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Abstract

Using mean-variance criterion, we investigate a multi-period defined contribution

pension fund investment problem in a Markovian regime-switching market. Both

stochastic wage income and mortality risk are incorporated in our model. In a

regime-switching market, the market mode changes among a finite number of regimes,

and the market state process is modeled by a Markov chain. The key parameters,

such as the bank interest rate, or expected returns and covariance matrix of stocks,

will change according to the market state. By virtue of Lagrange duality technique,

dynamic programming approach and matrix representation method, we derive ex-

pressions of efficient investment strategy and its efficient frontier in closed-form.

Also, we study some special cases of our model. Finally, a numerical example based

on real data from the American market sheds light on our theoretical results.

Keywords: Contribution pension funds; Multi-period mean-variance; Regime

switching; Mortality risk; Dynamic programming

1. Introduction

There are two major types of pension schemes: defined benefit (DB) and defined

contribution (DC). In a DB plan, benefits are fixed in advance by sponsors, and

contributions are set and subsequently adjusted so as to ensure that the fund re-

mains in balance, hence the risk is borne by sponsors. It is borne by members in the
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case of DC plan, where contributions are predefined (often as a fixed percentage of

wage income) and benefits are affected by investment performance and wage income

of the member during the accumulation phase. Nowadays, DC pension funds play

an important role in the social security system all over the world. Note that an

accumulated fund may not be adequate on the day of retirement, hence it is essen-

tial for the member to have investments during the accumulation phase. Optimal

DC fund investments have important applications in various fields including, but

not limited to, economics, finance and actuarial science. Recently, there has been

increasing interest in studying this type of stochastic problem as well as addressing

its applications.

Based on the mean square error minimization (quadratic target-based), Haber-

man and Vigna (2002) investigate an investment problem of multi-period DC pension

funds during the accumulation phase. They obtain optimal investment strategies

by using dynamic programming approach. Using the expected utility maximization,

Deelstra et al. (2003) and Giacinto et al. (2011) derive optimal asset allocation for

DC pension funds with stochastic interest rates and a minimum guarantee protec-

tion. Deelstra et al. (2004) further study optimal design of the minimum guarantee

by virtue of martingale method. Under the framework of continuous-time utility

maximization, Han and Hung (2012) gain optimal asset allocation for DC pension

funds with stochastic income and inflation risk. Based on the target-driven criterion

and loss aversion framework (prospect theory), Blake et al. (2013) post an optimal

asset allocation problem for DC pension funds. He and Liang (2015) study optimal

asset allocation and benefit outgo policies of DC pension fund, and derive the closed-

form solutions of optimal policies using HJB and variational inequality methods. For

more detailed discussions on this topic, we refer to Cairns et al. (2006), Gao (2009)

and Emms et al. (2012), Guan and Liang (2014), and Konicz and Mulvey (2015).

The aforementioned works suppose that there is only one market state with de-

terministic coefficients. In the real world, however, various market states reflect ran-

dom nature of the underlying market environment. In recent years, regime-switching

models have become popular for reflecting various states of financial market. Gen-

erally, in a regime-switching market, the market mode can take values in one of

a finite number of regimes, and the market state process is modeled by a Markov

chain. The key parameters, such as the bank interest rate, or stocks appreciation

and volatility rates, will change according to the market state.

Parameter estimation for regime-switching models in economics can date back

to Quandt (1958) who attempts to estimate parameters for linear regression un-

der two regimes. Hamilton (1989) introduces a filter algorithm in his fitting of
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regime-switching models to the data of post war US real GNP data. The esti-

mated results of different regimes fit the actual business cycle remarkably well,

which set a milestone in the development of regime-switching models. Empolying

maximum likelihood with relatively minor modifications to the recursive filter in

Hamilton (1989), Kim et al. (2008) further study the estimation of Markov regime-

switching regression models with endogenous switching. With respect to data with

fat tails, Eichler and Tuerk (2013) propose to include a base regime in which data

is log-normally distributed and a spike regime where the form of distribution is not

predetermined. Then, a semiparametric approach, which provides a better fit for

data with non-lognormal distribution like energy prices, is applied to estimate the

marginal distribution function and parameters of the spike regime.

Regarding the number of regimes (market states), there are some empirical

works. For example, in Hamilton and Susmel (1994), several regime-switching mod-

els are analyzed, varying the number of regimes and the form of the model within

regimes. In their fitting of the various weekly econometric series, they find out that

the more complicated autoregressive conditional heteroskedastic (ARCH)-type mod-

els with regimes seem to be necessary. Hardy (2001) uses monthly data from the

Standard & Poor’s 500 (S & P) and the Toronto Stock Exchange 300 (TSE) indices

to fit a regime switching lognormal model. She investigates two- and three-regime

models and describes that there is no significant improvement in fit for the TSE

data set from adding the third regime, and only a marginal improvement for the

S & P data set. Also, Sims and Zha (2006) apply regime-switching models with

different regimes to fit the U.S. monetary policy data, and show that more than

two regimes should be used to capture the dynamics better. Hence, the number of

regimes depends heavily on the type and origin of data.

General portfolio selection problems with regime-switching have been consid-

ered in many papers. For example, using a multi-period utility maximization

model, Cheung and Yang (2007) and Çanakoglu and Özekici (2010) study the opti-

mal investment-consumption and the optimal investment-only strategy, respectively.

Based on continuous-time utility maximization criterion, Yiu et al. (2010) inves-

tigate the optimal portfolios with a Value-at-Risk constraint; Shen and Siu (2012)

consider the optimal asset allocation with stochastic interest rate; Liu (2011) stud-

ies an optimal consumption and portfolio choice problem under the ambiguity and

regime switching mean returns. However, the application of regime-switching models

on DC pension funds investment management problems is underexplored. Problems

with these features have been studied in only very few papers: maximizing the ex-

pected utility of the terminal wealth (see Korn et al. (2011)); minimizing the risk
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described by a convex risk measure (see Siu (2012)).

Except for regime-switching market modes, mortality risk is also important for

life insurance and pension fund management. Yaari (1965), Richard (1975) and

Pliska and Ye (2007) analyze an optimal consumption-investment problem with

uncertain lifetime in the case of life insurance. Based on the expected utility max-

imization, the optimal dividend and asset allocation with mortality risk of a DB

pension fund is considered by Hainaut and Devolder (2007). By minimizing the risk

which is a quadratic target-based cost function, Hainaut and Deelstra (2011) inves-

tigate the optimal contribution rate of a DB pension fund with stochastic mortality

which is modeled by a jump process.

In recent years, mean-variance criteria, which was pioneered by Markowitz (1952)

and extended to dynamic setting by Li and Ng (2000) and Zhou and Li (2000)),

have been applied to investment management of pension funds. In a continuous-

time setting, Delong et al. (2008) and Josa-Fombellida and Rincón-Zapatero (2008)

study the optimal investment and contribution strategies for DB pension funds;

Yao et al. (2013), Vigna (2014) and Guan and Liang (2015) investigate the optimal

investment strategies for DC pension fund. Yao et al. (2014) study an optimal asset

allocation for a DC pension fund with stochastic income and mortality risk within

the multi-period mean-variance framework. Hu and Zeng (2015) and Wu et al.

(2015) consider multi-period and continuous-time equilibrium investment strategies

for DC pension schemes under the mean-variance criterion, respectively.

In this paper, we further develop the work of Yao et al. (2014) to study regime-

switching market. Using a multi-period mean-variance model, we investigate an in-

vestment management problem for DC pension funds with regime-switching market

states. Both stochastic income and mortality risk are incorporated. These exten-

sions are not only of great interest in theory, but also of practical importance. From

a mathematical point of view, the inclusion of regime-switching, stochastic income

and mortality risk makes the problem harder in tackling the resulting Bellman equa-

tion by the dynamic programming approach. The computation is more complicated

to obtain the closed form solutions. We will adopt the stochastic optimal control

method and Lagrange dual theory in our calculation.

The remainder of the paper is organized as follows. Section 2 outlines the general

model. By introducing a Lagrange multiplier, Section 3 transforms the original

model into a standard multi-period stochastic linear quadratic control problem.

The corresponding analytical solutions are derived by the dynamic programming

approach. In Section 4, the expressions for the efficient investment strategy and

the mean-variance efficient frontier are obtained by the Lagrange dual theory. Some
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special cases are discussed in Section 5. Section 6 presents some numerical results

of our model and Section 7 concludes.

2. Model formulation

Throughout the paper, let the market state at time k for k = 0, 1, · · · , T be

denoted by ξk ∈ Π, where Π = {1, 2, · · · ,m}. Suppose that the state process {ξk}
follows a Markov chain, and its transition probability matrix is Q(k) = (qij(k))m×m,

where qij(k) = P (ξk+1 = j|ξk = i) satisfying
m∑
j=1

qij(k) = 1 for i = 1, 2, · · · , m.

Consider a representative wage earner who enters the pension plan at time 0 with

an initial fund x0(≥ 0) in his/her account and initial wage income y0(> 0). Upon

the retirement, the wage earner can convert his/her pension fund into an annuity

such that he/she can receive a scheduled pension stream in the following years. If

the wage earner dies before the retirement, then his/her family can withdraw all the

money which has been contributed into the pension fund.

Denote by xk and yk the wealth of the pension fund and the wage income of the

wage earner at time k, respectively, for k = 0, 1, · · · , T . Suppose that the wage

income is stochastic and follows the dynamics

yk+1 = bk(ξk)yk, k = 0, 1, · · · , T − 1, (1)

where bk(ξk) is a random variable with its probability distribution depending on

the market state ξk, and represents the stochastic growth rate of the wage income

over period k (from time k to time k + 1). Note that the wage income cannot be

negative, we assume that bk(ξk) > 0 almost surely for k = 0, 1, · · · , T − 1. Suppose

that the wage earner contributes a fixed percentage c of his/her wage income at the

beginning of each period until his/her retirement at time T , where c is a constant

and called contribution rate. Namely, cyk is the amount of contribution at time k,

then just after this contribution at time k, the wealth of the pension fund is xk+cyk.

Remark 1. In order to make our model more general, we don’t need to assume

c > 0. When c = 0, we have cyk = 0, then our model degenerates to an ordinary

multi-period mean-variance portfolio selection problem. When c < 0, then cyk

can be interpreted as the distribution of the pension fund over period k for k =

0, 1, · · · , T − 1. Therefore, our model can also be used to study the DC pension

fund management problem in the de-cumulation phase.

Assume that the financial market consisting of N+1 assets can include or exclude

a risk free asset, and the random returns of these assets all depend on the market
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state during any time period. Denote by ek(ξk) = (e0
k(ξk), e

1
k(ξk), · · · , eNk (ξk))

′ the

random return vector of these N + 1 assets over the period k (k = 0, 1, · · · , T −
1) with their probability distributions depending on the market state ξk, where ′

represents the transpose of a matrix or a vector. Suppose that the pension fund

can be invested in the N + 1 assets in the market. Denote by unk the amount

invested in the nth asset over period k for n = 1, 2, · · · , N and k = 1, 2, · · · , T .

Then incorporating the contribution cyk at the beginning of period k, the amount

invested in the 0th asset over period k is (xk + cyk) −
N∑
n=1

unk for k = 1, 2, · · · , T .

Therefore, the wealth process xk of the pension fund follows the dynamics

xk+1 = e0
k(ξk)

(
(xk + cyk)−

N∑
n=1

unk

)
+

N∑
n=1

enk(ξk)u
n
k

= xke
0
k(ξk) + cyke

0
k(ξk) + P ′k(ξk)uk,

(2)

where

Pk(ξk) = (e1
k(ξk)−e0

k(ξk), e
2
k(ξk)−e0

k(ξk), · · · , eNk (ξk)−e0
k(ξk))

′,uk = (u1
k, u

2
k, · · · , uNk )′.

(3)

The wage earner plans to retire at time T , however, in reality, he may die and has to

terminate the pension fund plan before the retired time T due to the mortality risk

(e.g., traffic accident or serious illness, etc.). We assume that the wage earner is alive

at time t = 0 and has a lifetime (the time of death) denoted by τ , a positive random

variable. If the death occurs during the (k − 1)th time period, i.e., k − 1 < τ ≤ k

and k ≤ T − 1, then the actual terminated time T τ of the pension fund plan is k; if

the death occurs after T − 1, i.e., τ > T − 1, the actual terminated time T τ = T .

That is

T τ =

{
k, k − 1 < τ ≤ k and k ≤ T − 1,

T, τ > T − 1.
(4)

We now proceed on the choosing of the probability (mass) function of T τ . Let S(t) =

Pr(τ ≥ t| τ > 0) denote the survival probability of the wage earner, where Pr(·) is

probability measure. Following, Charupat Milevsky (2002), Pliska and Ye (2007))

and Yao et al. (2014), the survival probability S(t) is given by S(t) = e−
∫ t
0 λ(s)ds,

where λ(s) is the instantaneous hazard rate (mortality intensity) on [0, t]. By (4),

the probability mass function of T τ is defined as

pk := Pr(T τ = k) =

{
S(k − 1)− S(k), k = 1, · · · , T − 1,

S(T − 1), k = T.
(5)
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Then, it follows that

pk =

{
e−

∫ k−1
0 λ(s)ds − e−

∫ k
0 λ(s)ds, k = 1, · · · , T − 1,

e−
∫ T−1
0 λ(s)ds > 0, k = T.

(6)

Let ℘k be the σ-field representing the information available till time k. We call

the investment strategy u = {uk; k = 0, 1, · · · , T −1} admissible if uk is measurable

to ℘k. Let Θk denote the collection of all admissible strategies starting at time k.

Let E[·] = E[·|℘0] and Var[·] = Var[·|℘0] be the expectation and variance operators

under the condition of information set ℘0, respectively. Following Chen and Yang

(2011), and Costa and Oliveira (2012), in this paper, we have the assumptions as

follows.

Assumption 1. E[ek(i)e
′
k(i)] > 0, which means E[ek(i)e

′
k(i)] is a positive definite

matrix for all i ∈ Π and k = 0, 1, · · · , T − 1.

Assumption 1 means that assets are not redundant. We also assume that the

future lifetime of the wage earner is independent of the financial market. That is,

Assumption 2. τ is statistically independent of (ξk, bk(ξk), ek(ξk)) for k = 0, 1, · · · , T−
1.

Besides, for any market mode and at any time period, we assume that (namely,

Assumption 3) at least two assets among N + 1 investment assets have different

expected rate of returns. This is especially reasonable when there are a large number

of assets in the market.

Assumption 3. E[Pk(i)] 6= 0 for i ∈ Π and k = 0, 1, · · · , T − 1, where 0 is a
n-dimension zero vector.

The multi-period mean-variance framework for DC pension investment manage-

ment refers to the problem of finding the optimal admissible investment strategy

such that the variance of the terminal wealth is minimized for a given expected

terminal wealth level d. Specifically, we have the following formulation
min
u∈Θ0

{Var[xT τ ] := E[x2
T τ ]− d2} ,

s.t. E[xT τ ] = d,

xk+1 = xke
0
k(ξk) + cyke

0
k(ξk) + P ′k(ξk)uk,

yk+1 = bk(ξk)yk, k = 0, 1, · · · , T − 1.

(7)

The solution u
∗ = {u∗k; k = 0, 1, · · · , T − 1} of Problem (7) with respect to

d ≥ dσmin
is called an efficient investment strategy, where dσmin

is the expected
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terminal wealth corresponding to the global minimum variance of terminal wealth

over all admissible strategies. The point (Var[xT τ ], d) corresponding to an efficient

investment strategy on the variance-mean space is called an efficient point. The set

of all the efficient points forms the efficient frontier.

3. Solution scheme

Now we proceed with the solution of (7) which involves two steps. The first step

is to remove the expected terminal wealth constraint by using the Lagrange method.

The second step is to apply the dynamic programming.

For convenience, we define p0 = 0. By the law of total probability and under

Assumption 2, we have
E[xT τ ] =

T∑
s=0

E[xT τ |T τ = s] Pr(T τ = s) = E

[
T∑
s=0

psxs

]
,

E[x2
T τ ] =

T∑
s=0

E[x2
T τ |T τ = s] Pr(T τ = s) = E

[
T∑
s=0

psx
2
s

]
.

(8)

Then Problem (7) is equivalent to

min
u∈Θ0

{
E

[
T∑
s=0

psx
2
s

]
− d2

}
,

s.t. E

[
T∑
s=0

psxs

]
= d,

xk+1 = xke
0
k(ξk) + cyke

0
k(ξk) + P ′k(ξk)uk,

yk+1 = bk(ξk)yk, k = 0, 1, · · · , T − 1.

(9)

Then equality constraint E

[
T∑
s=0

psxs

]
= d in Problem (9) can be eliminated

by the Lagrange method. Introducing a Lagrange multiplier 2µ, we consider the

following optimization problem instead,
min
u∈Θ0

{
E

[
T∑
s=0

psx
2
s

]
− d2 + 2µ

(
E

[
T∑
s=0

psxs

]
− d
)}

,

s.t. xk+1 = xke
0
k(ξk) + cyke

0
k(ξk) + P ′k(ξk)uk,

yk+1 = bk(ξk)yk, k = 0, 1, · · · , T − 1.

(10)

Taking

E

[
T∑
s=0

psx
2
s

]
− d2 + 2µ

(
E

[
T∑
s=0

psxs

]
− d
)

= E

[
T∑
s=0

(psx
2
s + 2µpsxs)

]
− d2 − 2µd,

(11)
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and since (−d2 − 2µd) is fixed, Problem (10) is equivalent to the following optimiza-

tion problem in the sense that they share the same optimal solution
min
Θ0

E

[
T∑
s=0

(psx
2
s + 2µpsxs)

]
,

s.t. xk+1 = xke
0
k(ξk) + cyke

0
k(ξk) + P ′k(ξk)uk,

yk+1 = bk(ξk)yk, k = 0, 1, · · · , T − 1.

(12)

Hence, dynamic programming approach can be applied directly to solve Problem

(12).

Let fk(xk, yk, ξk) be the optimal value function of Problem (12) starting from

time k with state variables xk, yk, and market state ξk, that is
fk(xk, yk, ξk) = min

u∈Θk
E

[
T∑
s=k

(psx
2
s + 2µpsxs)

∣∣∣∣ (xk, yk, ξk)]
s.t. xs+1 = xse

0
k(ξs) + cyse

0
s(ξs) + P ′s(ξs)us,

ys+1 = bs(ξs)ys, s = k, k + 1, · · · , T − 1.

(13)

Similar to Costa and Araujo (2008) and Çanakoglu and Özekici (2010), according

to dynamic programming principle, we have Bellman equation for Problem (12) as

follows

fk(xk, yk, ξk)

= min
uk

E [pkx
2
k + 2µpkxk + fk+1(xk+1, yk+1, ξk+1)| (xk, yk, ξk)]

= pkx
2
k + 2pkµxk

+ min
uk

m∑
j=1

E [fk+1 (xke
0
k(ξk) + cyke

0
k(ξk) + P ′k(ξk)uk, bk(ξk)yk, j)]qξk,j(k),

fT (xT , yT , ξT ) = pTx
2
T + 2pTµxT .

(14)

Obviously, set k = 0, then f0(x0, y0, ξ0) and (f0(x0, y0, ξ0)− d2 − 2µd) are the opti-

mal values of Problem (12) and (10), respectively.

For later use, for any i ∈ Π and k = 0, 1, · · · , T − 1, let

Ak(i) = E[(e0
k(i))

2]− E[e0
k(i)P

′
k(i)]E

−1[Pk(i)P
′
k(i)]E[e0

k(i)Pk(i)],

Bk(i) = E[b2
k(i)]− E[bk(i)P

′
k(i)]E

−1[Pk(i)P
′
k(i)]E[bk(i)Pk(i)],

Ck(i) = E[e0
k(i)bk(i)]− E[e0

k(i)P
′
k(i)]E

−1 [Pk(i)P
′
k(i)] E[bk(i)Pk(i)],

Dk(i) = E[P ′k(i)]E
−1[Pk(i)P

′
k(i)]E[Pk(i)],

Jk(i) = E[e0
k(i)]− [e0

k(i)P
′
k(i)]E

−1[Pk(i)P
′
k(i)]E[Pk(i)],

Mk(i) = E[bk(i)]− E[bk(i)P
′
k(i)]E

−1[Pk(i)P
′
k(i)]E[Pk(i)].

(15)

In order to obtain the explicit expression of fk(xk, yk, ξk) for any i ∈ Π and k =

0, 1, · · · , T , we construct series of wk(i), hk(i), αk(i), φk(i), γk(i), and gk(i) satisfying
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the following recursive relations and boundary conditions.

wk(i) = pk + wk+1(i)Ak(i), wT (i) = pT , (16)

hk(i) = pk + hk+1(i)Jk(i), hT (i) = pT , (17)

αk(i) = αk+1(i)−

(
hk+1(i)

)2

wk+1(i)
Dk(i), αT (i) = 0, (18)

φk(i) = φk+1(i)Ck(i) + wk+1(i)Ak(i), φT (i) = 0, (19) γk(i) = γk+1(i)E[b2
k(i)] + wk+1(i)Ak(i)−

(φk+1(i))
2

wk+1(i)
Bk(i) + 2φk+1(i)Ck(i),

γT (i) = 0,
(20)

{
gk(i) = gk+1(i)E[bk(i)] + hk+1(i)Jk(i)− φk+1(i)hk+1(i)

wk+1(i)
Mk(i),

gT (i) = 0,
(21)

where 

wk+1(i) =
m∑
j=1

wk+1(j)qij(k), hk+1(i) =
m∑
j=1

hk+1(j)qij(k),

φk+1(i) =
m∑
j=1

φk+1(j)qij(k), αk+1(i) =
m∑
j=1

αk+1(j)qij(k),

γk+1(i) =
m∑
j=1

γk+1(j)qij(k), gk+1(i) =
m∑
j=1

gk+1(j)qij(k).

(22)

Before we attempt the solution for (14), we present the following result on the

property of wk(i).

Proposition 1. For any i ∈ Π and k = 0, 1, · · · , T , we have wk(i) > 0.

Proof. This can be proved by the mathematical induction. For k = T , according

to (16) and (6), we have wT (i) = pT = e−
∫ T−1
0 λ(s)ds > 0 for all i ∈ Π.

Now, we prove wk(i) > 0 for any i ∈ Π given the assumption that wk+1(i) > 0

for any i ∈ Π. Note that qij(k) ≥ 0 for i, j ∈ Π and
S∑
j=1

qij(k) = 1 for i ∈ Π, then we

have wk+1(i) =
S∑
j=1

wk+1(j)qij(k) > 0 for i ∈ Π. It is known from Li and Ng (2000)

and Chen and Yang (2011) that under Assumption 1

Ak(i) = E[(e0
k(i))

2]− E[e0
k(i)P

′
k(i)]E

−1[Pk(i)P
′
k(i)]E[e0

k(i)Pk(i)] > 0

for i ∈ Π. By pk ≥ 0 and equation (16), for all i ∈ Π we have

wk(i) = pk + wk+1(i)Ak(i) > 0.

By Principle of mathematical induction, the proposition is proved. �
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Based on Proposition 1, we investigate the optimal value function in the following

theorem.

Theorem 1. For simplicity, let x = xk,y = yk and i = ξk. Then for k = 0, 1, · · · , T
and i ∈ Π, the solution to Bellman equation (14), namely the optimal value function
of Problem (12) is given by

fk(x, y, i) = wk(i)x
2 + 2φk(i)xcy + γk(i)c

2y2

+2hk(i)µx+ 2gk(i)µcy + αk(i)µ
2,

(23)

moreover, the optimal strategy is

uk = −E−1 [Pk(i)P
′
k(i)] ((x+ cy) E[e0

k(i)P
′
k(i)]

+cy φk+1(i)

wk+1(i)
E[bk(i)P

′
k(i)] + µ hk+1(i)

wk+1(i)
E[P ′k(i)]

)
,

(24)

where wk(i), hk(i), αk(i), φk(i), γk(i), and gk(i) are defined by (16)-(21).

Proof. We first prove that optimal value function of Problem (12) is given by (23),
where the backward mathematical induction on k is applied.

For k = T , by the boundary conditions of (16)-(21), we have

wT (i)x2 + 2φT (i)cxy + γT (i)c2y2 + 2hT (i)µx
+2gT (i)µcy + αT (i)µ2 = pTx

2 + 2pTµx.

On the other hand, it is known from the boundary condition of Bellman equation
(14) that fT (x, y, i) = pTx

2 + 2pTµx. Therefore, (23) holds for k = T .
Suppose that (23) holds for k + 1, that is

fk+1(x, y, i) = wk+1(i)x2 + γk+1(i)c2y2 + 2φk+1(i)cxy
+2hk+1(i)µx+ 2gk+1(i)µcy + αk+1(i)µ2.

Then for k, by Bellman equation (14) and taking notice of (22), it follows that

fk(x, y, i) = pkx
2 + 2pkµx

+ min
uk

m∑
j=1

E [fk+1 (xe0
k(i) + cye0

k(i) + P ′k(i)uk, bk(i)yk, j)]qij(k)

= pkx
2 + 2pkµx+ min

uk
E
[
wk+1(i) (xe0

k(i) + cye0
k(i) + P ′k(i)uk)

2

+γk+1(i)c2b2
k(i)y

2 + 2φk+1(i)c (xe0
k(i) + cye0

k(i) + P ′k(i)uk) bk(i)y

+2cµgk+1(i)bk(i)y + 2hk+1(i)µ (xe0
k(i) + cye0

k(i) + P ′k(i)uk) + αk+1(i)µ2
]

= pkx
2 + 2pkµx+ wk+1(i)x2E[(e0

k(i))
2] + wk+1(i)c2y2E[(e0

k(i))
2]

+2wk+1(i)cyxE[(e0
k(i))

2] + γk+1(i)c2y2E[b2
k(i)] + αk+1(i)µ2

+2φk+1(i)cyxE[bk(i)e
0
k(i)] + 2φk+1(i)c2y2E[bk(i)e

0
k(i)]

+2gk+1(i)µE[bk(i)]cy + 2hk+1(i)µxE[e0
k(i)] + 2hk+1(i)µcyE[e0

k(i)]

+ min
uk

{
wk+1(i)u′kE [Pk(i)P

′
k(i)]uk + 2

(
wk+1(i) (x+ cy)

×E[e0
k(i)P

′
k(i)] + φk+1(i)cyE[bk(i)P

′
k(i)] + hk+1(i)µE[P ′k(i)]

)
uk

}
.

(25)
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It is known from Proposition 1 that wk+1(i) > 0 for all i ∈ Π. On the other hand, by
Li and Ng (2000) it follows that E [Pk(i)P

′
k(i)] is positive definite given Assumption

1. Therefore, the first order condition (also is sufficient condition) on uk in (25)
gives the optimal strategy

uk = −E−1 [Pk(i)P
′
k(i)] ((x+ cy) E[e0

k(i)P
′
k(i)]

+cy φk+1(i)

wk+1(i)
E[bk(i)P

′
k(i)] + µ hk+1(i)

wk+1(i)
E[P ′k(i)]

)
.

(26)

Plugging (26) into (25), we obtain

fk(x, y, i) = pkx
2 + 2pkµx+ wk+1(i)x2E[(e0

k(i))
2]

+wk+1(i)c2y2E[(e0
k(i))

2] + 2wk+1(i)cyxE[(e0
k(i))

2]

+γk+1(i)c2y2E[b2
k(i)] + αk+1(i)µ2 + 2φk+1(i)cyxE[bk(i)e

0
k(i)]

+2φk+1(i)c2y2E[bk(i)e
0
k(i)] + 2gk+1(i)µE[bk(i)]cy

+2hk+1(i)µcyE[e0
k(i)] + 2hk+1(i)µxE[e0

k(i)]−
(

(x+ cy)wk+1(i)

×E[e0
k(i)P

′(i)k] + cyφk+1(i)E[bk(i)P
′
k(i)] + µhk+1(i)E[P ′k(i)]

)
×E−1 [Pk(i)P

′
k(i)] ((x+ cy) E[e0

k(i)P
′
k(i)]

+cy φk+1(i)

wk+1(i)
E[bk(i)P

′
k(i)] + µ hk+1(i)

wk+1(i)
E[P ′k(i)]

)
Simplifying the above formula and taking notice of (15), it follows that

fk(x, y, i) =
(
pk + wk+1(i)Ak(i)

)
x2 + 2

(
pk + hk+1(i)Jk(i)

)
µx

+2xcy
(
wk+1(i)Ak(i) + φk+1(i)Ck(i)

)
+ µ2

(
αk+1(i)− (hk+1(i))

2

wk+1(i)
Dk(i)

)
+c2y2

(
wk+1(i)Ak(i) + γk+1(i)E[b2

k(i)]−
(φk+1(i))

2

wk+1(i)
Bk(i) + 2φk+1(i)Ck(i)

)
+2µcy

(
hk+1(i)Jk(i) + gk+1(i)E[bk(i)]− φk+1(i)hk+1(i)

wk+1(i)
Mk(i)

)
Therefore, according to (16)-(21), we have

fk(x, y, i) = wk(i)x
2 + γk(i)c

2y2 + 2φk(i)cxy
+2hk(i)µx+ 2gk(i)µcy + αk(i)µ

2.

This means that (23) holds for k.
By the Principle of Mathematical Induction, (23) holds for all k = 0, 1, · · · , T .
According to the proof above (see formula (26)), we also have proved the fact

that the optimal strategy for Problem (12) is given by (24). �

Remark 2. The proof of Theorem 1 is nothing else than a direct application of Bell-

man’s optimal principle in dynamic programming. The optimal strategy revealed by

expression (24) is interesting. From mathematical point of view, all the coefficients

can be calculated at the beginning of the investment period (the detailed computa-

tion will be addressed later), which is very similar to the situation in multi-period
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mean variance model without regime switching. The difference here is the optimal

allocation among wealth for the latter model has only one choice which can be cal-

culated in advance, whereas the optimal strategy for the regime-switching case has

a set of candidates at each time point k = 0, 1, · · · , T − 1 which can only be decided

until that time. Practically speaking, at the very beginning of the investment, we

make a set of plan {uk(i), i ∈ Π} at each allocation time t according to different

markets modes. The market state changes as time goes by. The final choice of the

investment strategy at time k depends on the markets modes ξk. That is to say,

we have to wait until time k to make the right choice uk(i) when we know that the

markets modes is i. This greatly enhances the flexibility of multi-period model.

In the following, we study the computational formula for series of wk(i), hk(i),

αk(i), φk(i), γk(i), and gk(i). Firstly we derive the expressions for wk(i) and hk(i).

To this end, let{
wk = (wk(1), wk(2), · · · , wk(m))′, hk = (hk(1), hk(2), · · · , hk(m))′,

Ak = (Ak(1), Ak(2), · · · , Ak(m)), Jk = (Jk(1), Jk(2), · · · , Jk(m)).
(27)

Then, (16) and (17) can be reformulated as

wk = diag(Ak)Q(k)wk+1 + pk1, wT = pT1. (28)

hk = diag(Jk)Q(k)hk+1 + pk1, hT = pT1. (29)

where 1 = (1, 1, · · · , 1)′ ∈ Rm and diag(l1, l2, · · · , lm) denote a diagonal matrix of

order m×m with the diagonal elements l1, l2, · · · , lm.

For convenience, throughout this paper, we define
k−1∏
j=k

(·) = 1 and
k−1∑
i=k

(·) = 0.

The following proposition gives the expression of wk and hk for k = 0, 1, · · · , T .

Proposition 2. For k = 0, 1, · · · , T , we have

wk =
T∑
s=k

ps

(
s−1∏
t=k

diag(At)Q(t)

)
1, hk =

T∑
s=k

ps

(
s−1∏
t=k

diag(Jt)Q(t)

)
1. (30)

Proof. we only need to prove the first formula, the other formula can be proved in a
similar way. The Mathematical induction method is used to proved this proposition.
For k = T , it is easy to verify

T∑
s=T

ps

(
s−1∏
t=T

diag(At)Q(t)

)
1 = pT

(
T−1∏
t=T

diag(At)Q(t)

)
1 = pT1 = wT .

13



Now suppose that wk+1 =
T∑

s=k+1

ps

(
s−1∏
t=k+1

diag(At)Q(t)

)
1. According to (28), we

have
wk = diag(Ak)Q(k)wk+1 + pk1

= diag(Ak)Q(k)
T∑

s=k+1

ps

(
s−1∏
t=k+1

diag(At)Q(t)

)
1 + pk1

=
T∑

s=k+1

ps

(
s−1∏
t=k

diag(At)Q(t)

)
1 + pk

(
k−1∏
t=k

diag(At)Q(t)

)
1

=
T∑
s=k

ps

(
s−1∏
t=k

diag(At)Q(t)

)
1.

Therefore, according to the mathematical induction,wk =
T∑
s=k

ps

(
s−1∏
t=k

diag(At)Q(t)

)
1,

for all k = 0, 1, · · · , T . The proposition is proved. �

After obtaining the expression of wk and hk, the ith (i ∈ Π) component of wk

and hk are wk(i) and hk(i), respectively. In the following, we derive the expressions

for series of φk(i) and αk(i) for i ∈ Π. Let
αk = (αk(1), αk(2), · · · , αk(m))′,φk = (φk(1), φk(2), · · · , φk(m))′,

Ψk(i) = −(hk+1(i))
2

wk+1(i)
Dk(i), i ∈ Π,Ψk = (Ψk(1),Ψk(2), · · · ,Ψk(m))′,

Ck = (Ck(1), Ck(2), · · · , Ck(m)),Θk=diag(Ak)Q(k)wk+1.

(31)

Then formulations (18) and (19) can be reformulated as

αk = Q(k)αk+1 + Ψk,αT = 0, (32)

φk = diag(Ck)Q(k)φk+1+Θk, φT = 0. (33)

The following proposition gives the expressions of vector series of αk and φk, namely

for series of φk(i) and αk(i) for i ∈ Π and k = 0, 1, · · · , T .

Proposition 3. for k = 0, 1, · · · , T , we have

αk =
T−1∑
s=k

(
s−1∏
t=k

Q(t)

)
Ψs, φk =

T−1∑
s=k

(
s−1∏
t=k

diag(Ct)Q(t)

)
Θs. (34)

The proof of Proposition 3 is similar to that of Proposition 2, therefore we omit it.

After obtaining the expressions for wk(i), hk(i), φk(i) and αk(i), finally, we

derive the expressions for γk(i) and gk(i). Let

γk = (γk(1), γk(2), · · · , γk(m))′, gk = (gk(1), gk(2), · · · , gk(m))′,

Λk = E [(b2
k(1), b2

k(2), · · · , b2
k(m))] ,∆k = E [(bk(1), bk(2), · · · , bk(m))] ,

Fk(i) = wk+1(i)Ak(i)−
(φk+1(i))

2

wk+1(i)
Bk(i) + 2φk+1(i)Ck(i), i ∈ Π,

Nk(i) = hk+1(i)Jk(i)− φk+1(i)hk+1(i)

wk+1(i)
Mk(i), i ∈ Π,

Fk = (Fk(1), Fk(2), · · · , Fk(m))′,Nk = (Nk(1), Nk(2), · · · , Nk(m))′.

(35)

14



Then formulation (20) and (21) can be reformulated as

γk = diag(Λk)Q(k)γk+1 + Fk,γT = 0, (36)

gk = diag(∆k)Q(k)gk+1+Nk, gT = 0. (37)

The following proposition gives the expression of vector series γk and gk, namely for

γk(i) and gk(i) for i ∈ Π and k = 0, 1, · · · , T .

Proposition 4. For k = 0, 1, · · · , T , we have

γk =
T−1∑
s=k

(
s−1∏
t=k

diag(Λt)Q(t)

)
Fs, gk =

T−1∑
s=k

(
s−1∏
t=k

diag(∆t)Q(t)

)
Ns. (38)

4. Efficient investment strategy and efficient frontier

It is known from the previous analysis in Section 3 that the optimal value of

Problem (10) is

H(x0, y0, ξ0, µ) = f0(x0, y0, ξ0)− d2 − 2µd. (39)

By Theorem 1, it follows that

H(x0, y0, ξ0, µ)

= w0(ξ0)x2
0 + 2φ0(ξ0)cx0y0 + γ0(ξ0)c2y2

0 + 2h0(ξ0)µx0

+2g0(ξ0)cµy0 + α0(ξ0)µ2 − d2 − 2µd

= α0(ξ0)µ2 + 2µ (h0(ξ0)x0 + g0(ξ0)cy0 − d) + w0(ξ0)x2
0

+2φ0(ξ0)cx0y0 + γ0(ξ0)c2y2
0 − d2.

(40)

According to the Lagrange dual theory (see Luenberger (1968)), the optimal value

of Problem (7) (which is equivalent to Problem (9)) can be obtained by maximizing

H(x0, y0, ξ0, µ) over µ, i.e.,

Var∗[xT τ ] = max
µ

H(x0, y0, ξ0, µ). (41)

In order to obtain the existence of the optimal solution to Problem (41), we give the

following proposition.

Proposition 5. For any i ∈ Π and k = 0, 1, · · · , T − 1, we have αk(i) < 0.

Proof. This proposition is also proved by the backward mathematical induction.
For k = T − 1, According to (16)-(18), for any i ∈ Π we have

αT−1(i) = −

(
hT (i)

)2

wT (i)
DT−1(i) = −pTDT−1(i).
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According to Li and Ng (2000) and Chen and Yang (2011), E[PT−1(i)P ′T−1(i)] is pos-
itive definite under Assumption 1, then so is E−1[PT−1(i)P ′T−1(i)]. By Assumption
3, we get E[PT−1(i)] 6= 0, and hence

DT−1(i) = E[P ′T−1(i)]E−1[PT−1(i)P ′T−1(i)]E[PT−1(i)] > 0,

which along with pT > 0 give αT−1(i) = −DT−1(i)pT < 0. This proves the proposi-
tion.

Now we prove αk(i) < 0 for any i ∈ Π under the assumption that αk+1(i) < 0
for any i ∈ Π. By proposition 1, wk+1(j) > 0 for any j ∈ Π. Note that qij(k) ≥ 0

and
S∑
j=1

qij(k) = 1 for i, j ∈ Π, we have wk+1(i) =
S∑
j=1

wk+1(j)qij(k) > 0 for all i ∈ Π.

Similar to the previous analysis, Dk(i) > 0. Obviously,
(
hk+1(i)

)2

≥ 0. Therefore,

according to (18), for all i ∈ Π we have

αk(i) = αk+1(i)−

(
hk+1(i)

)2

wk+1(i)
Dk(i) ≤ αk+1(i) =

S∑
j=1

αk+1(j)qij(k) < 0.

By the mathematical induction, the proposition is proved. �

Proposition 5 shows that α0(ξ0) < 0 for all ξ0 ∈ Π. By (40), the optimal solution

of Problem (41) exists and, by the first-order condition, is given by

µ∗ = −h0(ξ0)x0 + g0(ξ0)cy0 − d
α0(ξ0)

. (42)

Plugging (42) into (24) and noting that x = xk, y = yk and i = ξk, we obtain the

optimal investment strategy for the mean-variance model (7)

u∗k(xk, yk, ξk) = −E−1 [Pk(ξk)P
′
k(ξk)]

(
(xk + cyk) E[e0

k(ξk)P
′
k(ξk)] + cykφk+1(ξk)

wk+1(ξk)

×E[bk(ξk)P
′
k(ξk)]−

(h0(ξ0)x0+g0(ξ0)cy0(ξ0)−d)hk+1(ξk)

α0(ξ0)wk+1(ξk)
E[P ′k(ξk)]

)
.

(43)

Again plugging (42) into (41), we obtain the optimal value of the mean-variance

model (7), namely, the minimum variance as follows

Var∗[xT τ ] =
−1+α0(ξ0)

α0(ξ0)

(
d− h0(ξ0)x0+g0(ξ0)cy0

1+α0(ξ0)

)2

+ 2φ0(ξ0)x0cy0

+w0(ξ0)x2
0 + γ0(ξ0)c2y2

0 − 1
1+α0(ξ0)

(h0(ξ0)x0 + g0(ξ0)cy0)2, α0(ξ0) 6= −1,

−2 (h0(ξ0)x0 + g0(ξ0)cy0) d+ (h0(ξ0)x0 + g0(ξ0)cy0)2

+w0(ξ0)x2
0 + 2φ0(ξ0)x0cy0 + γ0(ξ0)c2y2

0, α0(ξ0) = −1.

(44)
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Obviously, according to the definition of variance, for any real number d, we must

have Var∗[xT τ ] ≥ 0. Therefore, we can exclude the case of α0(ξ0) = −1. Then, the

minimum variance should be

Var∗[xT τ ] = −1+α0(ξ0)
α0(ξ0)

(
d− h0(ξ0)x0+g0(ξ0)cy0

1+α0(ξ0)

)2

+ w0(ξ0)x2
0

+2φ0(ξ0)x0cy0 + γ0(ξ0)c2y2
0 − 1

1+α0(ξ0)
(h0(ξ0)x0 + g0(ξ0)cy0)2.

(45)

Again Var∗[xT τ | (z0, ξ0)] ≥ 0 for any real number d implies −1+α0(ξ0)
α0(ξ0)

> 0. Setting

d = dσmin
:= h0(ξ0)x0+g0(ξ0)cy0

1+α0(ξ0)
, we obtain the global minimum variance

Var∗min[xT τ ] := w0(ξ0)x2
0 + 2φ0(ξ0)cx0y0

+γ0(ξ0)c2y2
0 − 1

1+α0(ξ0)
(h0(ξ0)x0 + g0(ξ0)cy0)2.

(46)

To summarize, we obtain the following results.

Theorem 2. For given expected terminal wealth E[xT τ ] = d (d ≥ dσmin
), the effi-

cient investment strategy and the efficient frontier of the multi-period mean-variance
DC pension funds investment problem (7) with regime-switching and mortality risk
are given by (43) and (45), respectively.

5. Some special cases

In this section, we present some special cases of our model.

Special case 1: The case of no pension contribution. This corresponds to c = 0

in our model. According to (43) and (45), the efficient investment strategy and the

efficient frontier are not affected by the state variable yk, and are given by

u∗k(xk, ξk) = −E−1 [Pk(ξk)P
′
k(ξk)] (xkE[e0

k(ξk)P
′
k(ξk)]

− (h0(ξ0)x0−d)hk+1(ξk)

α0(ξ0)wk+1(ξk)
E[P ′k(ξk)]

)
.

(47)

and

Var∗[xT τ ] = −1 + α0(ξ0)

α0(ξ0)

(
d− h0(ξ0)x0

1 + α0(ξ0)

)2

+

(
w0(ξ0)− h2

0(ξ0)

1 + α0(ξ0)

)
x2

0. (48)

respectively, where wk(ξk), hk(ξk) and αk(ξk) are given by (30) and (34).

Special case 2: The terminated time is deterministic. In this case, we only

need to let the instantaneous hazard rate λ(s) = 0 over [0, T ]. Then by (6), we have

pi = 0, i = 1, 2, · · · , T − 1; pT = 1. (49)
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The vector series of wk and hk that are directly associated with pi can be simplified

as

wk =

(
T−1∏
t=k

diag(At)Q(t)

)
1,hk =

(
T−1∏
t=k

diag(Jt)Q(t)

)
1. (50)

Other vector series of αk, λk, γk and gk are given by (34) and (38). Note that they

are related to series of wk and hk, then they are associated indirectly with pi. That

is to say, their resulting values also change accordingly. Then the expressions for

the efficient investment strategy and the efficient frontier are given by (43) and (45),

respectively.

Special case 3: The market environment is deterministic. This means that

there is only one state in the market. We let the market state Π be a single point

set, for example Π = {1}. In this case, we have
m = 1, ξk ≡ 1, Q(k) = q11(k) = 1, wk(1) = wk = wk(1),

hk = hk(1) = hk(1),αk = αk(1) = αk(1),φk = φk(1) = φk(1),

gk = gk(1) = gk(1), γk = γk(1) = γk(1), k = 0, 1, · · · , T − 1.

(51)

All the other results in previous sections also hold.

6. Numerical illustration

In this section, using real data from the American market, we provide a numerical

example to illustrate our results.

Consider a wage earner who enters a DC pension fund plan at time 0 with an

initial fund paid x0 = 3 and an initial wage income y0 = 1. Suppose that he/she

contribute 20% of his/her wage income at the beginning of every period, i.e., c = 0.2.

He/she plans to contribute dynamically for T = 6 periods and retires at time 6. Due

to the mortality risk, the actual terminated time of his/her pension fund plan is T τ .

The probability distribution of T τ is defined by (6) with the instantaneous hazard

rate λ(s) ≡ 0.1 for s ∈ [0, T ].

Suppose that during the accumulation phase, the pension fund can be invested

in the four biggest stocks in the United Sates that have been listed until 2000.

These four stocks are MICROSOFT (10107), EXXON MOBIL (11850), GENERAL

ELECTRI (12060), WALMART STORES (55976). Our data set is composed of

the historical monthly return of the four stocks and the U.S.A. average monthly

salary from January, 2000, to December, 2013, with sample size 168. Following

most literatures (such as Quandt (1958), Chen et al. (2008), Costa and Araujo

(2008), Chen and Yang (2011), and Costa and Oliveira (2012)), in this example,
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the market states are roughly divided into two regimes: i = 1 is bearish, and i = 2

is bullish. The states of the Markov chain are classified according to the average

growth rate of the four stocks and the salary in a given period (monthly). If the

average growth rate in a given period is less than q0.5, the state of the Markov chain

is said to be in State 1 , otherwise, is said to be in to State 2, where q0.5 is the

empirical median (based on the above historical data) of the average return. Based

on the data set above, we obtain the related parameters for k = 0, 1, · · · , 5 and

different market regimes (states) as follows

E[Pk(1)P ′k(1)] =

 0.0133 0.0070 0.0078

0.0070 0.0153 0.0068

0.0078 0.0068 0.0130

 ,

E[e0
k(1)] = 0.9419, E[bk(1)] = 1.0025,E[b2

k(1)] = 1.0050,

E[(e0
k(1))2] = 0.8949,E[e0

k(1)bk(1)] = 0.9443,

E[Pk(1)] = (0.0338, 0.0036, 0.0424)′,

E[bk(1)Pk(1)] = (0.0339, 0.0037, 0.0425)′,

E[e0
k(1)Pk(1)] = (0.0244,−0.0036, 0.0323)′,

E[Pk(2)P ′k(2)] =

 0.01 0.0066 0.0068

0.0066 0.01 0.0058

0.0068 0.0058 0.0081

 ,

E[e0
k(2)] = 1.0552,E[bk(2)] = 1.0022,E[b2

k(2)] = 1.0044,

E[(e0
k(2))2] = 1.1193, E[e0

k(2)bk(2)] = 1.0576,

E[Pk(2)] = (−0.0231, −0.0094, −0.0348)′,

E[bk(2)Pk(2)] = (−0.0232, −0.0094, −0.0348)′,

E[e0
k(2)Pk(2)] = (−0.0311,−0.0156,−0.0419)′.

Using the above historical data, we now derive the state transition probability

matrix Q of the Markov chain. According to the classification of the market states

for all the historical periods (months), there are 84 = 168/2 historical periods in

state 1. Among all these 84 historical periods being in State 1, we find that the

number of the next period in State 1 is 43, and the number of the next period in

State 2 is 41. Therefore, we calculate the empirical state transition probabilities

q11(k) and q12(k) as follows

q11(k) = 43/84 ≈ 0.5119, q12(k) = 41/84 ≈ 0.4881.

Similarly, we can calculate other empirical state transition probabilities q21(k) =

40/84 = 0.4762 and q22(k) = 44/84 = 0.5238. Hence the state transition probability
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matrix is

Q(k) =

(
q11(k) q12(k)

q21(k) q22(k)

)
=

(
0.5119 0.4881

0.4762 0.5238

)
, k = 0, 1, · · · , 5.

Now we present the solving steps for our mean-variance problem (7). Plugging the

above data into (43), we obtain the efficient investment strategy for different market

states at time 0 and time k. For example, when ξ0 = 1 and ξk = 1, the efficient

investment strategy is

u∗k(xk, yk, 1) = −

 −1.2672

2.0680

−2.8186

 (xk + 0.2yk) + 0.2ykφk+1(1)

wk+1(1)

×

 −1.6349

1.9972

−3.3485

+
(1.4888−d)hk+1(1)

0.5988wk+1(1)

 −1.6274

1.9939

−3.3411

 , k = 0, 1, · · · , 5,

where
(
w1(1), · · · , w6(1)

)
= (0.5037, 0.5004, 0.5075, 0.5261, 0.5580, 0.6065) ,(

φ1(1), · · · , φ6(1)
)

= (1.4956, 1.3343, 1.1291, 0.8585, 0.4942, 0) ,(
h1(1), · · · , h6(1)

)
= (0.4964, 0.4940, 0.5021, 0.5222, 0.5560, 0.6065) ;

when ξ0 = 2 and ξk = 2, the efficient investment strategy is

u∗k(xk, yk, 2) =

 0.1042

−2.4634

6.8669

 (xk + 0.2yk) + 0.2ykφk+1(2)

wk+1(2)

×

 −0.3285

−2.5277

6.3944

+
(1.5703−d)hk+1(2)

0.5994wk+1(2)

 −0.3246

−2.5256

6.3808

 , k = 0, 1 · · · , 5,

where
(
w1(2), · · · , w6(2)

)
= (0.5056, 0.5023, 0.5094, 0.5282, 0.5602, 0.6065) ,(

φ1(2), · · · , φ6(2)
)

= (1.4999, 1.3383, 1.1327, 0.8615, 0.4964, 0) ,(
h1(2), · · · , h6(2)

)
= (0.4973, 0.4949, 0.5031, 0.5232, 0.5571, 0.6065) ,

We can also give the efficient investment strategy for case ξ0 = 2 and ξk = 1, and

case ξ0 = 1 and ξk = 2. We omit the detailed numerical results here for simplicity.
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Figure 1: Efficient frontiers with different initial market states

Plugging the above data into (45), the efficient frontier for each initial state are

obtained as follows

Var[xT τ ] =

{
0.6701 (d− 3.7105)2 + 0.1812, when ξ0 = 1,

0.6682 (d− 3.9203)2 + 0.1870, when ξ0 = 2,

which are plotted in Figure 1. The efficient frontier is a concept in modern portfolio

theory introduced by Markowitz (1952) and others. It is the optimal portfolios

plotted along the curve that have the highest expected return for the given amount

of risk. Figure 1 illustrates the impact of different starting market states. It is

reasonable to start our investment when the market is bullish. In other words, we

will expect a higher expected rate of return with lower risk when entering the market

at ξ0 = 2. In Figure 1, we observe a higher expected return for a given variance

level in the bullish case, which indicates that we would better to enter the market

at a bullish time. This observation is consistent with the continuous-time model in

Chen et al. (2008).

In the following, we analyze the impacts of some main parameters c, λ(s) and

Q(k) on the efficient frontier, assuming that we always enter the market at bearish

time, that is, ξ0 = 1. Hereinafter, unless other stated, the related parameters are

the same as above.

Figure 2 gives the efficient frontiers corresponding to different contribution rates

c = 0, 0.1, 0.2, 0.3, 0.4 and 0.5. In Figure 2, we find that (i) when c increases

from 0 to 0.5, the efficient frontier moves to the upper right; (ii) the greater c is,

the bigger the global minimum variance σ2
min as well as its corresponding expected
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Figure 2: Impact of the contribution rate on the efficient frontier
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Figure 4: Impact of the state transition probability matrix on the efficient frontier

Table 1: Different state transition probabilities

q11(k) 0 0.2 0.4 0.6 0.8 1

q22(k) 1 0.8 0.6 0.4 0.2 0

terminal wealth dσmin
. The result is reasonable since a higher value of c corresponds

to greater wealth of our pension fund.

Figure 3 illustrates the sensitivity of the efficient frontier to the hazard rate λ(s).

As λ(s) increases, the wage earner is more likely to die before the planned time of

retirement. This means that the accumulation period for the pension fund is shorter,

then we expect a smaller expected terminal wealth for a fixed risk level. Besides,

since the overall risk is also smaller for a shorter time period, then we would have

a smaller global minimum variance as well as the corresponding expected terminal

wealth. We can see those trends in Figure 3, as λ(s) increases from 0.05 to 0.3, the

efficient frontier moves to the lower left.

Finally, we proceed with the impact of the state transition probability Q(k) on

the efficient frontier. Note that q12(k) = 1− q11(k) and q21(k) = 1− q22(k), we only

need to determine the value of q11(k) and q22(k). Different transition probabilities

for q11(k) and q22(k) are listed in Table 1 to indicate that the market becomes ‘more

bearish’ when q11(k) increases from 0 to 1 while q22(k) decrease from 1 to 0. We

see from Figure 4 that the corresponding efficient frontier moves to the lower left

during this shift. This indicates an decreasing expected rate of return for the same

level of investment risk, which is reasonable.
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7. Conclusion

In this paper, we adopts the mean-variance criterion to investigate a multi-period

DC pension fund portfolio selection problem. To make the model more practical, we

incorporate the mortality risk for the wage earner as well as the Markovian regime

switching market state. By the Lagrange duality method and the dynamic pro-

gramming approach, and the matrix representation technique, explicit expressions

for the efficient investment strategy and the efficient frontier are derived. We also

present some special cases of our model. Finally, a numerical example based on real

data from the American market is provided to shed light on the theoretical results

established in this paper.

Obviously, a number of problems are worth to be investigated further. For ex-

ample, we can extend our model to the continuous-time case. Also, we can include

a practical constrain such as the bankruptcy constrain or the no-short selling con-

strain on the investment strategy. Another interesting topic is the robustness of

our model. Here all the parameters in our model are determinate and known; in

practice, they need to be estimated. The estimation errors can make the optimal

solution far from the true optimal solution. Besides, it would also be interesting to

study the case where all the parameters are random.
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