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CONTINUOUS-MODE MULTIPHOTON FILTERING∗
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Abstract. The purpose of this paper is to derive filters for an arbitrary open quantum system
driven by a light wave packet prepared in a continuous-mode multiphoton state. A continuous-mode
multiphoton state is a state of a traveling light wave packet that contains a definite number of photons
and is characterized by a temporal (or, equivalently, spectral) profile. After the interaction with the
system, the outgoing light can be monitored by means of homodyne detection or photodetection.
Filters for both measurement schemes are derived in this paper. Unlike the vacuum or the coherent
state case, the annihilation operator of the light field acting on a multiphoton state changes the
state by annihilating a photon, and this makes the traditional filtering techniques inapplicable. To
circumvent this difficulty, we adopt a non-Markovian embedding technique proposed in [J. E. Gough,
M. R. James, and H. I. Nurdin, Quantum Inf. Process., 12 (2013), pp. 1469–1499] for the study
of the single-photon filtering problem. However, the multiphoton nature of the problem addressed
in this paper makes the study much more mathematically involved. Moreover, as demonstrated by
an example—a two-level system driven by a continuous-mode two-photon state—multiphoton filters
can reveal interesting strong nonlinear optical phenomena absent in both the single-photon state case
and the continuous-mode Fock state case.
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1. Introduction. When light impinges on a quantum system, e.g., an atom or
a quantum-mechanical oscillator, partial system information may be carried away by
the outgoing light. The outgoing light can be directed to another quantum system,
thus serving as a (directional) link to facilitate cascade connection [2, 3, 4, 5, 6]. Alter-
natively, the outgoing light may be continuously monitored to produce photocurrent,
on which the state of the quantum system can be conditioned. The stochastic evo-
lution of the conditional system state is commonly called a quantum trajectory. A
quantum filter can be designed to estimate quantum trajectories [2, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18]; this is the basis of quantum-measurement-based feedback
control [15, 16, 19, 20, 21, 22].

In quantum optics, the familiar formalism of quantum filtering considers incident
lights in Gaussian states, including the vacuum state, coherent states, thermal states,
and squeezed states [22, 23, 24]. This is natural as Gaussian states are commonly used
in quantum optics laboratories and have been well studied. With the advent of mod-
ern experimental technology, nowadays non-Gaussian states, such as single-photon
states, multiphoton states, and Schrödinger cat states, can be reliably generated and
manipulated. Therefore, very recently, there is a growing interest in deriving quantum
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MULTIPHOTON FILTERING 1603

filters for non-Gaussian states. For example, filters have been derived for quantum
systems driven by light fields prepared in single-photon states or cat states [1, 21, 25].

Single-photon states and multiphoton states are very useful resources in quantum
computing, quantum communication, and quantum cryptography; see [26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39] and references therein. Roughly speaking, a
continuous-mode n-photon state is a state of a traveling light wave packet containing
exactly n photons that share a common pulse shape superposed on a continuum of
spectral modes. When n = 0, the wave packet is in the vacuum state, whose filtering
equation is well known in the quantum optics community. When n = 1, the wave
packet is in a single-photon state, whose filtering equations have recently been derived
in [1, 25]. When n > 1, for convenience we call the state a multiphoton state.

In this paper, we study the problem of quantum filtering for arbitrary quan-
tum systems driven by continuous-mode multiphoton states. Due to the multiphoton
nature of the problem, it turns out that the derivation of multiphoton filters is very
mathematically involved. For example, if the input is a wave packet containing n pho-

tons, we need a hierarchy of 2n(2n+1)
2 differential equations to determine an n-photon

filter. When n = 0, namely, the vacuum state case, a single differential equation
is sufficient. When n = 1, namely, the single-photon state case, we need 3 coupled
differential equations. When n = 2, a system of 10 equations is required. Similarly, a
hierarchy of 36 differential equations is required for the case of a 3-photon state, and
so on. Therefore, to present the main ideas clearly, we investigate the 2-photon case
in detail before proceeding to the general n-photon case.

For the 2-photon case, master equations are given in Theorem 3.1 and Corollary
3.2, while quantum filters for homodyne detection are given in Theorem 3.6 and
Corollary 3.7. These results contain those in [1] and [25] for the single-photon case
as special cases. Numerical studies conducted in Examples 2 and 3 show that two-
photon excitation of a two-level system has highly nonlinear optical phenomena, which
are absent in both the single-photon state case and the continuous-mode Fock state
case. For the general n-photon case, quantum filters are given in Theorem 4.4 for
the homodyne detection case. For photodetection, the quantum filter is given in
Theorem 4.6, which reduces to the single-photon filter for photodetection when n = 1
which is studied in [1, 25]. Finally, the multiphoton master equations are given in
Theorem 4.1, which in the Fock state case is actually the master equation (20) in [40]
for continuous-mode Fock states. Therefore, the results presented in this paper are
indeed very general. Due to the multiphoton nature, the mathematical description
of general multiphoton filtering equations are very messy; in fact, the lexicographical
ordering [41] plays an essential role.

The rest of the paper is organized in the following way. Section 2 introduces open
quantum systems and poses the filtering problem. Section 3 focuses on the two-photon
case. Here, we first define two-photon states in subsection 3.1, then present the master
equations in subsection 3.2. In order to derive the two-photon filtering equation, we
define an extended system in subsection 3.3, and derive the filtering equation for this
extended system in subsection 3.4, based on which in subsection 3.5 we derive the
quantum filter for the original system driven by a two-photon state. After the study
of the two-photon filtering problem in section 3, we proceed to the general multi-
photon case in section 4, where we present the general filtering equations for both
the homodyne detection case and the photon-counting case. Section 5 concludes the
paper.

Notation. |0〉 is the vacuum state of the free field. |η〉 is the initial state of the
quantum system of interest. R+ is the set of nonnegative real numbers, L2(R+,C) is
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1604 H. T. SONG, G. F. ZHANG, AND Z. R. XI

the space of Lebesgue measurable and square integrable functions from R+ to C. For
ξ1 and ξ2 ∈ L2(R+,C), their inner product is 〈ξ1|ξ2〉 ,

∫∞
0
ξ∗1(t)ξ2(t)dt. The norm

of a function ξ ∈ L2(R+,C) is ‖ξ‖ ,
√
〈ξ|ξ〉. δjk is the Kronecker delta, namely,

δjk = 1 if j = k or 0 otherwise. ⊗ stands for the tensor product. X∗ denotes
the complex conjugate of X if X is a complex number or the adjoint operator of X
if X is an operator. The commutator of two operators A and B is defined to be
[A,B] , AB −BA.

2. Preliminaries. In this section we briefly introduce quantum systems and
pose the multiphoton filtering problem.

2.1. Quantum systems. This subsection gives a very brief introduction to
quantum systems; more details can be found in, e.g., [4, 6, 16, 22, 42, 43, 44].

The model we study is an arbitrary quantum system G driven by a single-channel
light field which can be effectively described by the so-called (S,L,H) language [5, 6].
Here, S is a unitary scattering operator, L is a coupling operator that describes how
the system is coupled to the input field, and the self-adjoint operator H is the initial
system Hamiltonian. S, L, and H are system operators on a separable Hilbert space
HS where the system states reside. The single-channel light field has an annihilation
operator b(t) and a creation operator b∗(t), which are operators on a Fock space HF
(an infinite-dimensional Hilbert space). B(t) ,

∫ t
0
b(r)dr and B∗(t) ,

∫ t
0
b∗(r)dr are

integrated annihilation and creation field operators, respectively. The gauge process,
often called counting process, Λ(t) ,

∫ t
0
b∗(τ)b(τ)dτ is also an integrated operator on

the Fock space HF for the input field. In this paper, the input field is canonical, that
is, the nonzero Ito products are

dB(t)dB∗(t) = dt,dB(t)dΛ(t) = dB(t),dΛ(t)dΛ(t) = dΛ(t),dΛ(t)dB∗(t) = dB∗(t).

The temporal evolution of the composite system composed of the system and the
field can be described by a unitary operator U(t) on the tensor product Hilbert space
HS⊗HF , and is given by the the following Hudson–Parthasarathy quantum stochastic
differential equation (QSDE)

dU(t) =

{
(S − I)dΛ(t) + LdB∗(t)− L∗SdB(t)− (

1

2
L∗L+ iH)dt

}
U(t), t > 0,

with the initial condition U(0) = I (the identity operator) and i =
√
−1.

In the Heisenberg picture, the system operator X at time t is given by X(t) ≡
jt(X) , U∗(t)(X ⊗ I)U(t), which is an operator on HS ⊗ HF , and whose temporal
evolution is governed by the following Heisenberg equation of motion,
(2.1)

djt(X)=jt(L00(X))dt+ jt(L01(X))dB(t) + jt(L10(X))dB∗(t) + jt(L11(X))dΛ(t),

where the Evans–Parthasarathy superoperators are

L00(X) ,
1

2
L∗[X,L] +

1

2
[L∗, X]L− i[X,H], L01(X) , [L∗, X]S,(2.2)

L10(X) , S∗[X,L] = (L01(X∗))∗, L11(X) , S∗XS −X.(2.3)

After interaction, the quantum field becomes Bout(t) , U∗(t)(I ⊗ B(t))U(t), an op-
erator on HS ⊗ HF , whose dynamics are given by the following QSDE,

dBout(t) = jt(L)dt+ jt(S)dB(t).
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MULTIPHOTON FILTERING 1605

The output field can be monitored. Homodyne detection and photodetection are the
two most commonly used measurement methods in quantum optics. In homodyne
detection, the noise quadrature

Y (t) , U∗(t)(I ⊗ (B(t) +B∗(t)))U(t) = Bout(t) +B∗out(t)

may be measured, while in photodetection (photon counting),

Y Λ(t) , U∗(t)(I ⊗ Λ(t))U(t)

is measured. By Ito rules, the observation processes Y (t) and Y Λ(t) satisfy

dY (t) = jt(S
∗)dB∗(t) + jt(S)dB(t) + jt(L+ L∗)dt

and

dY Λ(t) = dΛ(t) + jt(S
∗L)dB∗(t) + jt(L

∗S)dB(t) + jt(L
∗L)dt,

respectively. Moreover, Y (t) and Y Λ(t) obey the so-called self-nondemolition prop-
erty, i.e.,

[Y (t), Y (s)] = [Y Λ(t), Y Λ(s)] = 0, 0 ≤ s ≤ t.

We denote by Y (t) and Y Λ(t) the commutative von Neumann algebras generated by
{Y (s); 0 ≤ s ≤ t} and {Y Λ(s); 0 ≤ s ≤ t}, respectively.

2.2. Quantum filtering. Simply speaking, the quantum filtering problem stud-
ied in this paper is about finding a least mean square estimate of system observables
jt(X) based on the past measurement outcome information up to time t for a quantum
system driven by a continuous-mode multiphoton state. In the homodyne detection
case, it is about the computation of the quantum conditional expectation

(2.4) πn;n
t (X) , En;n[jt(X)|Y (t)].

Here, the subscript “n;n” in the expectation notation E is used to indicate that
the input field is in an n-photon state. The exact form of n-photon states and the
notation En;n will be made clear in due course. As introduced in subsection 2.1, Y (t)
is the commutative von Neumann algebra generated by the observation processes
Y (s), 0 ≤ s ≤ t. The quantum conditional expectation in (2.4) is well-defined due to
the fact that jt(X) satisfies the nondemolition condition [jt(X), Y (s)] = 0 for all s ≤ t.
The quantum conditional expectation for the photodetection case can be defined in a
similar manner, specifically,

(2.5) π̂n;n
t (X) , En;n[jt(X)|Y Λ(t)].

Due to the complexity of the multiphoton filtering problem, to better present the
main ideas, we first focus on the two-photon case and conduct a detailed study of
the two-photon filtering problem in section 3. After that we proceed to the general
n-photon case in section 4.

Example 1. In this example we demonstrate the above-mentioned (S,L,H) lan-
guage by means of a toy model: a two-level system in a one-way waveguide. Here,
“one-way” means that photons can only propagate along one direction in the waveg-
uide [45, 46]. The state space of the two-level system G is HS = C2 whose basis
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1606 H. T. SONG, G. F. ZHANG, AND Z. R. XI

vectors are the ground state |g〉 = [0 1]T and the excited state |e〉 = [1 0]T . System
operators are 2-by-2 matrices of complex numbers, for example, σz = |e〉〈e| − |g〉〈g|,
σ+ = |e〉〈g|, and σ− = |g〉〈e|. In the interaction picture the total Hamiltonian of the
composite system is (~ = 1)

Htotal =
ωc
2
σz +

∫ ∞
−∞

ωb∗(ω)b(ω) dω + i

√
κ

2π

∫ ∞
−∞

(σ+b(ω)− σ−b∗(ω)) dω,

in which the first term and second term on the right-hand side are the free Hamilto-
nians of the system and the field, respectively, while the third one is the interaction
Hamiltonian. The detuning ωc = Ω− ω0, where Ω is the atomic transition frequency
between the ground state |g〉 and the excited state |e〉 and ω0 is the carrier frequency
of the input light field, b(ω) and its adjoint b∗(ω) are the annihilation operator and
the creation operator of the input field, respectively, and κ > 0 is related to the cou-
pling constant between the two-level system G and the field. For this model, in the
Heisenberg picture we have the following expressions at t ≥ t0,

d

dt
b(ω, t) = −i[b(ω, t), Htotal(t)] = −iωb(ω, t)−

√
κ

2π
σ−(t),(2.6)

σ̇−(t) = −i[σ−(t), Htotal(t)] = −iωcσ−(t)−
√

κ

2π
σz(t)

∫ ∞
−∞

b(ω, t)dω.(2.7)

Here, t0 is the initial time, namely, the time when the system and the field start to
interact. Integrating (2.6) from t0 to t yields

(2.8) b(ω, t) = e−iω(t−t0)b(ω, t0)−
√

κ

2π

∫ t

t0

e−iω(t−r)σ−(r)dr.

Putting (2.8) back into (2.7) we have

σ̇−(t) = −
(κ

2
+ iωc

)
σ−(t) +

√
κσz(t)b(t),

where

b(t) , − 1√
2π

∫ ∞
−∞

e−iω(t−t0)b(ω, t0)dω

is the annihilation operator introduced in subsection 2.1. On the other hand, let t1
be the terminal time. Integrating (2.6) from t to t1 we have

b(ω, t) = e−iω(t−t1)b(ω, t1)−
√

κ

2π

∫ t

t1

e−iω(t−r)σ−(r)dr.

Define the output operator by

bout(t) , −
1√
2π

∫ ∞
−∞

e−iω(t−t1)b(ω, t1)dω.

It can be easily shown that the input operator b(t) and the output operator bout(t)
are related by

bout(t) =
√
κσ−(t) + b(t).
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MULTIPHOTON FILTERING 1607

Finally, the following rotations σ−(t)→eiωctσ−(t), b(t)→eiωctb(t), bout(t)→eiωctbout(t)
yield the final model of interest

σ̇−(t) = −κ
2
σ−(t) +

√
κσz(t)b(t),(2.9)

bout(t) =
√
κσ−(t) + b(t).(2.10)

For the model (2.9)–(2.10) we have S = I, L =
√
κσ−, and H = 0.

Remark 1. It is worth noticing that the model (2.9)–(2.10) can also be used to
describe a two-level atom in free space, as previously studied in [1, 25, 40, 47, 48, 49].

3. Two-photon filtering. In this section we present a detailed study of the
quantum filtering problem for an arbitrary quantum system driven by a two-photon
state. Two-photon states are defined in subsection 3.1, the master equations are
presented in subsection 3.2, and the filtering equations for the homodyne detection
case are derived in subsections 3.3–3.5.

3.1. Two-photon states. Given a function ξ ∈ L2(R+,C), define an operator

B(ξ) ,
∫ ∞

0

ξ∗(t)b(t)dt

whose adjoint operator is

(3.1) B∗(ξ) ,
∫ ∞

0

ξ(t)b∗(t)dt.

Given two functions ξ1, ξ2 ∈ L2(R+,C) satisfying ‖ξ1‖ = ‖ξ2‖ = 1, define single-
photon states |Φ10〉 and |Φ01〉 to be

(3.2) |Φ10〉 , B∗(ξ1)|0〉 and |Φ01〉 , B∗(ξ2)|0〉,

respectively. Then we define a two-photon state

|Φ11〉 ,
1√
N2

B∗(ξ1)B∗(ξ2)|0〉,(3.3)

where N2 = 1 + |〈ξ1|ξ2〉|2 is a normalization coefficient. If ξ1 ≡ ξ2, then |Φ11〉 is a
continuous-mode two-photon Fock state. Finally, for notational convention, denote
|Φ00〉 , |0〉.

For these states we have

dB(t)|Φ00〉 = 0, dB(t)|Φ10〉 = ξ1(t)|Φ00〉dt, dB(t)|Φ01〉 = ξ2(t)|Φ00〉dt,(3.4)

dB(t)|Φ11〉 =
ξ1(t)√
N2

|Φ01〉dt+
ξ2(t)√
N2

|Φ10〉dt.

3.2. Master equations. In this subsection we present the master equations for
a quantum system G driven by the two-photon state |Φ11〉 defined in (3.3).

For a given system operator X on HS , define expectations

ωjk;mn
t (X) , Ejk;mn[jt(X)] ≡ 〈ηΦjk|jt(X)|ηΦmn〉 ∀ j, k,m, n = 0, 1,(3.5)

where |η〉 is the initial state of the system. It can be easily verified that

ωmn;jk
t (X) = (ωjk;mn

t (X∗))∗ ∀ j, k,m, n = 0, 1.(3.6)
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In view of (2.1) and (3.4), if we differentiate ω11;11
t (X), we will get such expressions

as ω11;01
t (X), ω11;10

t (X), ω10;11
t (X), and ω01;11

t (X). Following this logic, in order to

derive the master equation for ω11;11
t (X), we have to find derivatives of ωjk;mn

t (X)
for all j, k,m, n = 0, 1.

Theorem 3.1. The master equation in the Heisenberg picture for the quantum
system G driven by the two-photon input field state |Φ11〉 is given by the system of
differential equations

ω̇00;00
t (X) = ω00;00

t (L00(X)),

ω̇00;10
t (X) = ω00;10

t (L00(X)) + ξ1(t)ω00;00
t (L01(X)),

ω̇00;01
t (X) = ω00;01

t (L00(X)) + ξ2(t)ω00;00
t (L01(X)),

ω̇10;10
t (X) = ω10;10

t (L00(X)) + ξ1(t)ω10;00
t (L01(X)) + ξ∗1(t)ω00;10

t (L10(X))

+|ξ1(t)|2ω00;00
t (L11(X)),

ω̇10;01
t (X) = ω10;01

t (L00(X)) + ξ2(t)ω10;00
t (L01(X)) + ξ∗1(t)ω00;01

t (L10(X))

+ξ∗1(t)ξ2(t)ω00;00
t (L11(X)),

ω̇01;01
t (X) = ω01;01

t (L00(X)) + ξ2(t)ω01;00
t (L01(X)) + ξ∗2(t)ω00;01

t (L10(X))

+|ξ2(t)|2ω00;00
t (L11(X)),

ω̇00;11
t (X) = ω00;11

t (L00(X)) +
1√
N2

ξ1(t)ω00;01
t (L01(X)) +

1√
N2

ξ2(t)ω00;10
t (L01(X)),

ω̇10;11
t (X) = ω10;11

t (L00(X)) + ξ∗1(t)ω00;11
t (L10(X))

+
1√
N2

ξ1(t)ω10;01
t (L01(X)) +

1√
N2

ξ2(t)ω10;10
t (L01(X))

+
1√
N2

|ξ1(t)|2ω00;01
t (L11(X)) +

1√
N2

ξ∗1(t)ξ2(t)ω00;10
t (L11(X)),

ω̇01;11
t (X) = ω01;11

t (L00(X)) + ξ∗2(t)ω00;11
t (L10(X))

+
1√
N2

ξ1(t)ω01;01
t (L01(X)) +

1√
N2

ξ2(t)ω01;10
t (L01(X))

+
1√
N2

|ξ2(t)|2ω00;10
t (L11(X)) +

1√
N2

ξ1(t)ξ∗2(t)ω00;01
t (L11(X)),

ω̇11;11
t (X) = ω11;11

t (L00(X)) +
1√
N2

ξ1(t)ω11;01
t (L01(X)) +

1√
N2

ξ2(t)ω11;10
t (L01(X))

+
1√
N2

ξ∗1(t)ω01;11
t (L10(X)) +

1√
N2

ξ∗2(t)ω10;11
t (L10(X))

+
1

N2
|ξ1(t)|2ω01;01

t (L11(X)) +
1

N2
ξ∗1(t)ξ2(t)ω01;10

t (L11(X))

+
1

N2
ξ1(t)ξ∗2(t)ω10;01

t (L11(X)) +
1

N2
|ξ2(t)|2ω10;10

t (L11(X))

with the initial conditions ωjk;mn
0 (X) = 〈η|X|η〉〈Φjk|Φmn〉 for all j, k,m, n = 0, 1.

Moreover, the differential equations for ω10;00
t (X), ω01;00

t (X), ω01;10
t (X), ω11;00

t (X),
ω11;10
t (X), and ω11;01

t (X) can be obtained from the above differential equations by
means of the property (3.6).

Remark 2. The system of equations in Theorem 3.1 can be established directly
by means of (2.1) and (3.4). Alternatively, they can be obtained from the system of
filtering equations by averaging over the environment (to be discussed in subsection
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3.5). Finally, as will be pointed out in Remark 5, Theorem 3.1 is an immediate
consequence of Theorem 3.3 in subsection 3.3. Thus, the proof of Theorem 3.1 is
omitted.

Remark 3. The first equation in Theorem 3.1 is nothing else but the master
equation when the input state is the vacuum state |0〉. Moreover, the first, second,
and fourth equations in the theorem are the system of master equations when the
input state is the single-photon state |Φ10〉, as derived in [1, 25].

Next, we present the master equations in the Schrodinger picture. Define opera-
tors %jk;mn

t on HS via

Tr[(%jk;mn
t )∗X] = ωjk;mn

t (X) ∀ j, k,m, n = 0, 1.(3.7)

Clearly, %jk;mn
t are reduced system density operators. Given a system operator % on

HS , define superoperators

D00(%) ,
1

2
[L%,L∗] +

1

2
[L, %L∗]− i[H, %],

D01(%) , [S%, L∗], D10(%) , [L, %S∗], D11(%) , S%S∗ − %.

The master equation in the Schrodinger picture is given in the following corollary,
which is a direct consequence of Theorem 3.1 and (3.7).

Corollary 3.2. The master equation in the Schrodinger picture for the quantum
system G driven by the two-photon input field state |Φ11〉 is given by the system of
differential equations

%̇00;00
t = D00(%00;00

t ),

%̇00;10
t = D00(%00;10

t ) + ξ∗1(t)D10(%00;00
t ),

%̇00;01
t = D00(%00;01

t ) + ξ∗2(t)D10(%00;00
t ),

%̇10;10
t = D00(%10;10

t ) + ξ∗1(t)D10(%10;00
t ) + ξ1(t)D01(%00;10

t ) + |ξ1(t)|2D11(%00;00
t ),

%̇10;01
t = D00(%10;01

t ) + ξ∗2(t)D10(%10;00
t ) + ξ1(t)D01(%00;01

t ) + ξ1(t)ξ∗2(t)D11(%00;00
t ),

%̇01;01
t = D00(%01;01

t ) + ξ∗2(t)D10(%01;00
t ) + ξ2(t)D01(%00;01

t ) + |ξ2(t)|2D11(%00;00
t ),

%̇00;11
t = D00(%00;11

t ) +
1√
N2

ξ∗1(t)D10(%00;01
t ) +

1√
N2

ξ∗2(t)D10(%00;10
t ),

%̇10;11
t = D00(%10;11

t ) +
1√
N2

ξ∗1(t)D10(%10;01
t ) +

1√
N2

ξ∗2(t)D10(%10;10
t ) + ξ1(t)D01(%00;11

t )

+
1√
N2

|ξ1(t)|2D11(%00;01
t ) +

1√
N2

ξ1(t)ξ∗2(t)D11(%00;10
t ),

%̇01;11
t = D00(%01;11

t ) +
1√
N2

ξ∗1(t)D10(%01;01
t ) +

1√
N2

ξ∗2(t)D10(%01;10
t ) + ξ2(t)D01(%00;11

t )

+
1√
N2

|ξ2(t)|2D11(%00;10
t ) +

1√
N2

ξ∗1(t)ξ2(t)D11(%00;01
t ),

%̇11;11
t = D00(%11;11

t ) +
1√
N2

ξ∗1(t)D10(%11;01
t ) +

1√
N2

ξ∗2(t)D10(%11;10
t )

+
1√
N2

ξ1(t)D01(%01;11
t ) +

1√
N2

ξ2(t)D01(%10;11
t ) +

1

N2
|ξ1(t)|2D11(%01;01

t )

+
1

N2
ξ1(t)ξ∗2(t)D11(%01;10

t ) +
1

N2
ξ∗1(t)ξ2D11(%10;01

t ) +
1

N2
|ξ2(t)|2D11(%10;10

t ),
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1610 H. T. SONG, G. F. ZHANG, AND Z. R. XI

and

%10;00
t = (%00;10

t )∗, %01;00
t = (%00;01

t )∗, %01;10
t = (%10;01

t )∗,

%11;00
t = (%00;11

t )∗, %11;10
t = (%10;11

t )∗, %11;01
t = (%01;11

t )∗

with the initial conditions

%jk;mn
0 = 〈Φmn|Φjk〉|η〉〈η| ∀ j, k,m, n = 0, 1.(3.8)

Remark 4. Restricted to the 2-photon Fock state case, i.e., ξ1 ≡ ξ2, the above
master equations reduce to the master equation (41) in [40], while the initial conditions
(3.8) reduce to (42)–(43) in [40]. It is clear that the general 2-photon case is much
more complicated than the 2-photon Fock state case.

Example 2. We illustrate the two-photon master equations derived above by
means of the model (2.9)–(2.10) studied in Example 1. Let the two-level system
G be driven by a wave packet prepared in the two-photon state |Φ11〉, as defined in
(3.3). We show that, in this two-photon case, interesting phenomena can be observed
which are absent from both the single-photon case and the two-photon Fock state
case, as previously studied in [1, 25, 40, 47, 50]. Here, we assume κ = 1 and the
two-level system is initialized in the ground state |g〉. For the two-photon input state
|Φ11〉, we use Gaussian pulse shapes. Specifically, we choose

ξi(t) =
(Ω2

i

2π

)1/4

exp
(
−Ω2

i

4
(t− ti)2

)
, i = 1, 2.(3.9)

For the single-photon state |Φ10〉 or |Φ01〉 defined in (3.2), ti can be interpreted as the
peak arrival time of the photon, and Ωi is the frequency bandwidth. More discussions
on the physical aspect of the model can be found in, e.g., [40, 48, 49, 50]. Let %11;11

t

be the solution to the master equations in Corollary 3.2. Then the unconditional
excitation probability (the probability of finding the two-level system in the excited
state |e〉) is Pe(t) , Tr[%11;11

t |e〉〈e|].
The excitation of a two-level system by a light field in a single-photon state has

been studied extensively; e.g., [40, 48, 49, 50]. If the two-level system G is driven by
|Φ10〉 with the Gaussian pulse shape in (3.9), it is found in [48] that the largest value,
denoted Pmax

e , of the excitation probability Pe(t) is around 0.8, which is achieved
when t1 = 3 and Ω1 = 1.46κ (the optimal bandwidth). This value has been confirmed
in [25, 40, 49].

The situation of the excitation of a two-level system by a 2-photon state is much
more complicated than the single-photon case. A two-level system is a nonlinear
system, it can at most absorb or emit one photon at a given time; and the absorption
of one photon by the two-level system may have a drastic effect on the system’s
response to the second coming photon. This nonlinear photon-photon interaction
mediated by a two-level system gives rise to interesting physical phenomena. In what
follows we study this by means of the master equations derived above. We have the
following observations.

(1) If the two peak arrival times t1 and t2 are very far away from each other, then
the two photons interact with the two-level system one by one, thus the mediated
photon-photon interaction does not happen. This is similar to the single-photon case
and the maximal excitation probability Pe(t) = 0.805.

(2) When t1 = t2 = 3 and Ω1 = Ω2 = 1.46κ, it can be seen from the black solid
line in Figure 1 that Pmax

e = 0.805, which is consistent with Figure 2(a) in [40]. In
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Fig. 1. Excitation probability for the model in Example 2.

this case, it appears that one photon is absorbed by the two-level system while the
other one just goes through without interaction. Therefore, this case is similar to the
one-photon case.

(3) When t1 = t2 = 3, and Ω1 = Ω2 = 2.92κ, it can be seen from the red dotted
line in Figure 1 that Pmax

e = 0.8796. This cannot occur in the single-photon state case.
It is also interesting to notice that in this case the optimal bandwidth (equivalently,
the ratio of the bandwidth and the decay rate) is exactly twice of that for the single-
photon case. To the best knowledge of the author, this has never been reported in
the literature.

(4) When t1 = t2 = 3, Ω1 = 1.46κ, and Ω2 = 2.92κ, as can be seen from the green
dashed line in Figure 1, there is one peak whose value is approximately 0.8556, which
is still bigger than 0.805 for the optimal single-photon case. Clearly, this is caused by
the nonlinear photon-photon interaction mediated by the two-level system.

(5) When Ω1 = Ω2 = 2.92κ, and t1 = 3, t2 = 5.5, as shown by the magenta dash-
dotted line in Figure 1, the value of the first peak is around 0.7102 which is even less
than 0.805 for the optimal single-photon case (the black solid line in Figure 1), while
the value of the second peak is only around 0.5. Moreover Pe(t) does not drop to zero
after the first peak. This means that the excited two-level system is being affected
by the other photon in the field in its decay process. The authors are not aware
of existing literature that reports such interesting nonlinear atom-photon interaction
phenomena to the mathematical rigor presented here.

We will return to this example later and study its two-photon filters. We will
show that there are many quantum trajectories whose largest excitation probability
can be very close to 1 in all the above scenarios.

3.3. Master equations for an extended system. In this subsection we define
an ancillary, then derive the master equations for the extended system: system plus
field plus ancillary.

Let

(3.10) |e11〉 = |e〉 ⊗ |e〉, |e10〉 = |e〉 ⊗ |g〉, |e01〉 = |g〉 ⊗ |e〉, |e00〉 = |g〉 ⊗ |g〉

be an orthonormal basis for C4. Define a state |Σ〉 ∈ C4 ⊗ HS ⊗ HF to be

(3.11) |Σ〉 , α11|e11ηΦ11〉+ α10|e10ηΦ10〉+ α01|e01ηΦ01〉+ α00|e00ηΦ00〉,
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1612 H. T. SONG, G. F. ZHANG, AND Z. R. XI

where α11, α10, α01, and α00 are nonzero complex numbers satisfying the normaliza-
tion condition

∑1
j,k=0 |αjk|2 = 1.

Now we have an extended system defined on the tensor product space C4⊗HS ⊗
HF . We assume that operators defined on C4 do not evolve temporally. More specif-
ically, for an arbitrary 4 × 4 complex matrix A on C4 and X on HS , the temporal
evolution of A⊗X ⊗ I is governed by (I ⊗U∗(t))(A⊗X ⊗ I)(I ⊗U(t)) = A⊗ jt(X).
The adoption of the auxiliary space C4 allows us to define conditional expectations
and derive their filtering equations on the extended space C4 ⊗ HS ⊗ HF with re-
spect to the superposition state |Σ〉. Such conditional expectations in terms of the
orthonormal vectors |ejk〉 in equation (3.10) help us find the conditional expectations
for the original quantum system G driven by the 2-photon state |Φ11〉; cf. (3.25) in the
following. Therefore, careful manipulation on the quantum filters for the extended
system enables us to derive 2-photon filters for the original system G. This is the
so-called non-Markovian embedding method, which has already been used in [1] for
the problem of single-photon filtering.

For an arbitrary 4× 4 complex matrix A, define superoperators

K00(A) , A,(3.12)

K01(A) ,
α11

α01

√
N2

ξ1(t)A|e11〉〈e01|+
α11

α10

√
N2

ξ2(t)A|e11〉〈e10|(3.13)

+
α10

α00
ξ1(t)A|e10〉〈e00|+

α01

α00
ξ2(t)A|e01〉〈e00|,

K10(A) , K01(A∗)∗,(3.14)

K11(A) , K10(K01(A)).(3.15)

For these superoperators the following relations hold:

EΣ[Adt] = EΣ[K00(A)]dt, EΣ[A⊗ dB(t)] = EΣ[K01(A)]dt,(3.16)

EΣ[A⊗ dB∗(t)] = EΣ[K10(A)]dt, EΣ[A⊗ dΛ(t)] = EΣ[K11(A)]dt.(3.17)

The expectation of A⊗jt(X) with respect to the superposition state |Σ〉 is defined
by ω̃t(A ⊗X) , EΣ[A ⊗ jt(X)] ≡ 〈Σ|A ⊗ jt(X)|Σ〉. This expectation is normalized,
that is, ω̃t(I ⊗ I) = 1.

Theorem 3.3. The temporal evolution of the expectation ω̃t(A⊗X) is governed
by the following master equation

˙̃ωt(A⊗X) = ω̃t(G(A⊗X)),(3.18)

where the superoperator G(A⊗X) is defined as

G(A⊗X) ,
1∑

j,k=0

Kjk(A)⊗ Ljk(X).(3.19)

Proof. By (2.1) and (3.16)–(3.17), we have

dω̃t(A⊗X) = EΣ

[
A⊗ jt(L00(X))dt

]
+ EΣ

[
A⊗ jt(L01(X))dB(t)

]
+EΣ

[
A⊗ jt(L10(X))dB∗(t)

]
+ EΣ

[
A⊗ jt(L11(X))dΛ(t)

]
= ω̃t(G(A⊗X))dt.
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Remark 5. It can be easily verified that the expectations ωjk;mn
t (X), defined in

(3.5), are scaled components of ω̃t(A⊗X), that is,

I ⊗ ωjk;mn
t (X) =

ω̃t(|ejk〉〈emn| ⊗X)

α∗jkαmn
∀ j, k,m, n = 0, 1.

As a result, the system of master equations for ωjk;mn
t (X) in Theorem 3.1 can be

derived from (3.18) by setting A = |ejk〉〈emn| with j, k,m, n = 0, 1.

Remark 6. Note that ωjk;mn
t (X) can be alternatively rewritten as

(I ⊗ ωjk;mn
t (X))ω̃t(|e11〉〈e11| ⊗ I) =

|α11|2

α∗jkαmn
ω̃t(|ejk〉〈emn| ⊗X) ∀ j, k,m, n = 0, 1.

Interestingly, a similar relation also holds in the filtering problem; cf. (3.25).

3.4. Quantum filter for the extended system. In this subsection, we con-
sider the homodyne detection and present the quantum filter for the extended system
as introduced in the previous subsection.

Define the quantum conditional expectation by

π̃t(A⊗X) , EΣ[A⊗ jt(X)|I ⊗ Y (t)].(3.20)

Theorem 3.4. In the case of homodyne detection, the filtering equation for the
conditional expectation π̃t(A⊗X) for the extended system is

dπ̃t(A⊗X) = π̃t(G(A⊗X))dt+ H̃t(A⊗X)dW̃ (t),(3.21)

in which the superoperator G(A⊗X) is that defined in (3.19) and

H̃t(A⊗X) = M̃t(A⊗X)− π̃t(A⊗X)M̃t(I ⊗ I)

with

(3.22) M̃t(A⊗X) , π̃t(K00(A)⊗ (XL+ L∗X) +K01(A)⊗XS +K10(A)⊗ S∗X).

Moreover, the stochastic process W̃ (t), which satisfies the following Ito equation

dW̃ (t) = I ⊗ dY (t)− M̃t(I ⊗ I)dt,

is a Wiener process with respect to the state |Σ〉.
Proof. We use the characteristic function method by postulating the filter to be

of the form

dπ̃t(A⊗X) = F̃t(A⊗X)dt+ H̃t(A⊗X)I ⊗ dY (t),(3.23)

where F̃t(A ⊗ X) and H̃t(A ⊗ X) are to be determined. For an arbitrary function

f ∈ L2(R+,C), define a random process cf (t) via cf (t) , e
∫ t
0
f(s)dY (s)− 1

2

∫ t
0
f2(s)ds.

Clearly cf (0) = 1. Moreover, cf (t) satisfies dcf (t) = f(t)cf (t)dY (t). Thus I ⊗ cf (t)
is adapted to I ⊗ Y (t). By a property of conditional expectations, we have

EΣ[(A⊗ jt(X))(I ⊗ cf (t))] = EΣ[π̃t(A⊗X)(I ⊗ cf (t))].(3.24)
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Differentiating both sides of (3.24) and by means of properties of conditional expec-
tations, we find

dEΣ[A⊗ jt(X)cf (t)] = EΣ

[(
I ⊗ cf (t)

)
π̃t(G(A⊗X)) +

(
I ⊗ f(t)cf (t)

)
M̃t(A⊗X)

]
dt

and

dEΣ[π̃t(A⊗X)(I ⊗ cf (t))] = EΣ

[(
I ⊗ cf (t)

){
F̃t(A⊗X) + H̃t(A⊗X)M̃t(I ⊗ I)

}
+
(
I⊗f(t)cf (t)

){
π̃t(A⊗X)M̃t(I⊗I) + H̃t(A⊗X)

}]
dt.

Comparing the coefficients of cf (t) and f(t)cf (t), respectively, we find the exact forms

of F̃t(A⊗X) and H̃t(A⊗X). Putting them back into (3.23) yields the filter (3.21).
We now prove the martingale property EΣ[W̃ (t) − W̃ (s)|I ⊗ Y (s)] = 0 for all

0 ≤ s ≤ t. This is equivalent to proving that EΣ[(W̃ (t) − W̃ (s))(I ⊗K)] = 0 for all
K ∈ Y (s), 0 ≤ s ≤ t. Obviously,

EΣ[(W̃ (t)− W̃ (s))(I ⊗K)]

= EΣ[I ⊗ (Y (t)− Y (s))(I ⊗K)]− EΣ

[∫ t

s

M̃r(I ⊗ I)dr(I ⊗K)
]

= EΣ[I ⊗ (Y (t)− Y (s))(I ⊗K)]

−EΣ

[∫ t

s

π̃r
(
K00(I)⊗ (L+ L∗) +K01(I)⊗ S +K10(I)⊗ S∗

)
dr(I ⊗K)

]
= 0.

Finally, since dW̃ (t)dW̃ (t) = dt, Levy’s theorem implies that W̃ (t) is a Wiener
process.

Remark 7. Due to the martingale property of the innovations process W̃ (t), if we
take the expected value of (3.21), we can recover the master equation (3.18).

3.5. Two-photon quantum filter. In this subsection, we derive the quantum
filter for the original quantum system G driven by the two-photon state |Φ11〉 defined
in (3.3).

Define implicitly the conditional expectations πjk;mn
t (X), j, k,m, n = 0, 1, for the

original system G via

(I ⊗ πjk;mn
t (X))π̃t(|e11〉〈e11| ⊗ I) =

|α11|2

α∗jkαmn
π̃t(|ejk〉〈emn| ⊗X),(3.25)

where π̃t(A ⊗ X) is the conditional expectation for the extended system, as defined

in (3.20). Clearly, πjk;mn
0 (X) = 〈η|X|η〉〈Φjk|Φmn〉, and

πmn;jk
t (X) = (πjk;mn

t (X∗))∗ ∀ j, k,m, n = 0, 1.

Equation (3.25) is very important in the derivation of the two-photon quantum
filter, since it establishes a relationship between the conditional expectations of the
extended system and the original system. And π11;11

t (X) defined in this way is exactly
the quantum conditional expectation for the two-photon field state |Φ11〉 as shown by
the following lemma. Therefore we can get the desired two-photon quantum filter by
means of the filtering equations for the extended system, Theorem 3.6.
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MULTIPHOTON FILTERING 1615

Lemma 3.5. For all K ∈ Y (t),

E11;11[πjk;mn
t (X)K] = Ejk;mn[jt(X)K] ∀ j, k,m, n = 0, 1.(3.26)

In particular,

E11;11[π11;11
t (X)K] = E11;11[jt(X)K].

That is, π11;11
t (X) is exactly the quantum conditional expectation for the two-photon

field state |Φ11〉, namely, π11;11
t (X) = E11;11[jt(X)|Y (t)].

In what follows we derive the quantum filtering equations for the quantum con-
ditional expectation π11;11

t (X). To present the results clearly, we define the superop-

erators M jk;mn
t (X) (j, k,m, n = 0, 1) for an arbitrary system operator X as follows:

M jk;mn
t (X)(3.27)

, πjk;mn
t (XL+ L∗X) + δm1δn0ξ1(t)πjk;00

t (XS) + δm0δn1ξ2(t)πjk;00
t (XS)

+δj1δk0ξ
∗
1(t)π00;mn

t (S∗X) + δj0δk1ξ
∗
2(t)π00;mn

t (S∗X) +
δm1δn1√
N2

ξ1(t)πjk;01
t (XS)

+
δm1δn1√
N2

ξ2(t)πjk;10
t (XS) +

δj1δk1√
N2

ξ∗1(t)π01;mn
t (S∗X) +

δj1δk1√
N2

ξ∗2(t)π10;mn
t (S∗X).

Theorem 3.6. In the case of homodyne detection, the quantum filter for the quan-
tum system G driven by the 2-photon state |Φ11〉 is given by the following system of
Ito differential equations:

dπ11;11
t (X) =

[
π11;11
t (L00(X)) +

1√
N2

ξ1(t)π11;01
t (L01(X)) +

1√
N2

ξ2(t)π11;10
t (L01(X))

+
1√
N2

ξ∗1(t)π01;11
t (L10(X)) +

1√
N2

ξ∗2(t)π10;11
t (L10(X))

+
1

N2
|ξ1(t)|2π01;01

t (L11(X)) +
1

N2
|ξ2(t)|2π10;10

t (L11(X))

+
1

N2
ξ1(t)ξ∗2(t)π10;01

t (L11(X)) +
1

N2
ξ∗1(t)ξ2(t)π01;10

t (L11(X))

]
dt

+

[
M11;11
t (X)− π11;11

t (X)M11;11
t (I)

]
dW (t),
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1616 H. T. SONG, G. F. ZHANG, AND Z. R. XI

where

dπ00;00
t (X) = π00;00

t (L00(X))dt+

[
M00;00
t (X)− π00;00

t (X)M11;11
t (I)

]
dW (t),

dπ00;10
t (X) =

[
π00;10
t (L00(X)) + ξ1(t)π00;00

t (L01(X))

]
dt

+

[
M00;10
t (X)− π00;10

t (X)M11;11
t (I)

]
dW (t),

dπ00;01
t (X) =

[
π00;01
t (L00(X)) + ξ2(t)π00;00

t (L01(X))

]
dt

+

[
M00;01
t (X)− π00;01

t (X)M11;11
t (I)

]
dW (t),

dπ10;10
t (X) =

[
ξ1(t)π10;00

t (L01(X)) + ξ∗1(t)π00;10
t (L10(X)) + |ξ1(t)|2π00;00

t (L11(X))

+π10;10
t (L00(X))

]
dt+

[
M10;10
t (X))− π10;10

t (X)M11;11
t (I)

]
dW (t),

dπ10;01
t (X) =

[
ξ2(t)π10;00

t (L01(X)) + ξ∗1(t)π00;01
t (L10(X)) + ξ∗1(t)ξ2(t)π00;00

t (L11(X))

+π10;01
t (L00(X))

]
dt+

[
M10;01
t (X)− π10;01

t (X)M11;11
t (I)

]
dW (t),

dπ01;01
t (X) =

[
ξ2(t)π01;00

t (L01(X)) + ξ∗2(t)π00;01
t (L10(X)) + |ξ2(t)|2π00;00

t (L11(X))

+π01;01
t (L00(X))

]
dt+

[
M01;01
t (X)− π01;01

t (X)M11;11
t (I)

]
dW (t),

dπ00;11
t (X) =

[
1√
N2

ξ1(t)π00;01
t (L01(X)) +

1√
N2

ξ2(t)π00;10
t (L01(X))

+π00;11
t (L00(X))

]
dt+

[
M00;11
t (X)− π00;11

t (X)M11;11
t (I)

]
dW (t),

dπ10;11
t (X) =

[
1√
N2

ξ1(t)π10;01
t (L01(X)) +

1√
N2

ξ2(t)π10;10
t (L01(X))

+ξ∗1(t)π00;11
t (L10(X)) +

1√
N2

|ξ1(t)|2π00;01
t (L11(X))

+
1√
N2

ξ∗1(t)ξ2(t)π00;10
t (L11(X)) + π10;11

t (L00(X))

]
dt

+

[
M10;11
t (X)− π10;11

t (X)M11;11
t (I)

]
dW (t),

dπ01;11
t (X) =

[
1√
N2

ξ1(t)π01;01
t (L01(X)) +

1√
N2

ξ2(t)π01;10
t (L01(X))

+ξ∗2(t)π00;11
t (L10(X)) +

1√
N2

ξ1(t)ξ∗2(t)π00;01
t (L11(X))

+
1√
N2

|ξ2(t)|2π00;10
t (L11(X)) + π01;11

t (L00(X))

]
dt

+

[
M01;11
t (X)− π01;11

t (X)M11;11
t (I)

]
dW (t),
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and

π10;00
t (X) = (π00;10

t (X∗))∗, π01;00
t (X) = (π00;01

t (X∗))∗, π11;00
t (X) = (π00;11

t (X∗))∗,

π01;10
t (X) = (π10;01

t (X∗))∗, π11;01
t (X) = (π01;11

t (X∗))∗, π11;10
t (X) = (π10;11

t (X∗))∗,

with the initial conditions πjk;mn
0 (X) = 〈η|X|η〉〈Φjk|Φmn〉 for all j, k,m, n = 0, 1.

Moreover, the innovation process W (t), defined by dW (t) = dY (t) −M11;11
t (I)dt, is

a Wiener process with respect to the two-photon state |Φ11〉.

The proof is given in Appendix A.
In what follows we present the stochastic master equations in the Schrodinger

picture. Define conditional density operators ρjk;mn
t on HS ⊗ HF in terms of

(3.28) πjk;mn
t (X) = Tr[(ρjk;mn

t )∗(I ⊗X)] ∀ j, k,m, n = 0, 1.

Moreover, define superoperators Sjk;mn
t (ρ), j, k,m, n = 0, 1, as follows:

Sjk;mn
t (ρ) , Lρjk;mn

t + ρjk;mn
t L∗ + δm1δn0ξ

∗
1(t)ρjk;00

t S∗ + δm0δn1ξ
∗
2(t)ρjk;00

t S∗

+δj1δk0ξ1(t)Sρ00;mn
t + δj0δk1ξ2(t)Sρ00;mn

t +
δm1δn1√
N2

ξ∗1(t)ρjk;01
t S∗

+
δm1δn1√
N2

ξ∗2(t)ρjk;10
t S∗ +

δj1δk1√
N2

ξ1(t)Sρ01;mn
t +

δj1δk1√
N2

ξ2(t)Sρ10;mn
t .

Corollary 3.7. In the case of homodyne detection, the stochastic master equa-
tions for conditional densities ρjk;mn

t of the quantum system G driven by the two-
photon state |Φ11〉 are

dρ11;11
t =

[
D00(ρ11;11

t ) +
1√
N2

ξ∗1(t)D10(ρ11;01
t ) +

1√
N2

ξ∗2(t)D10(ρ11;10
t )

+
1√
N2

ξ1(t)D01(ρ01;11
t ) +

1√
N2

ξ2(t)D01(ρ10;11
t ) +

1

N2
|ξ1(t)|2D11(ρ01;01

t )

+
1

N2
ξ1(t)ξ∗2(t)D11(ρ01;10

t ) +
1

N2
ξ∗1(t)ξ2(t)D11(ρ10;01

t )

+
1

N2
|ξ2(t)|2D11(ρ10;10

t )

]
dt+

[
S11;11
t (ρ)− ρ11;11

t Tr[S11;11
t (ρ)]

]
dW̄t,

where

dρ00;00
t = D00(ρ00;00

t )dt+

[
S00;00
t (ρ)− ρ00;00

t Tr[S11;11
t (ρ)]

]
dW̄t,

dρ00;10
t =

[
D00(ρ00;10

t ) + ξ∗1(t)D10(ρ00;00
t )

]
dt+

[
S00;10
t (ρ)− ρ00;10

t Tr[S11;11
t (ρ)]

]
dW̄t,

dρ00;01
t =

[
D00(ρ00;01

t ) + ξ∗2(t)D10(ρ00;00
t )

]
dt+

[
S00;01
t (ρ)− ρ00;01

t Tr[S11;11
t (ρ)]

]
dW̄t,
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1618 H. T. SONG, G. F. ZHANG, AND Z. R. XI

dρ10;10
t =

[
D00(ρ10;10

t ) + ξ∗1(t)D10(ρ10;00
t ) + ξ1(t)D01(ρ00;10

t ) + |ξ1(t)|2D11(ρ00;00
t )

]
dt

+

[
S10;10
t (ρ)− ρ10;10

t Tr[S11;11
t (ρ)]

]
dW̄t,

dρ10;01
t =

[
D00(ρ10;01

t ) + ξ∗2(t)D10(ρ10;00
t ) + ξ1(t)D01(ρ00;01

t ) + ξ1(t)ξ∗2(t)D11(ρ00;00
t )

]
dt

+

[
S10;01
t (ρ)− ρ10;01

t Tr[S11;11
t (ρ)]

]
dW̄t,

dρ01;01
t =

[
D00(ρ01;01

t ) + ξ∗2(t)D10(ρ01;00
t ) + ξ2(t)D01(ρ00;01

t ) + |ξ2(t)|2D11(ρ00;00
t )

]
dt

+

[
S01;01
t (ρ)− ρ01;01

t Tr[S11;11
t (ρ)]

]
dW̄t,

dρ00;11
t =

[
D00(ρ00;11

t ) +
1√
N2

ξ∗1(t)D10(ρ00;01
t ) +

1√
N2

ξ∗2(t)D10(ρ00;10
t )

]
dt

+

[
S00;11
t (ρ)− ρ00;11

t Tr[S11;11
t (ρ)]

]
dW̄t,

dρ10;11
t =

[
D00(ρ10;11

t ) +
1√
N2

ξ∗1(t)D10(ρ10;01
t ) +

1√
N2

ξ∗2(t)D10(ρ10;10
t )

+ξ1(t)D01(ρ00;11
t ) +

1√
N2

|ξ1(t)|2D11(ρ00;01
t ) +

1√
N2

ξ1(t)ξ∗2(t)D11(ρ00;10
t )

]
dt

+

[
S10;11
t (ρ))− ρ10;11

t Tr[S11;11
t (ρ)]

]
dW̄t,

dρ01;11
t =

[
D00(ρ01;11

t ) +
1√
N2

ξ∗1(t)D10(ρ01;01
t ) +

1√
N2

ξ∗2(t)D10(ρ01;10
t )

+ξ2(t)D01(ρ00;11
t ) +

1√
N2

ξ∗1(t)ξ2(t)D11(ρ00;01
t ) +

1√
N2

|ξ2(t)|2D11(ρ00;10
t )

]
dt

+

[
S01;11
t (ρ)− ρ01;11

t Tr[S11;11
t (ρ)]

]
dW̄t,

and

ρ10;00
t = (ρ00;10

t )∗, ρ01;00
t = (ρ00;01

t )∗, ρ01;10
t = (ρ10;01

t )∗,

ρ11;00
t = (ρ00;11

t )∗, ρ11;10
t = (ρ10;11

t )∗, ρ11;01
t = (ρ01;11

t )∗,

where the innovation process W̄t is defined as dW̄t = dY (t) − Tr[S11;11
t (ρ)]dt. The

initial conditions are ρjk;mn
t (0) = 〈Φmn|Φjk〉|η〉〈η| for all j, k,m, n = 0, 1.

Remark 8. Corollary 3.7 is an immediate consequence of Theorem 3.6 and (3.28).

Example 3. We continue to study the system in Examples 1 and 2 by looking at
its 2-photon filter. Here, we wish to calculate the conditional excitation probability
(namely, the conditional excited state population) under homodyne detection, which
can be expressed as Pce(t) , Tr[ρ11;11

t |e〉〈e|], where ρ11;11
t is the solution to the filtering

equations in Corollary 3.7. Individual trajectories Pce(t) are plotted in Figures 2–4.
For comparison, we also plotted Pe(t) for the master equations in red solid lines. It can
be seen clearly that in all three cases, many quantum trajectories can have maximal
excitation probability very close to 1, namely, the unit probability.
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Fig. 2. The conditional excitation probability of 2-photon filtering for the case when t1 = t2 = 3
and Ω1 = Ω2 = 1.46κ. The horizontal axis is time, while the vertical axis is excitation probability.
The red solid line is the unconditional excitation probability Pe(t) as calculated by the master equation
in Corollary 3.2. The blue lines are individual trajectories of conditional excitation probabilities
Pc
e(t).
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Fig. 3. The conditional excitation probability of 2-photon filtering for the case when t1 = t2 = 3
and Ω1 = Ω2 = 2.92κ. The axes and lines are the same as in Figure 2.
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Fig. 4. The conditional excitation probability of 2-photon filtering for the case when t1 = 3,
t2 = 5.5, and Ω1 = Ω2 = 2.92κ. The axes and lines are the same as in Figure 2.

4. Multiphoton filtering. In this section, we derive filtering equations for an
arbitrary quantum system driven by a wave packet in an n-photon state. We follow
the logic as carried out in section 3. That is, we first derive a filtering equation for
an extended system, then present filtering equations for the original system. Multi-
photon states are defined in subsection 4.1. The master equation is presented in
subsection 4.2. Filters in the homodyne detection case are given in subsection 4.3,
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1620 H. T. SONG, G. F. ZHANG, AND Z. R. XI

and filters in the photon counting case are presented in subsection 4.4.
It is worth noting that the notations used in the multiphoton context are slightly

different from the 2-photon case, and the following notations turn out very convenient
and useful in the derivation of the multiphoton filter. Define a set n̄ , {1, 2, . . . , n}.
It is implicitly assumed that the elements in each subset of n̄ are ordered from the
smallest to the largest. Moreover, given a set R ⊂ n̄ and an integer µ ∈ n̄ but not in
R, namely, µ ∈ n̄ \R, define a new (ordered) subset Rµ , R ∪ {µ} of n̄.

4.1. Multiphoton states. The continuous-mode n-photon state is defined as

|Φn〉 , 1√
Nn

Πn
j=1B

∗(ξj)|0〉,(4.1)

where the superscript n indicates the number of photons, Nn is the normalization
coefficient, and B∗(ξj) =

∫∞
0
ξj(t)b

∗(t)dt is defined in (3.1). This state is completely

determined by the set Mn , {ξ1, ξ2, . . . , ξn} of n functions in L2(R+,C). It is worth
noting that we distinguish functions in terms of their subscript indices; thus, two
(possibly identical) functions with different subscript indices are regarded as different
functions. For simplicity, we assume all the functions ξk are normalized, that is,
‖ξk‖ = 1 for all k = 1, . . . , n. However, these functions are not necessarily orthogonal
to each other. If all the ξi (i = 1, . . . , n) are equal to ξ, the n-photon state defined in
(4.1) reduces to a continuous-mode n-photon Fock state:

|Fn〉 , 1√
n!

(B∗(ξ))n|0〉.(4.2)

4.2. Multiphoton master equation. In this subsection, we present the master
equation of the quantum system G driven by an input field initialized in an n-photon
state as defined in (4.1).

For an arbitrary system operator X on the Hilbert space HS , define its expec-
tation with respect to the n-photon state |Φn〉 by ωn;n

t (X) , 〈ηΦn|jt(X)|ηΦn〉 ≡
En;n[jt(X)]. Geometrically, ωn;n

t (X) indicates that, at each time instant t, how much
information of jt(X) is contained in the projection space |ηΦn〉〈ηΦn|.

In what follows we derive the master equation for ωn;n
t (X). In analogy to (3.4)

for the 2-photon state case, the field operator dB(t) acting on the n-photon state
|Φn〉 generates n states, each having n − 1 photons. Similarly, dB(t) acting on an
(n− 1)-photon state produces n− 1 states, each of which has n− 2 photons, and so
on; cf. Figure 5. As a result, to derive the master equation for ωn;n

t (X), we have to
define the general (n − k)-photon states, k = 1, 2, . . . , n. Moreover, for each k, due
to the different choices of the functions in the set Mn, there are Ckn different (n− k)-
photon states. To efficiently distinguish between them, we adopt the symbol |Φn−krk

〉,
where the superscript n − k indicates the number of photons, while the subscript
rk , {r(1), r(2), . . . , r(k)} ⊂ n̄ indicates the set of functions Mn\{ξr(1) , ξr(2) , . . . , ξr(k)}.
Explicitly, the state |Φn−krk

〉 is defined as |Φn−krk
〉 , 1√

Nn−krk

Πl/∈rkB
∗(ξl)|0〉, where Nn−k

rk

is the corresponding normalization coefficient. In particular, if k = n, then rk = n̄.
That is, |Φ0

rn〉 = |0〉 is the vacuum state; cf. the bottom level of the diagram in
Figure 5. When k = n−1, |Φ1

rn−1
〉 is a single-photon state. Because all ξk are assumed

to be normalized, N1
rn−1

= 1. There are Cn−1
n = n such single-photon states which

occupy the top-to-bottom level of the diagram in Figure 5. Finally, for notation’s
convenience, when k = 0, we denote r0 = ∅ (the empty set), and correspondingly,
|Φnr0〉 = |Φn〉, which resides on the top level of the diagram in Figure 5.
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Fig. 5. The hierarchical structure of the operation of dB(t) on photon states. The left column
indicates the number of photons contained in each state on each level. The right column is the
general expression of photon states on each level. The column in the middle shows how dB(t) acts
on various photon states downward, whose “zoom-in” version is given in Figure 6.

As illustrated in Figure 6, for the general state |Φn−krk
〉, we find

dB(t)|Φn−krk
〉 =

∑
µ/∈rk

√
Nn−k−1
rkµ√
Nn−k
rk

ξµ(t)|Φn−k−1
rkµ

〉dt, k = 0, . . . , n− 1,(4.3)

with {j(1), j(2), . . . , j(n−k)} = n̄ \ rk. Finally, when k = n, rk = n̄, |Φ0
rn〉 = |0〉, and

thus dB(t)|Φ0
rn〉 = dB(t)|0〉 = 0 which serves as the terminal condition.

As discussed above, to derive the master equation for the quantity ωn;n
t (X), tem-

poral evolutions of the following quantities

ω
n−j,lj ;n−k,rk
t (X) , En−j,lj ;n−k,rk [jt(X)] ≡ 〈ηΦn−jlj

|jt(X)|ηΦn−krk
〉 ∀ lj , rk ⊂ n̄

have to be derived. Once j = 0 or k = 0, the notations ω
n−j,lj ;n−k,rk
t can be simplified

as ωn;n−k,rk
t or ω

n−j,lj ;n
t , respectively. Finally, to simplify notation, we make use of

ω
n−j,lj ;n−k,rk
t (X) ≡ 0 if either j > n or k > n. This notational convention is very

handy in our study of multiphoton filtering problem.
From (2.1) and (4.3), we can derive the master equation of the system G driven by

the n-photon state |Φn〉 as shown by the following theorem, which is the counterpart
of Theorem 3.1 for the 2-photon case.

Theorem 4.1. The master equation in the Heisenberg picture for the system G
driven by an input field in the n-photon state |Φn〉 is given by the system of differential
equations

ω̇n;n
t (X) =

n∑
µ=1

√
Nn−1
µ

√
Nn

ξµ(t)ωn;n−1,µ
t (L01(X)) +

n∑
ν=1

√
Nn−1
ν√
Nn

ξ∗ν(t)ωn−1,ν;n
t (L10(X))

+

n∑
µ=1

n∑
ν=1

√
Nn−1
µ

√
Nn−1
ν

Nn
ξµ(t)ξ∗ν(t)ωn−1,ν;n−1,µ

t (L11(X)) +ωn;n
t (L00(X)),
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1622 H. T. SONG, G. F. ZHANG, AND Z. R. XI

Fig. 6. The zoom-in version of Figure 5. The action of dB(t) on the state |Φn−k
rk 〉 produces

n − k states, each of which describes a wave packet containing n − k − 1 photons. The subscripts
rkj

(i) (i=1,. . . n-k) are introduced at the end of the second paragraph of section 4.

where, for subsets lj , rk ⊂ n̄ (∀ j, k = 0, . . . , n),

ω̇
n−j,lj ;n−k,rk
t (X)

= ω
n−j,lj ;n−k,rk
t (L00(X)) +

∑
µ/∈rk

√
Nn−k−1
rkµ√
Nn−k
rk

ξµ(t)ω
n−j,lj ;n−k−1,rkµ
t (L01(X))

+
∑
ν /∈lj

√
Nn−j−1
ljν√
Nn−j
lj

ξ∗ν(t)ω
n−j−1,ljν;n−k,rk
t (L10(X))

+
∑
µ/∈rk

∑
ν /∈lj

√
Nn−k−1
rkµ√
Nn−k
rk

√
Nn−j−1
ljν√
Nn−j
lj

ξµ(t)ξ∗ν(t)ω
n−j−1,ljν;n−k−1,rkµ
t (L11(X))

with initial conditions ω
n−j,lj ;n−k,rk
0 (X) = 〈η|X|η〉〈Φn−jlj

|Φn−krk
〉.

Remark 9. It is clear that the above equations couple downward to the master
equation for the vacuum state. This means that for the n-photon state case, we should
totally consider 22n equations. Luckily, with the help of the conjugation property

ω
n−j,lj ;n−k,rk
t (X) = (ω

n−k,rk;n−j,lj
t (X∗))∗, the number of differential equations can

be reduced to 2n(2n+1)
2 . For example, for the 2-photon case, there are 10 differential

equations as shown in Theorem 3.1.

Remark 10. Restricted to the Fock state |Fn〉 defined in (4.2), the master equa-
tion (20) in [40] can be derived from Theorem 4.1.

4.3. Multiphoton filter: The homodyne detection case. In this subsec-
tion, we derive the quantum filter for the homodyne detection case. Following the
development in section 3 for the 2-photon case, we first derive a filter for the extended
system, based on which we derive the filter for the original system.

In analogy to subsection 3.3, we construct a 2n-level ancillary for the n-photon
state case. Specifically, we choose an orthonormal basis {|en−krk

〉, rk ⊂ n̄, k = 0, . . . n}
for the vector space C2n which is defined in the following way. Each |en−krk

〉 has one
and only one nonzero entry (which is 1) at the mth location (counted from the top
to the bottom). More precisely, if k = 0, then m = 1, the vector |enr0〉 = [1, 0, . . . , 0]T .
For k ≥ 1, m = C0

n + C1
n + · · · + Ck−1

n + Γ(rk), where Γ(rk) represents the location
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MULTIPHOTON FILTERING 1623

of the set rk ⊂ n̄ in the ordered collection of all subsets of n̄ having k elements. Here
the word “ordered” means the lexicographical order [41]. For example, {1, 2, 3} ≺
{1, 2, 4} ≺ {1, 3, 4} ≺ {2, 3, 4}.

The extended system is initialized in the superposition state |Σn〉 ∈ C2n⊗HS⊗F:

|Σn〉 ,
n∑
k=0

∑
rk⊂n̄

αn−krk
|en−krk

ηΦn−krk
〉,(4.4)

where αn−krk
(k = 0, . . . , n, rk ⊂ n̄) are arbitrary nonzero numbers that satisfy the

normalization condition
∑n
k=0

∑
rk⊂n̄ |α

n−k
rk
|2 = 1.

For an arbitrary 2n × 2n complex matrix A on C2n and an arbitrary operator X
on HS , the expectation with respect to the superposition state |Σn〉 is ω̃nt (A⊗X) ,
EΣn [A⊗ jt(X)]. Define superoperators Kn00(A), Kn01(A), Kn10(A), and Kn11(A) in the
similar way as in the 2-photon case (cf. (3.12)–(3.15)), i.e.,

Kn00(A) = A, Kn01(A)|Σn〉dt = AdB(t)|Σn〉,(4.5)

Kn10(A) = (Kn01(A∗))∗, Kn11(A) = Kn10(Kn01(A)).

Then the master equations for ω̃nt (A⊗X) are given by the following result.

Theorem 4.2. The expectation ω̃nt (A ⊗ X) for the extended system evolves ac-
cording to ˙̃ωnt (A⊗X) = ω̃nt (Gn(A⊗X)), where

Gn(A⊗X) ,
1∑

j,k=0

Knjk(A)⊗ Ljk(X)(4.6)

with Ljk(X) defined in (2.2)–(2.3).

In the homodyne detection case, define the quantum conditional expectation for
the extended system to be π̃nt (A ⊗ X) , EΣn [A ⊗ jt(X)|I ⊗ Y (t)]. The following
result presents the quantum filtering equation for the extended system, which is the
counterpart of Theorem 3.4 for the 2-photon case.

Theorem 4.3. In the case of homodyne detection, the conditional expectation
π̃nt (A⊗X) for the extended system satisfies

dπ̃nt (A⊗X) = π̃nt (Gn(A⊗X))dt+ H̃nt (A⊗X)dW̃n(t),

where the operator Gn(A⊗X) is defined in (4.6), and

H̃nt (A⊗X) = M̃n
t (A⊗X)− π̃nt (A⊗X)M̃n

t (I ⊗ I)

with

(4.7)
M̃n
t (A⊗X) , π̃nt (Kn00(A)⊗ (XL+L∗X)) + π̃nt (Kn01(A)⊗XS) + π̃nt (Kn10(A)⊗ S∗X).

The innovation process W̃n(t), defined via dW̃n(t) = I ⊗ dY (t)− M̃n
t (I ⊗ I)dt, is a

Wiener process with respect to the state |Σn〉.
In analogy to (3.25), for all lj , rk ⊂ n̄, define the conditional quantities

π
n−j,lj ;n−k,rk
t (X) by means of

(I ⊗ πn−j,lj ;n−k,rk(X))π̃nt (|en〉〈en| ⊗ I) ,
|αn|2

(αn−jlj
)∗αn−krk

π̃nt (|en−jlj
〉〈en−krk

| ⊗X).(4.8)
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1624 H. T. SONG, G. F. ZHANG, AND Z. R. XI

Similarly to (3.26), it can be shown that

En;n[π
n−j,lj ;n−k,rk
t (X)K] = En−j,lj ;n−k,rk [jt(X)K] ∀ K ∈ Y (t).

In particular, when j = k = 0, the above equation reduces to

En;n[πn;n
t (X)K] = En;n[jt(X)K] ∀ K ∈ Y (t).

Since K is arbitrary, πn;n
t (X) is exactly the conditional system operator of the original

system G driven by the n-photon state |Φn〉, namely, (2.4).

Theorem 4.4. In the case of homodyne detection, the quantum filter for the con-
ditional expectation πn;n

t (X) is given by the following Ito differential equation,

dπn;n
t (X) = Ln;n

t (X)dt+

[
Mn;n
t (X)− πn;n

t (X)Mn;n
t (I)

]
dWn(t).

And, more generally, for subsets lj , rk ⊂ n̄ (∀ j, l = 0, . . . , n),

dπ
n−j,lj ;n−k,rk
t (X) = L

n−j,lj ;n−k,rk
t (X)dt

+

[
M

n−j,lj ;n−k,rk
t (X)− πn−j,lj ;n−k,rkt (X)Mn;n

t (I)

]
dWn(t).

Here,

L
n−j,lj ;n−k,rk
t (X)

, π
n−j,lj ;n−k,rk
t (L00(X)) +

∑
µ/∈rk

√
Nn−k−1
rkµ√
Nn−k
rk

ξµ(t)π
n−j,lj ;n−k−1,rkµ
t (L01(X))

+
∑
ν /∈lj

√
Nn−j−1
ljν√
Nn−j
lj

ξ∗ν(t)π
n−j−1,ljν;n−k,rk
t (L10(X))

+
∑
µ/∈rk

∑
ν /∈lj

√
Nn−k−1
rkµ√
Nn−k
rk

√
Nn−j−1
ljν√
Nn−j
lj

ξµ(t)ξ∗ν(t)π
n−j−1,ljν;n−k−1,rkµ
t (L11(X))

]
and

M
n−j,lj ;n−k,rk
t (X)

, π
n−j,lj ;n−k,rk
t (XL+ L∗X) +

∑
µ/∈rk

√
Nn−k−1
rkµ√
Nn−k
rk

ξµ(t)π
n−j,lj ;n−k−1,rkµ
t (XS)

+
∑
ν /∈lj

√
Nn−j−1
ljν√
Nn−j
lj

ξ∗ν(t)π
n−j−1,ljν;n−k,rk
t (S∗X).

The innovation process Wn(t) defined by dWn(t) = dY (t) −Mn;n
t (I)dt, is a Y (t)

Wiener process with respect to the n-photon state |Φn〉. The initial conditions are

π
n−j,lj ;n−k,rk
0 (X) = 〈Φn−jlj

|Φn−krk
〉〈η|X|η〉.

Remark 11. It can be verified that Theorem 4.4 reduces to Theorem 3.6 when
n = 2, namely, the 2-photon case.
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4.4. Multiphoton filter: The photon-counting case. In this subsection, we
present the multiphoton filter for the photon-counting case by deriving the evolution
of the quantum conditional expectation π̂n;n

t (X) , En;n[jt(X)|Y Λ(t)].
Similarly to the development in subsection 4.3, we first need to extend the system

and initialize the state as |Σn〉 in (4.4), then we calculate the filtering equation for
the extended system, i.e., the evolution of π̃Λ

t (A ⊗X) , EΣn [A ⊗ jt(X)|I ⊗ Y Λ(t)].
Finally, with the relationship between π̂n;n

t (X) and π̃Λ
t (A⊗X), we derive the quantum

filter for π̂n;n
t (X).

The following theorem is the filtering equation for the extended system, which is
the counterpart of Theorem 4.3.

Theorem 4.5. In the case of photon-counting monitoring, the conditional expec-
tation π̃Λ

t (A⊗X) for the extended system satisfies

dπ̃Λ
t (A⊗X) = π̃Λ

t (Gn(A⊗X))dt+ H̃Λ
t (A⊗X)dÑΛ(t),

where Gn(A⊗X) is defined in (4.6) and

H̃Λ
t (A⊗X) = (Q̃Λ

t (I ⊗ I))−1Q̃Λ
t (A⊗X)− π̃Λ

t (A⊗X)

with

Q̃Λ
t (A⊗X) , π̃Λ

t (Kn00(A)⊗ L∗XL) + π̃Λ
t (Kn01(A)⊗ L∗XS) + π̃Λ

t (Kn10(A)⊗ S∗XL)

+π̃Λ
t (Kn11(A)⊗ S∗XS).

The innovation process is given as dÑΛ(t) = dY Λ(t)− Q̃Λ
t (I ⊗ I)dt.

Defining

(I ⊗ π̂n−j,lj ;n−k,rkt (X))π̃Λ
t (|en〉〈en| ⊗ I) =

|αn|2

(αn−jlj
)∗αn−krk

π̃Λ
t (|en−jlj

〉〈en−krk
| ⊗X),(4.9)

we can directly verify the following equation

En;n[π̂
n−j,lj ;n−k,rk
t (X)K]=En−j,lj ;n−k,rk [jt(X)K] ∀ K ∈ Y Λ(t).

If we set j = k = 0, and note that K ∈ Y Λ(t) is arbitrary, we can deduce that
π̂n;n
t (X) defined in (4.9) is exactly the conditional expectation with respect to the
n-photon field state |Φn〉 for the photon detection, namely, (2.5).

The following result presents the quantum filter for photodetection, the counter-
part of Theorem 4.4.

Theorem 4.6. For photon-counting measurement, the quantum filter for the con-
ditional expectation π̂n;n

t (X) is given by the following Ito differential equation,

dπ̂n;n
t (X) = P̂n;n

t (X)dt+

[
(∆n;n

t (I))
−1

∆n;n
t (X)− π̂n;n

t (X)

]
dNt.

And, more generally, for subsets lj , rk ⊂ n̄ (∀ j, k = 0, . . . , n),

dπ̂
n−j,lj ;n−k,rk
t (X)

= P̂
n−j,lj ;n−k,rk
t (X)dt+

[
(∆n;n

t (I))
−1

∆
n−j,lj ;n−k,rk
t (X)− π̂n−j,lj ;n−k,rkt (X)

]
dNt,
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1626 H. T. SONG, G. F. ZHANG, AND Z. R. XI

where

P̂
n−j,lj ;n−k,rk
t (X)

, π̂
n−j,lj ;n−k,rk
t (L00(X)) +

∑
µ/∈rk

√
Nn−k−1
rkµ√
Nn−k
rk

ξµ(t)π̂
n−j,lj ;n−k−1,rkµ
t (L01(X))

+
∑
ν /∈lj

√
Nn−j−1
ljν√
Nn−j
lj

ξ∗ν(t)π̂
n−j−1,ljν;n−k,rk
t (L10(X))

+
∑
µ/∈rk
ν/∈lj

√
Nn−k−1
rkµ√
Nn−k
rk

√
Nn−j−1
ljν√
Nn−j
lj

ξ∗ν(t)ξµ(t)π̂
n−j−1,ljν;n−k−1,rkµ
t (L11(X)),

and

∆
n−j,lj ;n−k,rk
t (X)

, π̂
n−j,lj ;n−k,rk
t (L∗XL) +

∑
µ/∈rk

√
Nn−k−1
rkµ√
Nn−k
rk

ξµ(t)π̂
n−j,lj ;n−k−1,rkµ
t (L∗XS)

+
∑
ν /∈lj

√
Nn−j−1
ljν√
Nn−j
lj

ξ∗ν(t)π̂
n−j−1,ljν;n−k,rk
t (S∗XL)

+
∑
µ/∈rk
ν/∈lj

ξ∗ν(t)ξµ(t)

√
Nn−k−1
rkµ√
Nn−k
rk

√
Nn−j−1
ljν√
Nn−j
lj

π̂
n−j−1,ljν;n−k−1,rkµ
t (S∗XS).

The innovation process Nt is defined by dNt = dY Λ(t) − ∆n;n
t (I)dt, and the initial

conditions are π̂
n−j,lj ;n−k,rk
0 (X) = 〈Φn−jlj

|Φn−krk
〉〈η|X|η〉.

Remark 12. The single-photon filter for photodetection studied in [25, section
3-F] is a special case of of Theorem 4.6 when n = 1.

5. Conclusion. In this paper we have investigated the filtering problem for an
arbitrary open quantum system driven by an incident wave packet prepared in a
continuous-mode multiphoton state. A model of a two-level system driven by a two-
photon wave packet has been used to demonstrate some of the results in the paper.
This example reveals physical features of the two-photon case absent in the single-
photon case and the Fock state case. Such interesting optical phenomena are due
to the photon-photon interaction mediated by the two-level system. Encouraged by
the success of two-photon filters, the general multiphoton filtering framework has also
been proposed. Single-photon filters are probably no good for feedback control as the
information is available only for a very short time period. In contrast, the multiphoton
filtering framework developed here allows for any number of photons in a wave packet.
As a result, by using homodyne detection to continuously measure the quadratures
of the output field, one might be able to do state estimation and so feedback control.
This is somehow similar to the photon box experiment done in Laboratoire Kastler
Brossel, where a flow of atoms are measured and the information obtained is used to
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MULTIPHOTON FILTERING 1627

stabilize the number of photons in the cavity [7]. Nevertheless, whether or not the
multiphoton filters developed here are applicable in feedback control depends crucially
on the time scales of the underlying physical system, the photons’ temporal envelope,
and how fast homodyne measurement can be done. This is one of the things we would
like to study more. Finally, we mention that at present most multiphoton states are
generated in a probabilistic fashion. Nevertheless, deterministic generation of photon
states is currently being investigated in the quantum optics community too; please
see the review paper [39] and references therein.

Appendix A. The proof of Theorem 3.6 proceeds along the following three steps.
Step 1. Express the filtering equations in Theorem 3.6 in a unified manner in terms

of the conditional expectations πjk;mn
t (X) defined in (3.25).

Step 2. Postulate the general form of the filtering equation of πjk;mn
t (X).

Step 3. Derive the exact expression of the quantum filter postulated in Step 2.
In what follows we work out the detail for each step.
Step 1. For given j, k,m, n = 0, 1, define superoperators T jk;mn

t (X) to be

T jk;mn
t (X)(A.1)

, πjk;mn
t (L00(X))

+ [δj0δk1 ξ
∗
2(t) + δj1δk0 ξ

∗
1(t)]π00;mn

t (L10(X))

+ [δm0δn1 ξ2(t) + δm1δn0 ξ1(t)]πjk;00
t (L01(X))

+ δj1δk1
1√
N2

[ξ∗1(t)π01;mn
t (L10(X)) + ξ∗2(t)π10;mn

t (L10(X))]

+ δm1δn1
1√
N2

[ξ1(t)πjk;01
t (L01(X)) + ξ2(t)πjk;10

t (L01(X))]

+ δj1δk1δm1δn1
1

N2
[|ξ1(t)|2π01;01

t (L11(X)) + ξ1(t)ξ∗2(t)π10;01
t (L11(X))]

+ δj1δk1δm1δn1
1

N2
[ξ∗1(t)ξ2(t)π01;10

t (L11(X)) + |ξ2(t)|2π10;10
t (L11(X))]

+ δj0δk1δm1δn1
1√
N2

[ξ1(t)ξ∗2(t)π00;01
t (L11(X)) + |ξ2(t)|2π00;10

t (L11(X))]

+ δj1δk0δm1δn1
1√
N2

[|ξ1(t)|2π00;01
t (L11(X))) + ξ∗1(t)ξ2(t)π00;10

t (L11(X))]

+ δj1δk1δm0δn1
1√
N2

[ξ∗1(t)ξ2(t)π01;00
t (L11(X)) + |ξ2(t)|2π10;00

t (L11(X))]

+ δj1δk1δm1δn0
1√
N2

[|ξ1(t)|2π01;00
t (L11(X)) + ξ1(t)ξ∗2(t)π10;00

t (L11(X))]

+ δj0δk1[δm0δn1 |ξ2(t)|2 + δm1δn0ξ1(t)ξ∗2(t)]π00;00
t (L11(X))

+ δj1δk0[δm0δn1ξ
∗
1(t)ξ2(t) + δm1δn0|ξ1(t)|2]π00;00

t (L11(X)) .

Then it can be verified that for all j, k,m, n = 0, 1, the equations in Theorem 3.6 can
be rewritten in a unified way as

(A.2) dπjk;mn
t (X) = T jk;mn

t (X)dt+
{
M jk;mn
t (X)− πjk;mn

t (X)M11;11
t (I)

}
dW (t),

where the superoperators M jk;mn
t (X) are given in (3.27). As a result, it suffices to

establish (A.2) to prove Theorem 3.6.
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Step 2. We postulate the filtering equation of πjk;mn
t (X) to be

(A.3) dπjk;mn
t (X) = F jk;mn

t (X)dt+Hjk;mn
t (X)dY (t) ∀ j, k,m, n = 0, 1.

The expressions for F jk;mn
t (X) and Hjk;mn

t (X) in (A.3) are to be determined in the
next step.

Step 3. For the sake of clarity, we rewrite (3.25) as below,

(A.4)
|α11|2

α∗jkαmn
π̃t(|ejk〉〈emn| ⊗X) = (I ⊗ πjk;mn

t (X))π̃t(|e11〉〈e11| ⊗ I).

Differentiating both sides of (A.4) and comparing corresponding terms we have

|α11|2

α∗jkαmn
M̃t(|ejk〉〈emn| ⊗X)(A.5)

= I ⊗Hjk;mn
t (X)π̃t(|e11〉〈e11| ⊗ I) + (I ⊗ πjk;mn

t (X))M̃t(|e11〉〈e11| ⊗ I)

and

|α11|2

α∗jkαmn
π̃t(G(|ejk〉〈emn| ⊗X))− |α11|2

α∗jkαmn
M̃t(|ejk〉〈emn| ⊗X)M̃t(I ⊗ I)(A.6)

= I ⊗ F jk;mn
t (X)π̃t(|e11〉〈e11| ⊗ I)− (I ⊗ πjk;mn

t (X))M̃t(|e11〉〈e11| ⊗ I)M̃t(I ⊗ I)

+I ⊗Hjk;mn
t (X)

[
M̃t(|e11〉〈e11| ⊗ I)− π̃t(|e11〉〈e11| ⊗ I)M̃t(I ⊗ I)

]
.

By means of (A.4), the definitions of M̃t(A⊗X) in (3.22), and M jk;mn
t (X) in (3.27),

we are able to derive

(A.7)
|α11|2

α∗jkαmn
M̃t(|ejk〉〈emn| ⊗X) =

(
I ⊗M jk;mn

t (X)
)
π̃t(|e11〉〈e11| ⊗ I).

Putting (A.7) back into (A.5) yields

(A.8) Hjk;mn
t (X) = M jk;mn

t (X)−πjk;mn
t (X)M11;11

t (I).

That is, we have derived the expression for Hjk;mn
t (X). Next we derive the expression

for F jk;mn
t (X). Substituting (A.7)–(A.8) into (A.6) yields

I ⊗ F jk;mn
t (X)π̃t(|e11〉〈e11| ⊗ I)(A.9)

=
|α11|2

α∗jkαmn
π̃t(G(|ejk〉〈emn| ⊗X))−

(
I ⊗Hjk;mn

t (X)M11;11
t (I)

)
π̃t(|e11〉〈e11| ⊗ I).

Thus we have to find the expression for π̃t(G(|ejk〉〈emn|⊗X)). Observe that by (3.19),

|α11|2

α∗jkαmn
π̃t(G(|ejk〉〈emn| ⊗X))(A.10)

=
|α11|2

α∗jkαmn
π̃t(|ejk〉〈emn| ⊗ L00(X)) +

|α11|2

α∗jkαmn
π̃t(K01(|ejk〉〈emn|)⊗ L01(X))

+
|α11|2

α∗jkαmn
π̃t(K10(|ejk〉〈emn|)⊗ L10(X)) +

|α11|2

α∗jkαmn
π̃t(K11(|ejk〉〈emn|)⊗ L11(X));
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we need to calculate each term on the right-hand side of (A.10). First,

|α11|2

α∗jkαmn
π̃t(|ejk〉〈emn| ⊗ L00(X))π̃t(|e11〉〈e11| ⊗ I)−1 = I ⊗ πjk;mn

t (L00(X)).(A.11)

Second, based on the definition of the superoperator K01(A) in (3.13) we have

|α11|2

α∗jkαmn
π̃t(K01(|ejk〉〈emn|)⊗ L01(X))π̃t(|e11〉〈e11| ⊗ I)−1(A.12)

= δm1δn1
ξ1(t)√
N2

(I ⊗ πjk;01
t (L01(X)) + δm1δn1

ξ2(t)√
N2

(I ⊗ πjk;10
t (L01(X))

+δm1δn0ξ1(t)(I ⊗ πjk;00
t (L01(X)) + δm0δn1ξ2(t)(I ⊗ πjk;00

t (L01(X)).

Third, according to the definition of the superoperator K10(A) in (3.14), we have

|α11|2

α∗jkαmn
π̃t(K10(|ejk〉〈emn|)⊗ L10(X))π̃t(|e11〉〈e11| ⊗ I)−1(A.13)

= δj1δk1
ξ∗1(t)√
N2

(I ⊗ π01;mn
t (L10(X)) + δj1δk1

ξ∗2(t)√
N2

(I ⊗ π10;mn
t (L10(X))

+δj1δk0ξ
∗
1(t)(I ⊗ π00;mn

t (L10(X)) + δj0δk1ξ
∗
2(t)(I ⊗ π00;mn

t (L10(X)).

Fourth, by the definition of the superoperator K11(A) in (3.15), it can be shown
that

(A.14)

|α11|2

α∗jkαmn
π̃t(K11(|ejk〉〈emn|)⊗ L11(X))π̃t(|e11〉〈e11| ⊗ I)

−1

= δj1δk1δm1δn1
|ξ1(t)|2

N2
I ⊗ π01;01

t (L11(X)) + δj1δk1δm1δn1
ξ1(t)ξ∗2(t)

N2
I ⊗ π10;01

t (L11(X))

+δj1δk0δm1δn1
|ξ1(t)|2√

N2

I ⊗ π00;01
t (L11(X)) + δj0δk1δm1δn1

ξ1(t)ξ∗2(t)√
N2

I ⊗ π00;01
t (L11(X))

+δj1δk1δm1δn1
ξ∗1(t)ξ2(t)

N2
I ⊗ π01;10

t (L11(X)) + δj1δk1δm1δn1
|ξ2(t)|2

N2
I ⊗ π10;10

t (L11(X))

+δj1δk0δm1δn1
ξ∗1(t)ξ2(t)√

N2

I ⊗ π00;10
t (L11(X)) + δj0δk1δm1δn1

|ξ2(t)|2√
N2

I ⊗ π00;10
t (L11(X))

+δj1δk1δm1δn0
|ξ1(t)|2√

N2

I ⊗ π01;00
t (L11(X)) + δj1δk1δm1δn0

ξ1(t)ξ∗2(t)√
N2

I ⊗ π10;00
t (L11(X))

+δj1δk0δm1δn0|ξ1(t)|2I ⊗ π00;00
t (L11(X)) + δj0δk1δm1δn0ξ1(t)ξ∗2(t)I ⊗ π00;00

t (L11(X))

+δj1δk1δm0δn1
ξ∗1(t)ξ2(t)√

N2

I ⊗ π01;00
t (L11(X)) + δj1δk1δm0δn1

|ξ2(t)|2√
N2

I ⊗ π10;00
t (L11(X))

+δj1δk0δm0δn1ξ
∗
1(t)ξ2(t)I ⊗ π00;00

t (L11(X)) + δj0δk1δm0δn1|ξ2(t)|2I ⊗ π00;00
t (L11(X)).

Finally, on substitution of (A.11)–(A.14) into (A.10), we have

(A.15)
|α11|2

α∗jkαmn
π̃t(G(|ejk〉〈emn| ⊗X)) = (I ⊗ T jk;mn

t (X))π̃t(|e11〉〈e11| ⊗ I),
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where T jk;mn
t (X) is that defined in (A.1). Substituting (A.15) into (A.9) gives

(A.16) F jk;mn
t (X) = T jk;mn

t (X)−Hjk;mn
t (I)M11;11

t (I).

That is, we have derived the expression for F jk;mn
t (X). Putting Hjk;mn

t (X) in (A.8)

and F jk;mn
t (X) in (A.16) back into (A.3) yields for all j, k,m, n = 0, 1,

dπjk;mn
t (X) = T jk;mn

t (X)dt+
[
M jk;mn
t (X)− πjk;mn

t (X)M11;11
t (I)

]
dW (t),

which is exactly (A.2). The proof is completed.

Remark 13. It is worth noting that the coefficients αjk (j, k = 0, 1) in the su-
perposition state |Σ〉 in (3.11) for the extended system studied in subsection 3.3 do
not appear in the filtering equations in Theorem 3.6. This can be seen clearly from
the above proof. Specifically, the unifying filtering equation (A.3) depends on two

operators F jk;mn
t (X) and Hjk;mn

t (X), which satisfy two coupled algebraic equations
(A.5)–(A.6). Both these equations contain the coefficients αjk. However, by (A.7),

αjk on the left-hand side of (A.5) disappear, so Hjk;mn
t (X) does not depend on αjk;

cf. (A.8). Similarly, by (A.15) as well as (A.7), αjk on the left-hand side of (A.6)

disappear too. As a result, F jk;mn
t (X) does not depend on αjk either; cf. (A.16).

Therefore, the coefficients αjk do not appear in the unifying filtering equation (A.3),
or equivalently the filtering equations in Theorem 3.6.

Acknowledgments. The authors are grateful to Matthew James and Hendra
Nurdin for their very helpful discussions.
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