global broadband vibration 

in primary structures. Experimental data are presented to demonstrate the excellent global control 

performance. 

 

2. THEORY 

The HVA presented here is simpler than its previous version [23] in the feedback sensor. A 

single-axis translational accelerometer, which is easily available and easy to install, is used instead of 

an angular displacement sensor. While it is possible to measure angular displacement with a 

piezoelectric sensor, the signal is proportional to the averaged bending over sensor length instead of 
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angular displacement at a point. If the sensor length is not significantly smaller than the dimension of 

the primary structure, then spatial average effects of a piezoelectric sensor cannot be approximated 

accurately by a spatial Dirac delta function as assumed by many researchers in the literature. This is 

a problem in our experiments with a scaled primary structure, or other applications with small size 

primary structures. The translational accelerometer, on the other hand, is economic and smaller than 

the scaled primary structure in our experiments or other similar applications. The seemingly trivial 

sensor replacement causes some non-trivial changes of model properties, which could affect the 

controller design. The “unusual” combination of a translational feedback sensor with a moment 

actuator can be an alternative to some applications where the “usual” combination of translational 

sensors with force actuators or angular sensors with moment actuators could not be adopted due to 

some possible unforeseeable difficulties. It is explored in this study in details to show that the 

proposed HVA is independent of combinations of feedback sensors with actuators. The proposed 

HVA also differs from available counterparts since its parameters do not depend on accurate 

knowledge of eigen-functions of the primary structure and the controller does not require eigen-state 

feedback. This is a significant feature since eigen-functions and eigen-states of the primary structure 

are not available with sufficient accuracy in most practical applications. Even if eigen-functions of 

the primary structure are available accurately, eigen-state feedback requires multichannel feedback 

signals measured at multiple points of the primary structure. For ease of practical implementation, 

the proposed HVA parameters depend on the identified transfer function and a single feedback signal. 

Structural vibration response is monitored in experimental study in terms of mean square velocity 

and power spectral density (PSD) to evaluate the performance of the active controller on global 

vibration control. Some theoretical issues relating to the difference in mathematical model, the 

design and analysis tool are clarified here and in Section 3.2 respectively.  

A cantilever beam, shown in Fig. 2, is used as the primary structure for theoretical study and 

experimental verification. The angular, linear displacements and velocity of the beam are denoted as 

),( tx , ),( txw  and ),( txv respectively. The HVA is coupled with the beam at axx   in Fig. 2. 

The angular displacement of the suspended mass is denoted as )(t . A coupling moment generated 

by the HVA is denoted as τ(t). Its effect on the beam is described by )()( axxt  , where )( axx  

is a spatial Dirac delta function. The external disturbance is modeled by a moment function excited 

at dxx   and denoted as )()( dxxtr  , where )(tr is a stationary and random time function. 

Damping and displacement of the beam satisfy the Kelvin-Voigt [24] and Euler-Bernoulli hypothesis 

respectively. The dynamic equations of the coupled system can be written as  
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 In Eq. (1), , C , E and I represent, respectively, mass per unit length, damping coefficient, 

Young's modulus and second moment of cross sectional area of the beam. Equation (2) models the 

temporal effects of the coupling moment )(t , with the active component )(tmact  generated by a 

moment actuator. Effect of the rotational spring is modeled by stiffness k . Equation (3) relates the 

coupling moment )(t  with the angular acceleration )(t  and the second moment of inertia J  

of the HVA. In modal space, the linear displacement of the beam can be represented as  
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The linear velocity of the beam can be expressed as 
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The angular displacement of the beam can be written as 
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where )(ti and )(ti are the ith modal eigen-state and its derivative with respect to time; )(xi and 

)(xi are the ith modal eigen-function of the beam and its derivative with respect to x.  

 A translational velocity signal is used as the feedback, and the active moment is synthesized 

with a control law, whose Laplace transform domain version is 

)()()( sVsGsM aact                (5) 

where Mact(s)=L[mact(t)], Va(s)=V(xa,s)=sW(xa,s)=L[ ),( txw a ] and )(sG is the controller transfer 

function to be discussed in Section 3.2. Let 
)(

),(

sR

sxV
 denotes the closed-loop transfer function from 

the disturbance to any location x in the primary system, then 
)(

),(

sR

sxV
 is derived in Appendix A as: 
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Detailed definitions of )(sB dx  , )(sBk , )(sBG , )('' sB aa  and )(' sBaa  are given in Appendix 

A. 

In Eq. (6), the denominator (characteristic equation) of the closed-loop transfer function is 

independent of spatial variable x under active control. This means active global damping is possible 

with the proposed HVA by a proper selection of G(s). The damping effects apply to all points of 

entire primary structure instead of at the coupling point. The use of translational accelerometer 

causes a small change in Eq. (6): the characteristic equation changes 

from )()()()()( 22 sBsGsskBssKsA aaaa   in [23] to )()()()()( 32 sBsGsskBssKsA aaaa    

here. Due to the difference between )(''
2 sBs aa  and )('

3 sBs aa , the secondary path transfer function 

becomes possibly non minimum phase. This is a practical problem since spatial effects of actuators 

may not necessarily be represented by spatial Dirac delta functions accurately. Even with a 

collocated translational sensor and force actuator combination, the secondary path transfer function 

could still be non minimum phase when the implementation is a discrete-time system. It could affect 

some controllers, such as the direct velocity feedback controllers that become unstable to non 

minimum secondary control paths. The proposed HVA, however, is independent of such a difference 

and independent of different combinations of feedback sensors with actuators and their respective 

locations. 

The proposed HVA also differs from other available counterparts since its parameters do not 

depend on eigen-functions of the primary system and it does not use eigen-state feedback. Instead, 

the controller parameters depend on a discrete-time transfer function 
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where )(zB dx  , )(zBk , )(zBG , )('' zB aa  and )(' zBaa  are mathematically related to )(sB dx  , 

)(sBk , )(sBG , )('' sB aa  and )(' sBaa . Practically, parameters of the proposed controller only 

depend on polynomials )()()()( zkBzKzAzQ aa  and )(' zBaa , which can be identified with 

sufficient accuracy. 

 

3. DESIGN OF THE HVA 
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This section will mainly discuss on the hardware and controller design of the HVA.  

 

3.1 HARDWARE DESIGN 

 The rotational tuned mass damper in Fig. 1 is widely used in buildings or skyscrapers for 

structural vibration control [19]. It generates moment and horizontal force at the anchor position by 

the suspended cables when the primary structure vibrates. Figure 3 briefly shows how the moment is 

generated by the suspended cable. Let T1 and T2 denote tensions in the suspended cables when the 

suspended mass swings. The tensions may be expressed, respectively, as F1vertical, F1horizontal, F2vertical 

and F2horizontal. Since tensions T1 and T2 are different in magnitudes when the mass swings, F1vertical 

and F2vertical are also different in magnitudes to generate dynamic moment acting on the top center 

position of the primary structure.  

 Conventionally, the pendulum type tuned mass damper shown in Fig. 1 can be retrofitted to a 

hybrid vibration absorber by integrating a translational x-y table, driven by a set of ball screw and 

AC servo motor [19]. Figure 4 shows the schematic of such kind of hybrid vibration absorber. The 

drawback of this design is space occupation of the translational platform. In case of severe vibrations, 

deformations in the guiding rails could hinder the movement of the suspended mass and deteriorate 

control performance. 

 An alternative design of HVA is presented here to tackle the existing problem. Typically, a 

pendulum type tuned mass damper consists of suspended cables and mass. For vibration at very low 

frequency, length of suspended cables should be very long to limit its applicability in real practice as 

very large space is required for absorber installation [25]. The proposed HVA shown in Fig. 5 

consists of a flexible connecting beam with a mass and a moment actuator. The mass can be 

vertically aligned along the center slot of the connecting beam for easy tuning of passive resonant 

frequency. The other end of the connecting beam is fixed on the primary structure. The moment 

actuator is adhered to the suspension frame to generate active moment. During vibration control, the 

HVA mass will swing and bend the connecting beam to generate the passive moment. The coupling 

moment can be transmitted to the primary structure through the coupling point of the HVA. This 

design can reduce space consumption due to the long suspended cable and bulky active moving table. 

It is free of negative effects caused by possible deformation of guiding rails. Alternatively, one may 

mount actuators parallel to the dampers in the rotational inertia damper of [26] to turn the passive 

rotational TMD into a HVA. 
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3.2 CONTROLLER DESIGN 

This part provides details on the pole placement controller G(z). The control objective is to 

introduce damping effect to the poles of the closed-loop system. A prototyped polynomial with 

selected roots is assigned as the denominator of the closed-loop system. When the active controller is 

switched off, i.e. G(z)=0, the dynamic response of the proposed HVA will automatically turn to a 

conventional passive absorber (TMD). The active controller has a transfer function 

)(

)(
)(
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function available by offline system identification [27]. Details of offline system identification will 

be discussed in the next section. Substituting Eq. (8) into Eq. (7), one obtains the closed-loop transfer 

function from the disturbance to any location of the HVA coupled system. The result is 

)()()()]()()([

)()()()]()()([

)(

),(

zBzPzUzkBzKzA

zBzPzUzBkzBzK

zR

zxV

aaaa

Gkdx








   

)()()()(

)()()()]()()([

zBzPzUzQ

zBzPzUzBkzBzK

aa

Gkdx








        (9) 

where )()()()( zkBzKzAzQ aa  . In Eq. (9), parameter polynomials P(z) and U(z) of the controller 

contribute to both denominator and numerator of the closed-loop transfer function. Although the 

denominator is independent on spatial variable x, the closed-loop transfer function is a function of x 

since polynomials )(zB dx  , )(zBk  and )(zBG  depend on spatial variable x (proven in Appendix 

A). It is possible to focus on a single monitor point x and try to reduce either the H or H2 norm of 

Eq. (9) by selecting a proper controller. That is a common approach adopted by most researchers in 

the literature. The proposed controller, however, is designed to reduce the H2 norm of Eq. (9) at 

multiple points instead of just one point. This is another significant feature of the proposed HVA. 

Since the denominator of Eq. (9) is independent of spatial variable x, it is the starting point for 

controller design. By matching the denominator of Eq. (9) to a prototype polynomial D(z), one 

obtains a Bezout equation 

)()()()()( zDzBzPzUzQ aa               (10) 
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of Eq. (10) is 
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where the matrix in Eq. (11), known as Sylvester resultant matrix [28], is nonsingular if polynomials 

)(zQ and )(zB aa   are coprime without common roots. This condition is true if the secondary control 

path is controllable. When the feedback sensor and actuator are located at the end of the beam, all 

vibrations modes are controllable and observable. Therefore the secondary path transfer function do 

not have common roots in Q(z) and )(zB aa  . In general, the user can always select the coupling point 

to avoid vibration nodes and ensure controllability. 

Parameter polynomials P(z) and U(z) can be calculated by multiplying the inverse of the 

Sylvester resultant matrix to both sides of Eq. (11) such that  
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It is important to select prototype polynomial D(z) such that whose roots are all inside the unit circle 

centered at the origin of the complex plane. If the controller is implemented and switched on, it 

forces the closed-loop transfer function into Eq. (9) such that the closed-loop characteristic equation 

matches D(z) exactly. Hence the name “pole placement control”. In discrete time control theory [29], 

closed-loop poles must be inside a unit circle centered at the origin to ensure stability. For a discrete 
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time system, the closer its poles to the origin of the complex plane, the faster its impulse response 

converges. Smaller magnitudes of poles imply heavier damping.  

In Appendix B, it is shown that 
)(

)(

)(

)(

act zQ

zB

zM

zV aaa   is the secondary path transfer function from 

the moment actuator to the accelerometer feedback sensor. This transfer function can be obtained by 

offline system identification. Let iRt  denote the ith root of the polynomials Q(z) and )(zB aa  . One 

may select roots for D(z) on the basis of iRt  since Q(z) and )(zB aa  are related to the controller 

parameter polynomials P(z) and U(z) via the Bezout equation in Eq. (10). The first step is to modify 

or damp iRt  by 
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where   is a parameter used to adjust the damping level introduced to the roots of 

)(zQ and )(zB aa  . The prototype polynomial D(z) is constructed from the modified (damped) roots as 
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 Since a discrete-time system converges more quickly if its closed-loop poles have smaller 

magnitudes, one may be tempted to select the smallest damping parameter α=0 in order to achieve 

best damping effects. Both analytical and experimental results indicate that the choice of α is not 

necessarily the smaller the better for vibration suppression at single or multiple points. It is important 

to see that P(z) and U(z) contribute to both denominator and numerator of the closed-loop transfer 

function in Eq. (9), where the numerator is a function of x. If one chooses α=0, the resultant P(z) or 

U(z) may have some extremely large magnitudes at some frequencies to enhance vibration even if 

the focus is a single monitor point. The selection of active damping parameter α must balance effects 

of both numerator and denominator in Eq. (9).  

This problem becomes much more complicated if vibrations at multiple points are suppressed. 

By using one value of α, the controller may have excellent performance at a monitor point, while by 

selecting other values of α, the controller may have better performance at other monitor points. To 

achieve the objective of global control, two kinds of sensors are used in the design, implementation 

and test of the control system. The first kind includes all feedback sensors whose outputs are used by 

the controller to synthesize the actuation signal. In the proposed HVA, only one feedback sensor is 
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used to reduce system cost. The second kind sensors are monitor sensors whose outputs are not 

required for actuation signal synthesis. The monitor signals are used to compare control performance 

at multiple points. In real practice, it is impossible to use infinite number of monitor sensors to 

observe the vibration response of entire primary structure. However, it is reasonable to monitor 

vibration response of the primary structure at finite number of points. One may increase the number 

of monitor sensors for more accurate approximation of global vibration response, locations of 

monitor sensors should avoid any node positions and be distributed evenly along the primary 

structure. During the design process, one may start the damping parameter with α=1 and decrease it 

with an interval of 0.01 to select the lowest stable value of α. When the damping parameter is set to 

α=1, it means no damping effect to the modified poles (refer to Eqs. 13a and 13b). Once the lowest 

stable value of α is found, one may fine tune the damping parameter with an interval of 0.005 to find 

out the optimal value. The respective mean square velocity, Px, (detail is discussed in section 6) of 

each monitor point is calculated and averaged over multiple monitor points. The averaged value is 

used as a reference to evaluate the global vibration response of the primary structure. 

With the help of monitor sensors in the experiments, the optimal value for α was found to be 

0.96 for the best and stable vibration attenuation on mean square velocities averaged over multiple 

monitor points. After comparison of control performance, monitor sensors are uninstalled, leaving 

the controller operating with its feedback sensor. To the best of Authors' knowledge, the propose 

HVA is the first one with experimental validation of global vibration control for a beam structure, 

reported in the literature. 

 

4. SYSTEM IDENTIFICATION 

In Appendix B, it is shown that 
)(

)(

)(

)(

act zQ

zB

zM

zV aaa   is the transfer function from the moment 

actuator to the feedback sensor. System identification may be conducted to obtain polynomials Q(z) 

and )(zB aa  for construction of prototype polynomial D(z) with Eq. (10) and controller design with Eq. 

(12). Offline system identification is based on input-output data with length N where N >> 2n and n 

is the order of the identified transfer function. The input signals are white noises generated by the 

controller to the moment actuator of the HVA. The output signals are measured from the feedback 

signal simultaneously. Two sequences of discrete time signals with length N can be captured, one 

sequence  )()2()1( Nmmm actactact   contains the white noise signals and the other 

 )()2()1( Nvvv aaa   contains the vibration feedback signals. 
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A time-invariant discrete system can be modeled by an nth order of difference equation with 

constant coefficients and an error item [27] as  

)()2()1()( 21 nkvqkvqkvqkv anaaa    

)()1()1()( 110 kenkmbkmbkmb actnactact          (15) 

Ideally, if the modeling error is negligible, i.e.  0)( Ne , one may take Z-transform on both sides of 

Eq. (15) to obtain 

)(

)(

1
1)(
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1

0
2

2
1

1

1
1

2
2

1
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zB

zq
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zqzqzq
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i

i
i

n

i

i
i

n
n

n
n

act

a 

































     (16) 

Polynomials Q(z) and )(zB aa  can be obtained when their coefficients bi and qi are calculated in 

the condition of zero error. In practice, modeling error always exists in the identification process to 

affect the accuracy of the coefficients of Q(z) and )(zB aa  . In most applications, it is possible to 

reduce modeling error  )(Ne  by matching the measurement data to a system with a higher order n. 

Equation (15) has a matrix-vector representation [27] 
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It can be simplified to 

eya                   (18) 

where   ,)()2()1( T
aaaa Nvnvnvy     ,101

T
nn bbqq    
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Let ̂  denote the least-square solution that minimizes modeling error      a
T

a yy . 

One may obtain ̂ by 

  .ˆ
1

a
TT y


                (19) 

To select a proper system order and reduce modeling error, one can plot a figure of least-square 

modeling error eeT  against the system order n. When a proper system order is reached, there should 

be a dramatic change of the gradient in the plotted curve. In the experiment, the system order was 

found to be much higher than the number of vibration modes to be suppressed. The large number of 

system order may be caused by dynamic effect of the equipments, such as anti-aliasing filter, sensor, 

actuators, amplifiers, A/D and D/A converters. The identified transfer function includes all dynamic 

effects of experimental equipments in the control loop, in addition to the vibration dynamics of the 

primary structure. 

 

5. EXPERIMENTAL SETUP 

Experiments were conducted to validate the proposed active controller. The equipments setup is 

shown in Fig. 6, with the following equipments:  

1.) dSpace rapid prototype controller board – ds1104 (integrated with A/D and D/A converters) 

2.) Alligator anti-alias low-pass filter board – AAF-3PCI (with AAF-3F modules) 

3.) Brüel & Kjær Accelerometer – type 4374 (the feedback sensor) 

4.) Picomin Accelerometer – model 22 (the monitor sensor) 

5.) Brüel & Kjær 4-channel NEXUX charge conditioning amplifier – type 2692 (with double 

integration function) 

6.) Noliac Piezoelectric bender – CMBP06 (two had been used, one for disturbance and one for 

actuator) 

7.) Noliac 1-channel voltage amplifier – NDR 6110 (two had been used for the two piezoelectric 

benders) 

The dSpace ds1104 board was inserted into a host personal computer on which the dSpace 

ControlDesk software was installed. The sampling frequency of the control system was set to 

1720Hz and the cut-off frequency of the anti-aliasing filter was tuned to 600Hz. In the experiment, 

the maximum frequency of interest was 520Hz which is reasonably less than the anti-aliasing 

frequency. Typically, sampling size should be two times of the maximum frequency of interest for 

satisfaction of Nyquist sampling criterion. In real practice, however, oversampling of two times or 
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more is necessary in order to “cover” the transition band of the anti-aliasing filter. The sample size of 

each experiment was 40,000. The controller is mathematically given by Eq. (8) and was programmed 

with the help of dSpace ControlDesk, MatLab Realtime workshop and MatLab Simulink. One could 

program and implement the controller, design the user-interface and setup experimental parameters 

via the dSpace ControlDesk. The controller program was compiled via the MatLab Realtime 

workshop and loaded into the dSpace ds1104 via the dSpace ControlDesk. 

A cantilever beam shown in Fig. 7 was used in the experiments as the primary structure. It has 

dimensions of 150mm (length)  30mm (width)  3mm (thickness) with a weight of 0.095kg and was 

fabricated with mild steel. A piezoelectric bender was adhered to the root side of the primary 

structure as a disturbance generator (see in Figs. 7 and 9). A stainless steel absorber is shown in Fig. 

8 with dimensions of 85mm (length)  20mm (width)  1mm (thickness) with a weight of 0.015kg. Its 

passive resonant frequency was tuned to the first resonant peak of the primary structure. That means 

the frequency ratio of the absorber to the first primary resonance is equal to 1. A piezoelectric bender 

was adhered at the root side of the absorber to serve as a moment actuator. The mass ratio between 

the absorber mass and primary beam structure was 15.8%. The absorber and the accelerometer 

feedback sensor were mounted at the tip position of the primary cantilever beam as shown in Fig. 9. 

Another accelerometer sensor was used as a monitor sensor to measure the structural linear velocity 

response at six different locations as shown in Fig. 9. Measurements of the monitor sensor were 

collected sequentially at multiple points to evaluate and compare performance of the HVA and its 

controller. 

Signals from both accelerometers were integrated by the 4-channel charge conditioning amplifier 

to give out linear velocity signals for control and monitor purpose. The dSpace ds1104 controller 

board was used to generate white noise signal for the disturbance piezoelectric bender, to capture 

monitor sensor signals for further analysis and to synthesize control signal for the moment actuator 

of the HVA.  

 

6. EXPERIMENTAL RESULTS AND DISCUSSIONS 

Three sets of experiment data were collected to compare the performance of the HVA. The 

experimental conditions for the three data sets were, respectively, (i) primary structure (beam) only 

without any control efforts; (ii) control by passive absorber with active controller off and (iii) control 

by the proposed HVA with active controller on. One monitor sensor was used to measure the linear 

velocity response at six different positions, respectively and sequentially, at x = 50mm, 70mm, 90mm, 
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110mm, 130mm and 150mm, as shown in Fig. 9 for each experimental condition and each value of . 

The experimental data were used to evaluate and compare the effectiveness of the proposed 

pole-placement controller on multi-point structural vibration control with respect to its passive 

counterpart.  

For each of three experimental conditions, a set measurement data was obtained that includes 6 

sub-sets of monitor data. Each sub-set contains two sequences  )()2()1( Nrrr   and 

 )()2()1( Nvvv xxx   with the same sample size of N=40,000. The first sequence was the 

white noise disturbance signals and the second sequence was the linear velocity monitor signals 

measured at position x, for x = 50mm, 70mm, 90mm, 110mm, 130mm and 150mm respectively. These 

signals were transformed to the frequency domain using MatLAB command “pwelch” and plotted as 

the normalized power spectral densities (PSD’s) 

2

)(

),(
tj

tj

eR

xeV








(in dB scale) with t   denoted as the 

sampling time. Due to space limit, PSD’s measured at positions x = 50mm, 90mm and 150mm were 

selected to demonstrate vibration response of the beam structure at far field, middle field and 

coupling point respectively. Power spectral densities measured at other points were not plotted here 

as they are similar. 

In other words, three PSD’s were obtained when the monitor sensor was attached to each of the 

monitor points to visualize control performance under the three experimental conditions. Take the 

coupling point x = 150mm for example, the PSD’s are compared in Fig. 10 for the three experimental 

conditions. Figure 10a plots the comparison between a raw beam without any vibration control and 

vibration control with the passive TMD. The TMD is actually a distributed-parameter system with its 

first resonance pre-tuned to suppress the first resonant peak of the primary structure. With active 

controller off, the TMD suppressed the first two vibration peaks (78Hz and 520Hz) of the primary 

structure but enhanced vibration at other frequencies. Three new peaks were generated by the TMD, 

two of which sandwich the first peak of the primary structure. These peaks are proportional to the 

attenuation dip in dB scale. If one increases damping ratio of a TMD to reduce the new peaks, it will 

deteriorate the attenuation dip sine the TMD requires weak damping to introduce the attenuation dip 

in the frequency response of the primary structure. Besides, the optimal damping ratio of the TMD 

depends on accurate knowledge of eigen-functions, resonant frequencies and modal damping ratios 

of the primary structure. After choosing the optimal damping ratio of a TMD, how to implement it 

accurately is another practical problem. The proposed HVA is able to attenuate the new peaks 

without sacrificing the attenuation dip. Figure 10b plots the comparison between vibration control 
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with the passive TMD and the hybrid HVA. The difference between the two cases was the controller 

switched off and on. The HVA was able to maintain absorption dips at the first two resonances of the 

primary structure (78Hz and 520Hz); and reduced the detrimental effects of the TMD at the two new 

peaks by more than 8 dB. 

 

The monitor sensor was also attached to other non-coupling points to compare vibration control 

performance. When the monitor sensor was attached to x = 90mm, the corresponding PSD’s are 

shown in Fig. 11. Figure 11a plots the comparison between the raw beam without any vibration 

control and vibration control with the passive TMD. Again, the TMD suppressed the first two 

vibration peaks of the primary structure but enhanced vibration at other frequencies. Four new peaks 

were generated by the TMD, two of which sandwich the first peak of the primary structure. Figure 

11b plots the comparison between vibration control with the passive TMD and the hybrid HVA. The 

HVA was able to maintain absorption at the first two resonances of the primary structure; and 

reduced the detrimental effects of the TMD at the three new peaks. Particularly, the two lower new 

peaks, generated by the TMD, were damped down by the HVA by more than 10 dB. 

When the monitor sensor was attached to x = 50mm, the corresponding PSD’s are shown in Fig. 

12. Figure 12a plots the comparison between the raw beam without any vibration control and 

vibration control with the passive TMD. Similar to the PSD’s measured at the coupling point, the 

TMD is seen to suppress the first two vibration peaks of the primary structure but enhanced vibration 

at other frequencies. Three new peaks were generated by the TMD. Figure 12b plots the comparison 

between vibration control with the passive TMD and the hybrid HVA. The HVA was able to 

maintain absorption at the first two resonances of the primary structure; and reduced the detrimental 

effects of the TMD at all three new peaks. 

Let Px denote the mean square velocity of the beam structure measured at monitor position x. It 

is calculated as 



N

i
xx iv

N
P

1

2 )()
1

(
 
for x = 50mm, 70mm, 90mm, 110mm, 130mm and 150mm with 

the same power of disturbance excitations. When the monitor sensor was attached at each of the 

above points, the mean square velocities were computed for the cases of (i) raw beam without 

control (denoted as Px_Beam), (ii) control with passive TMD (active controller switched off) (denoted 

as Px_TMD), and (iii) control with the proposed HVA (denoted as Px_HVA) with the same power of 

white noise disturbances. Using Parserval’s theorem, one may find that Px_Beam, Px_TMD and Px_HVA are 

proportional to H2 norms (areas of PSD's) from the disturbance to monitor point x under different 

experimental conditions. If plotted in Fig. 13, they can be seen as spatial distributions of H2 norms 



16 
 

for comparison of vibration control performance under different experimental conditions. Starting 

from x = 110 mm, the detrimental effects of the TMD can be seen with higher values of Px_TMD when 

the monitor sensor was attached to x = 50mm, 70mm, 90mm and 110mm.The proposed HVA, on the 

other hand, suppressed vibration with lower values of Px_HVA in Fig. 13 when the monitor sensor was 

attached to all monitor points. 

Figure 14 demonstrates the comparison on percentage reduction of the mean square velocity of 

beam structure at monitor positions x = 50mm, 70mm, 90mm, 110mm, 130mm and 150mm for the 

cases of (i) passive TMD relative to raw beam (calculated as %100
_

__ 


Beamx

TMDxBeamx

P

PP
), (ii) 

proposed HVA relative to raw beam (calculated as %100
_

__ 


Beamx

HVAxBeamx

P

PP
), and (iii) proposed 

HVA relative passive TMD (calculated as %100
_

__ 


TMDx

HVAxTMDx

P

PP
). The passive TMD enhanced 

the mean square velocity of the primary structure many monitor points, such as x = 50mm, 70mm, 

90mm, 110mm and it only reduced the velocity at points x = 150mm and 130mm. This is shown in 

Fig. 14 where velocity enhancements are indicated by negative values. In contrast, the presented 

HVA attenuated the mean square velocity of the cantilever beam at all the monitor positions by as 

much as 93%. Roughly, passive TMD would enhance about 22% of overall mean square velocity of 

the primary structure in average while the proposed HVA could suppress over 45% in the 

experiments. It is also critical to see that the presented HVA can provide more than 48% of extra 

attenuation on the mean square velocity to the primary structure while comparing with passive 

absorber at all non-coupling locations and as much as 85% at the coupling position. That means the 

presented HVA has an excellent attenuation capability on the structural vibration response at all the 

beam span of primary structure for global structural vibration control. The proposed hybrid absorber 

design can provide a simple alternative for engineers to retrofit the conventional TMD as a higher 

performance HVA to avoid vibration response enhancement at partial span of the primary structure. 

It is shown in Figs. 10-12 that two very high peaks, sandwiching the first resonance peak of the 

primary structure, were induced by the passive TMD. These new peaks were attenuated significantly 

by the proposed HVA at all monitor locations. It is clear to see that passive TMD can introduce little 

damping to the primary structure. The proposed HVA, in contrast, can significantly enhance the 

damping effect on the two induced resonances of the primary structure. 
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7. CONCLUSIONS 

 In many practical applications, eigen-functions and eigen-state feedback of primary structures 

are not available with sufficient accuracy for the design and stable implementation of active 

controllers to suppress multi-mode vibrations. It is important to seek alternative methods to design 

stable active controllers for global and broadband active vibration control in flexible structures. A 

method is proposed in this study to design and implement a stable active controller for an otherwise 

passive TMD. The resultant is a HVA that is able to introduce multi-mode damping effects to an 

entire flexible structure instead of just at the coupling point. The analytical result is validated by 

experimental tests on a beam structure. In the experiments, the proposed HVA was able to provide 

more than 48% of extra attenuation on the mean square velocity of the flexible beam when compared 

with the TMD (difference between turning on/off the active controller) at all non-coupling locations. 

The improvement was as high as 85% at the coupling point. That means the proposed HVA has an 

excellent capability to suppress structural vibration of a flexible primary structure for global 

structural vibration control. The proposed hybrid absorber design can provide a simple and economic 

alternative for engineers to retrofit the conventional TMD as a higher performance HVA to avoid 

vibration response enhancement at partial span of the primary structure. 
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Appendix A: 

 Eigen-functions of the primary structure are orthogonal functions. If the primary structure is a 

beam, its eigen-functions satisfy the following orthogonal equation: 


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The local modal decomposition is made possible by inner product and written as [30]  
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where i  and i  denotes the damping ratio and the natural frequency of the ith mode of the 

primary structure. One may substitute Eqs. (4a), (A2a) and (A2b) into Eq. (1) to obtain 

    
x

x

xx
xtdx

x

xx
xtrttt

l
a

i

l
d

iiiiiii d
)(

)()(
)(

)()()()(2)(
00

2  


















 

  

        )()()()( aidi xtxtr     ...3,2,1i     (A3) 

Equations (A3), (2) and (3) may be expressed in the Laplace transform domain as another set of 

dynamic equations for the coupled system: 
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where )( diid x   and )( aiia x  ; Hi(s)=L[ηi(t)], R(s)=L[r(t)], T(s)=L[τ(t)], Φ(s)=L[ϕ(t)] and 

Θa(s)=L[θa(t)] =L[θ(xa,t)] 

Substituting Eq. (A4) into the Laplace transformation of Eq. (4c), one may express ),( sxa , 

the angular displacement of the beam at the sensor location as: 
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 Similarly, one may express ),( sxV a , the linear velocity of the beam in terms of the 
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One may eliminate )(s in Eqs. (A5) and (A6), such that 
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A further substitution of Eqs. (A7a) and (A8a) into Eq. (A10) leads to 
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Recall Eq. (A4) and substitute it into Laplace transformation of Eq. (4b), one may obtain 
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The above equation is equivalent to 
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This is the closed-loop transfer function from the disturbance to any location x of the primary system 

(the beam). 
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Appendix B 
Recall Eq. (A9) and substitute it into Eq. (A8a), one may obtain 
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One may eliminate the disturbance signal, i.e. R(s)=0, during system identification and rewrite Eq. 

(B1) as 
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Similarly, one may substitute Eq. (A9) into Eq. (A7a) and eliminate disturbance signal, i.e. R(s)=0 to 

obtain 
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Now substituting Eq. (B3) into Eq. (B2), one may obtain 
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According to Eq. (B4) the transfer function from the moment actuator to the feedback sensor can be 

rewritten as 
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Figure Captions: 

 
Fig. 1 2D schematic of a tuned mass damper used in many skyscrapers like the “Taipei 101”. 

 

Fig. 2 Cantilever beam coupled with the proposed hybrid vibration absorber (HVA) at point x = 

xa under an external moment excitation )()( dxxtr  at point x = xd. 

 

Fig. 3 Schematic of the equivalent moment. 

 

Fig. 4 Schematic of a conventional hybrid vibration absorber. 

 

Fig. 5 Schematic of the proposed hybrid vibration absorber. 

 

Fig. 6 Schematic of the experimental setup. 

 

Fig. 7 Figure of the proposed hybrid vibration absorber coupled at the tip position of a primary 

cantilever beam with a piezoelectric bender adhered at the cantilever root side as moment 

disturbance. 

 

Fig. 8 Figure of the proposed hybrid vibration absorber with a piezoelectric bender adhered at its 

root side as moment actuator for control purpose and a tunable screw-washer-nut set as 

absorber mass. 

 

Fig. 9 Schematic of the monitor positions for structural vibration response measurement. 

 

Fig. 10. Comparison of PSD, 

2
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),(
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tj

eR

xeV
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





, measured at x=150mm of the primary structure:      

 (a)     raw beam;         with passive TMD; and  

(b)         with passive TMD;         with proposed HVA. 
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Fig. 11. Comparison of PSD, 
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, measured at x=90mm of the primary structure:      

 (a)     raw beam;         with passive TMD; and  

(b)        with passive TMD;        with proposed HVA. 

 

Fig. 12. Comparison of PSD, 
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
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, measured at x=50mm of the primary structure:      

 (a)     raw beam;          with passive TMD; and  

(b)         with passive TMD;         with proposed HVA. 

 

Fig. 13. Mean square velocity, 



N

i
xx iv

N
P
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2 )()
1

( , of the beam structure in Fig. 9 measured at 

x=150mm, 130mm, 110mm, 90mm, 70mm, 50mm and the spatial average value for the 

cases of  

(i)  raw beam (Px_Beam),  

(ii)  control with passive TMD (Px_TMD), and  

(iii) control with the proposed HVA (Px_HVA). 

 

Fig. 14 Comparison of the percentage reduction of mean square velocity of the beam structure 

measured at x = 150mm, 130mm, 110mm, 90mm, 70mm, 50mm and the spatial average 

value for the cases of  

(i) passive TMD relative to raw beam, 
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Fig. 1. 2D schematic of a tuned mass damper used in many skyscrapers like the “Taipei 101”. 
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Fig. 2. Cantilever beam coupled with the proposed hybrid vibration absorber (HVA) at point 

x = xa under an external moment excitation )()( dxxtr  at point x = xd. 
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Fig. 3. Schematic of the equivalent moment. 
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Fig. 4. Schematic of a conventional hybrid vibration absorber. 
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       Fig. 5. Schematic of the proposed hybrid vibration absorber. 
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Fig. 6. Schematic of the experimental setup. 
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Fig. 7. Figure of the proposed hybrid vibration absorber coupled at the tip position of a 

primary cantilever beam with a piezoelectric bender adhered at the cantilever root side 

as moment disturbance. 
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Fig. 8. Figure of the proposed hybrid vibration absorber with a piezoelectric bender adhered at 

its root side as moment actuator for control purpose and a tunable screw-washer-nut set as 

absorber mass. 
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 Fig. 9.  Schematic of the monitor positions for structural vibration response measurement. 
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Fig. 10. Comparison of PSD, 

2

)(

),(
tj

tj

eR

xeV








, measured at x=150mm of the primary structure:      

 (a)     raw beam;         with passive TMD; and  

(b)         with passive TMD;         with proposed HVA. 
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Fig. 11. Comparison of PSD, 

2

)(

),(
tj

tj

eR

xeV








,measured at x=90mm of the primary structure:      

 (a)     raw beam;         with passive TMD; and  

(b)        with passive TMD;        with proposed HVA. 
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Fig. 12. Comparison of PSD, 

2
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),(
tj

tj

eR

xeV








, measured at x=50mm of the primary structure:      

 (a)     raw beam;          with passive TMD; and  

(b)         with passive TMD;         with proposed HVA. 
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Fig. 13. Mean square velocity, 



N

i
xx iv

N
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1

2 )()
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( , of the beam structure in Fig. 9 measured at x = 

150mm, 130mm, 110mm, 90mm, 70mm, 50mm and the spatial average value for the cases 

of 

(i)  raw beam (Px_Beam),  

(ii)  control with passive TMD (Px_TMD), and  

(iii) control with the proposed HVA (Px_HVA). 
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Fig. 14 Comparison of the percentage reduction of mean square velocity of the beam structure 

measured at x = 150mm, 130mm, 110mm, 90mm, 70mm, 50mm and the spatial average 

value for the cases of  

(iv) passive TMD relative to raw beam, 
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(v) proposed HVA relative to raw beam, 
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, and  

(vi) proposed HVA relative to passive TMD, 
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