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Abstract: Uncertainty analysis is useful in determining whether the results of life 

cycle assessment are sufficiently reliable and valid when making optimal decisions. 

However, only a few studies have measured carbon emissions by considering the 

inherent uncertainty during building construction phase that may result in the 

misinterpretation of critical parameters. To address such weakness, a 

multi-method-based uncertainty analysis framework was developed in view of the 

basic characteristics of the construction practice. This framework integrated the 

deterministic and probabilistic approaches to facilitate the uncertainty assessment in 

quantifying carbon emissions and to provide insights into the sensitive construction 

activities from the uncertainty perspective. The developed framework was examined 

through a mix-use project in Guangzhou China. Results showed that the uncertainties 

in the measurement method and geographic representativeness are the major 

uncertainty sources for the building construction phase. The total greenhouse gas 

emission for the target building was 8791.5 tonnes of carbon dioxide equivalent with 

a 9.8% coefficient of variation (CV), which was in line with the result calculated by 

the deterministic method and with the result extrapolated based on the data collected 

from China. The results of the scenario analysis showed that the proportion of 1% in 

contribution analysis and the CV of 18% in uncertainty analysis can be regarded as 

the baseline for determining the critical input parameters. Policy implications and 

practical suggestions were provided to improve the reliability of quantifying 

greenhouse gas emissions during the building construction phase. 

Keywords: uncertainty analysis, life cycle assessment (LCA), greenhouse gas (GHG) 

emissions, building construction phase 

1. Introduction

The carbon dioxide (CO2) emissions related to the residential and commercial 

building sector have been a global concern. As the primary contributor of global 

greenhouse gas (GHG) emissions, the construction industry plays a significant role in 

global warming. The Intergovernmental Panel on Climate Change asserts that the 

building sector contributed 40% to the total energy consumption and 25% to the 

global total CO2 emissions (IEA, 2007; Metz et al., 2007). In China, the situation is 

significantly urgent owing to its accelerated urbanization. According to the 12th 

Five-Year Plan, the urbanization rate in China will reach a historic high of 51.5% in 

2015. As the result of such extensive construction, the growth rate of energy 
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consumption in buildings is more than 10% in past decades (Chang et al., 2014), 

producing large amount of CO2 emissions. Therefore, the negative effects of extensive 

building constructions on China’s environmental sustainability should be evaluated. 

In fact, the carbon emissions generated from building construction activities have 

been extensively studied in China. At the national level, the GHG emissions from the 

construction sector have been quantified using a series of macro-level analysis 

techniques, such as input–output (I–O) analysis and structural path analysis (Chang et 

al., 2014; Chang et al., 2010, 2011; Chen and Zhang, 2010; Liu et al., 2012). At the 

project level, numerous studies have investigated the carbon emissions from different 

types of buildings. As the major building type, residential buildings play a significant 

role in GHG emissions. Gao (2012) measured the embodied carbon footprint of 

residential buildings by conducting an empirical study of 17 buildings in Jiangsu 

province. Liu et al. (2009) quantified the life cycle CO2 emissions of residential 

communities in China. Regarding office buildings, Wang et al. (2016) employed two 

case studies to illustrate the current GHG emission reduction performance of Chinese 

green buildings. Yao (2013) developed a benchmark for the carbon emissions from 

office buildings based on life cycle assessment theory. The current research hotspot 

for GHG emission quantification lies in investigating the influence of innovative 

construction techniques such as precast construction (Aye et al., 2012; Mao et al., 

2013). In sum, previous research provides relevant insights into the current GHG 

emission status of the construction sector from the industrial and project perspectives. 

Nonetheless, the uncertainties generated during modeling are yet to be extensively 

looked into. 

As an effective tool in the decision-making process for saving energy and reducing 

emissions, life cycle assessment (LCA) is widely used in the construction industry for 

environmental quantification. Theoretically, the outcome of an LCA analysis should 

be reliable and valid for decision makers to make optimal decisions. However, in the 

construction practice, the uncertainty of the inherent data affects the accuracy of LCA 

results. As such, the importance of uncertainty analysis behind the LCA results has 

been emphasized in recent years (Ciroth et al., 2002; Geisler et al., 2005; Sonnemann 

et al., 2003; Sugiyama et al., 2005). Therefore, the present study establishes a 

multi-method-based analytical framework to simulate the uncertainty that emanates 

from the computational process in the construction industry. This study aims to 

accurately assess the GHG emissions from buildings and to contribute to the literature 

from three aspects. First, this paper develops a multi-method-based analytical 
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framework that can systematically identify the uncertainty sources and that can 

quantify the uncertainty bundled in construction activities. This framework can 

reinforce the importance of measuring uncertainties in LCA studies and can avoid the 

misinterpretation of the final results during the decision-making process. Second, the 

integration of qualitative and quantitative assessment methods provides a possible 

solution for assessing the uncertainty of LCA studies in the construction practice. This 

method also provides a sufficient understanding on the uncertainty related to building 

construction. Third, this paper identifies the critical parameters that influence the 

GHG emissions during building construction in the context of China. 

The remainder of this paper is organized into six sections. Following the Introduction, 

Section 2 presents an overview of the recent uncertainty analysis in LCA studies. 

Section 3 establishes a multi-method-based uncertainty analytical framework by 

considering the basic characteristics of building construction. To overcome the data 

gap in traditional construction projects, this study collected input data based on an 

extended system boundary, considering onsite miscellaneous works and 

construction-related human activities. The focus was directed toward data inaccuracy 

analysis rather than the lack of data. The study mainly focused on the parameter 

uncertainty given that it is most sensitive to the final result. Section 4 applies the 

uncertainty analysis framework for measuring GHG emissions to a real building case. 

Section 5 discusses the proposed approach along with policy implications, and 

Section 6 presents the conclusions. 

2. Overview of uncertainty analysis in LCA studies

Various researchers have investigated the sources of uncertainty based on LCA 

analysis. Weidema and Wesnæs identified five indicators, including data reliability, 

completeness, temporal correlation, geographical correlation, and technological 

correlation, to evaluate the additional uncertainty caused by data availability and 

quality (Weidema, 1998; Weidema and Wesnæs, 1996). Huijbregts et al. (2001) 

classified these indicators into two groups, namely, data inaccuracy and lack of data. 

With the development of LCA methodology, recent studies have determined that 

uncertainty not only comes from input parameters but also from the initial 

assumptions and the selected methodology. Geisler et al. (2004) identified uncertainty 

sources according to the different phases of LCA. These researchers regarded the 

measurements of elementary flows, temporal and spatial correlations, and production 
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process as the uncertainty sources in life cycle inventory analysis (LCIA) phases. 

Huijbregts et al. (2003) emphasized that in addition to the uncertainties from input 

data, LCA outcomes can also be influenced by selected scenarios and mathematical 

models. Basset-Mens et al. (2004) quantified uncertainty by considering the 

variability in the LCA in pig farming systems. The uncertainty sources included 

technical performance, emission factors, and the functional unit. After reviewing 24 

LCA studies focusing on quantitative uncertainty analysis, Lloyd and Ries (2007) 

concluded that uncertainty and variability come from three LCA modeling 

components, namely, input data, normative choice, and model, whereas Cellura et al. 

(2011) categorized the uncertainty sources in LCA analysis as methodological choices, 

initial assumptions, and quality of data. Williams et al. (2009) divided uncertainty 

types into data, cutoff, aggregation, temporal, and geographic uncertainty to conduct 

uncertainty analysis for a hybrid LCA model. Gavankar et al. (2015) focused on the 

communication of uncertainty in LCAs than on the technical aspects and summarized 

five criteria to facilitate uncertainty communication. In sum, previous works 

addressed three different uncertainty sources significant in LCA-related studies. These 

sources are parameter, model, and scenario uncertainties in which the parameter 

uncertainty is the most sensitive to the final LCA outcome (Huijbregts et al., 2003). 

Assessment tools vary in terms of uncertainty types, and they can generally be divided 

into qualitative and quantitative approaches. The data quality index (DQI) is the most 

commonly used qualitative assessment method because of its high applicability and 

feasibility. The data quality evaluation matrix (Weidema, 1998) and the 

transformation matrix (Kennedy et al., 1996) are the two most efficient tools used in 

DQI assessment. However, DQI remains limited in terms of its assessment accuracy 

due to the subjective determination of data quality. Although the quantitative analysis 

techniques are complemented for the current qualitative uncertainty assessment 

methods to minimize variations, the results still tend to be underestimated as specified 

by Coulon et al. (1997). Considering the aforementioned limitations in the application 

of qualitative approaches in uncertainty analysis, quantitative approaches have been 

introduced based on data availability. Basson and Petrie (2004) adopted a set of 

statistical methods to differentiate and identify both the technical and valuation 

uncertainties in the LCA analysis of a coal-based power station. Canter et al. (2002) 

conducted uncertainty analysis in LCA for four beverage delivery systems. The group 

applied DQI to evaluate the uncertainty of target input data, which were first selected 

according to their individual contributions, and used Monte Carlo simulation (MCS) 
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to obtain the overall uncertainty and model variance. May and Brennan (2003) 

performed uncertainty analysis by implementing three steps: gravity analysis to 

determine data contribution, uncertainty analysis, and sensitivity analysis. Imbeault‐

Tétreault et al. (2013) outlined an analytical approach for uncertainty analysis to 

mitigate the resource intensity in MCS and validated this quantitative method in a real 

case to reveal its importance in uncertainty calculation. Herrmann et al. (2014) 

established an LCA classification matrix to summarize the inherent uncertainty scale 

under each LCA model; this matrix provided an index map for LCA analysts and 

decision makers. In general, fuzzy logic analysis, interval theory, and possibility 

uncertainty analysis are commonly used for LCA uncertainty evaluation given that the 

data are insufficient for further processing (Chevalier and Le Téno, 1996; Tan et al., 

2007; Tan et al., 2002). By contrast, stochastic methods such as MCS can be adopted 

if a large amount of actual data can be observed and collected (Canter et al., 2002; 

Geisler et al., 2004; Lo et al., 2005; Venkatesh et al., 2010). In particular, stochastic 

methods are superior to other methods due to their inherent advantages in capturing 

the variability and uncertainty in LCA. Tan et al. (2002) applied possibility theory to 

assess the uncertainties in LCIA and clarified that possibilistic methods have 

advantages in computational efficiency when compared with probabilistic approaches. 

André and Lopes (2012) held the same view by comparing possibilistic and 

probabilistic approaches and identified that the latter is limited by a relatively slow 

computational process but can provide sufficient uncertainty information. Lloyd and 

Ries (2007) asserted that stochastic methods were mostly used (67%) in previous 

research, followed by scenario analysis (29%) and fuzzy data sets (17%). 

This study summarizes the typical uncertainty sources and their corresponding 

assessment methods as shown in Table 1. 

Table 1 Typical uncertainty sources and their corresponding assessment methods 

Uncertainty sources Typical uncertainties Assessment method 

Assumption System boundary 
Functional unit 
Allocation method 

Scenarios analysis 

Parameter Material flow 
Energy flow 
Other input data 

DQI 
Fuzzy theory 
Analytical uncertainty propagation 
Bayesian statistics 
Possibilistic approach 
Probabilistic approach 

Model Transformation factor 
Modeling process of the product system 

Probabilistic approach 
Sensitive analysis 
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The estimation of uncertainty in LCA analysis is not only associated with uncertainty 

sources and assessment methods, but also with the research scope and objectives. 

Given that this study aims to establish an uncertainty analysis framework for LCA in 

building construction, it considers some basic characteristics relevant to the 

construction industry, especially for building construction. First, a specific building is 

distinctive due to its characterized building profile such as design parameters and 

construction structure. Therefore, elementary flows may vary among different 

buildings. This specificity determines that all input parameters involved in a certain 

building are unique. In this case, sufficient data can hardly be collected to describe the 

probability distribution of the elementary flows of buildings. However, such 

procedure can be partially mitigated by improving the data collection quality and by 

enhancing the measurement method during the building construction phase. Second, 

unlike the manufacturing industry that is characterized by reproducibility and mass 

production, the inventory data of environmental emission, energy input, and resource 

use during building construction are rarely reported from private and public sources. 

The probable reason behind this condition is the confidentiality requirement between 

the client and the contractor. This case verifies that the uncertainty analysis in LCA is 

insufficiently applied to real building cases in the construction industry. 

This study aims to explore how the uncertainty analysis in LCA can be conducted and 

how a multi-method-based analytical framework can be established for the 

construction industry. This study also intends to reveal the uncertainty sources 

bundled in construction activities and the key parameters involved in construction 

processes in the context of China. 

3. Methods

Parameter uncertainties stem from the lack of knowledge about the true value of a 

parameter (Huijbregts et al., 2003). A probabilistic approach can be used to reflect the 

most probable value of the objective. Traditionally, the goodness of fit between data 

samples and probability distributions can be examined to identify the most 

appropriate probability distribution for parameters based on a certain number of 

observations. However, the basic features of building products result in a limited 

amount of actual data. In this case, expert judgment is used as a substitute for the lack 

of knowledge to estimate uncertainty ranges. In this case, DQI should be used as the 

supplement for uncertainty evaluation. However, pure DQI method has weakness in 
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subjective evaluation, but the latest improvements in uncertainty analysis can 

facilitate the comprehensive assessment of the parameter uncertainty. Therefore, this 

study uses both DQI and probabilistic method to address the lack of actual data in the 

construction industry. The data categorization system first introduced by Heijungs 

(1996) is used to identify the key parameters according to their uncertainty and 

contribution in the final output. The important parameters with high uncertainty and 

contribution are then selected for further analysis in the context of the construction 

industry. 

3.1 DQI Assessment Method 

DQI is a semi-quantitative method comprising a series of indicators that aim to 

describe the parameter uncertainty from different aspects. The DQI system is based on 

experts’ subjective judgment as well as on objective mathematical calculations. Given 

the characteristic of building construction, the data quality is mainly influenced by 

three aspects. First, the data measurement method determines the accuracy and 

validity of the available data. A consistent measurement of material flows in the 

construction site can improve data precision and avoid the possibility of uncertainty. 

However, regular investigation and subjective evaluation are frequently adopted in the 

construction industry owing to the restrictions in the data measurement technology. 

Second, the computational framework in LCA analysis implies that the calculated 

results may vary due to the changes in geographic climate, manufacturing technology, 

and data age. Third, the data sources in the construction practice are complicated 

because of its multitude of activities and long-term duration. Therefore, a priority 

system should be established to reflect the reliability by ranking different data sources. 

Comprehensively considering the conclusions of previous research (Wang and Shen, 

2013; Weidema and Wesnæs, 1996), this study identifies five types of data quality 

indicators, namely, data measurement method, source of data, geographic 

representativeness, technical representativeness, and temporal representativeness. The 

score for each indicator ranges from one to five. The value represents the uncertainty 

of each category from low to high. In consideration of the basic characteristics of the 

construction industry, a DQI matrix was established (see Table 2) by Weidema and 

Wesnæs (1996) and Wang and Shen (2013). Table 3 shows the difference of data 

sources from the general situation and building construction.  

Table 2 Data Quality Index (DQI) evaluation system 

Quality 
score 

Data quality indicators 

Measurement Data source Geographic factor Technical factor Temporal factor 
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method 

5 Consistently 
measured data 

Verified data from 
independent source 

Field survey/measure 
data 

Data from process 
studied of the enterprise 
with same technology 

Less than 3 
years 

4 Regularly 
measured data 

Verified data from 
interested party 

Data from an area 
with similar 
production condition 

Data from process 
studied of the enterprise 
with similar technology 

Less than 6 
years 

3 Data estimated 
based on 
measurements 

Unverified data 
from independent 
source 

Regional data Data from enterprises 
with different 
technology 

Less than 10 
years 

2 Data estimated 
partly based on 
assumptions 

Unverified data 
from irrelevant 
enterprise 

National data Data from process 
related of enterprises 
with similar technology 

Less than 15 
years 

1 Subjective 
estimated data 

Unverified data 
from interested 
party 

International data Data from process 
related of enterprises 
with different technology 

More than 15 
years or 
unknown 

Table 3 Different data source in the construction industry 

Quality score General data source Specific in construction industry 

5 Verified data from independent source Accounting receipt  
4 Verified data from interested party Stakeholder’s report 
3 Unverified data from independent source Bill of quantity 
2 Unverified data from irrelevant enterprise Material use application record 
1 Unverified data from interested party Secondary data from the procurement agency 

3.2 Contribution Analysis 

This section determines the contribution of each construction activity to the final 

cumulative results. The use of original process-based inventory data enables the 

calculation of the deterministic contributions for each construction activity. However, 

the result of the deterministic analysis is relatively imprecise because the uncertainty 

of all coefficients contributes to the overall uncertainty value. Such deterministic 

contribution can be regarded as the basic reference and cornerstone for identifying the 

important parameters, which substantially contribute to the final output. Maurice et al. 

(2000) emphasized that the percentage of data contributions may vary from one model 

to another. Therefore, the scenario analysis is conducted to verify and validate the 

reliability of the selected key parameters. 

3.3 MCS 

MCS is a numerical method used to sample a probability distribution for the 

concerned factors to produce thousands of possible outcomes. The results of MCS are 
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further analyzed to obtain the probabilities of different occurring outcomes (Xu 1985; 

Shen et al., 2011). MCS is a useful tool for measuring the total uncertainty aggregated 

by various uncertainty factors with non-linear relationship. In this study, the total 

carbon emission is the aggregation of carbon emission in various activities in the 

construction phase. If the carbon emission in each activity is taken as a stochastic 

factor considering the uncertainty of parameters, then the total carbon emission should 

also be a stochastic factor. The statistical features of the total carbon emission can be 

determined through its probability distribution obtained by MCS. MCS first 

determines the corresponding probability distribution for each input factor. The 

probability distribution for the concerned factor can be obtained either by fitting a 

large number of existing data or by experts view. Based on the established 

relationship between the observed and input factors, MCS can be run with Crystal 

Ball software to obtain the probability distribution of the observed factor. To identify 

the extent in which uncertainty can be considered, the coefficient of variation (CV) is 

used to describe the degree of uncertainty based on the MCS results. Considering the 

constraints and deficiencies of data availability in the construction industry,   

distribution is assumed to describe the possible value for each construction activity. 

Canter et al. (2002) and Wang and Shen (2013) thoroughly explored the reasons and 

rationale for applying Beta function in uncertainty analysis. Kennedy et al. (1996) 

established a transformation matrix to define four unknown parameters involved in 

  distribution, namely,  ,  , lower point, and upper point. MCS is conducted in 

Crystal Ball software with 10000 iterations. The number of iterations directly 

determines the stability of the final output. The result will be convergent with the 

increasing numbers of simulations, and the excessive iterations are regarded as a less 

efficient means to run MCS. Therefore, the examination of convergence is a valid 

method to confirm the appropriate number of iterations (Cowles and Carlin, 1996; 

Shen et al., 2011). Numerous mean values and standard deviations derived from 

simulations with different iterations are then generated to examine the trend of 

convergence. 

3.4 Parameter Categorization System 

The parameter categorization coordinate comprehensively reflects the importance of 

input parameters in the dimension of uncertainty and contribution. With the CV and 

the percentage of contribution represented in the horizontal and vertical axes, 

respectively, all coordinates can be classified into four quadrants according to the 
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degree of their importance. These quadrants are divided into highly concerned data in 

the upper right part, concerned data in the upper left and lower right parts, and general 

data in the lower left part. The parameters in the upper right quadrant have high 

percentage in contribution and uncertainty, critical to the accuracy of the accumulative 

results and therefore require detailed analysis. 

3.5 Basic Procedure of Uncertainty Analysis 

Figure 1 shows the fundamental procedure of parameter uncertainty analysis. 

Contribution analysis and DQI assessment can be conducted simultaneously to 

determine the importance of input data based on the compilation of the original 

inventory. Parameter categorization, combined with scenario analysis, further verifies 

the critical input parameters with particular concerns. Finally, according to the 

assumed probability distribution for each construction activity, the overall CV and the 

final cumulative results are calculated with MCS. 

Figure 1: A multi-method based uncertainty analysis framework 

4. Case Study

The case project refers to the study by Hong et al. (2014), who examined a residential 

complex with a reinforced concrete framework in Guangdong Province, China. The 

gross floor area investigated in this study is 11,508 m2 that comprises a clubhouse and 

retail outlets. The construction period was more than two years from April 1, 2008 to 
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August 31, 2010. The system boundary covers the carbon impacts of all involved 

construction activities, which can be summarized in the following six categories: 

• Fuels used by construction equipment (Direct emissions)

• Electricity consumption (Direct and indirect emissions)

• Onsite assembly and miscellaneous works (Direct emissions)

• Building material production (Indirect emissions)

• Transportation (Direct and indirect emissions)

• Construction-related human activities (Direct and indirect emissions)

All data collected in this study are based on field survey and face-to-face interview 

with clients, contractors, prefabrication suppliers, and other stakeholders involved in 

the target project. The detailed process data are collected from multiple sources, 

including accounting receipt, stakeholder’s report, bill of quantity, material use 

application record, and secondary data from the procurement agencies. The 

deterministic GHG emissions are quantified based on ISO 14064-1:2006 (ISO, 2006) 

used as the reference for contribution evaluation. 

During the CO2 emission quantification, 122 construction activities are involved in 

the emission factor collection and have been subjected to DQI analysis (see Table 4). 

The analysis result shows that the DQI scores vary among different construction 

activities. The emission factors are uncertain in terms of the measurement method, 

geographic representativeness, and technical representativeness. This condition may 

have arisen from the fact that this study engaged proxy data available on the 

international LCA software Ecoinvent v2.0 database. Most of these data were 

developed for Switzerland and Europe, and a few were established for global use. By 

contrast, the elementary flow data in the entire project are decomposed into 331 

construction activities. Table 5 demonstrates the result of the DQI analysis. The 

construction inventory data have weaknesses in measurement method and data source 

mainly because most material flow data are collected based on the bill of quantity, 

which is compiled under various assumptions. In addition, given that the major data 

collection method used in this study is field survey and face-to-face interview, the 

indicator of the temporal correlation represents less uncertainty. 
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Table 4 Result of DQI analysis for emission factor parametersa 

GHG emissions related construction 
activities 

Number of 
emission 
factors 

Measurement method Data source Geographic representativeness Technical 
representativeness 

Temporal 
representati
veness 

Fuels use in construction equipment 6 Data estimated based on 
measurements (3) 

China Energy Statistical 
Yearbook 2007 (5) 

National data (2) Data from process related 
of enterprises with similar 
technology (2) 

Less than 6 
years (4) 

Onsite welding and cutting 1 Chemical formula (5) Field survey/measure data (5) Data from process studied 
of the enterprise with same 
technology (5) 

Less than 3 
years (5) 

Temporary septic-tank 1 Data estimated partly 
based on assumptions (2) 

IPCC 2006 (5) International data (1) Data from process related 
of enterprises with similar 
technology (2) 

Less than 6 
years (4) 

Office electricity use 1 2009 NDRC Reports (5) Data from an area with similar 
production condition (4) 

Data from process studied 
of the enterprise with 
similar technology (4) 

Less than 3 
years (5) Construction electricity use 1 

Building materials production 79 Ecoinvent v2.0 database 
(5) 

International data (1) Data from process related 
of enterprises with similar 
technology (2) 

Less than 6 
years (4) Building materials transportation 12 

Construction equipment transportation 9 
Fuels used in staff transportation 3 
Construction water production 1 Data estimated based on 

measurements (3) 
Guidelines 2010e (5) Less than 3 

years (5) Office water production 1 
Office cooking oil use 3 China Energy Statistical 

Yearbook 2007 (5) 
National data (2) Less than 6 

years (4) Onsite cooking oil use 3 
Offsite septic-tank 1 Data estimated partly based 

on assumptions (2) 
IPCC 2006 (5) International data (1) 

Note: a. The number list in “()” is the DQI score; b. 2009 NDRC Report of Emission Factors for Chinese Regional Power Grid; c. Guidelines to Account for and Report on GHG Emissions 

and Removals for Buildings in Hong Kong 2010.  
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Table 5 Result of DQI analysis for elementary flow dataa 

GHG emissions related construction 
activities 

Number of 
activities 

Measurement method Data source Geographic 
representativeness 

Technical 
representativeness 

Temporal 
representativeness 

Fuels use in construction equipment 7 Data estimated partly 
based on assumptions (2) 

Contractor’s report (4) Field survey/measure 
data (5) 

Data from process 
studied of the 
enterprise with same 
technology (5) 

Less than 3 years (5) 

Onsite welding and cutting 17 Data estimated based on 
measurements (3) 

Temporary septic-tank  8 Data estimated partly 
based on assumptions (2) 

Office electricity use 29 Consistently measured 
data (5) 

Accounting receipt (5) 
Construction electricity use 29 
Building materials production 79 Data estimated partly 

based on assumptions (2) 
Bill of quantity (3) Data from process 

studied of the 
enterprise with similar 
technology (4) 

Building materials transportation 24 Data from an area with 
similar production 
condition (4) 

Construction equipment transportation 19 Secondary data from 
the procurement 
agency (1) 

Fuels used in staff transportation 15 

Construction water production 15 Consistently measured 
data (5) 

Accounting receipt (5) Field survey/measure 
data (5) 

Data from process 
studied of the 
enterprise with same 
technology (5) 

Office water production 29 
Office cooking oil use 29 Regularly measured data 

(4) Onsite cooking oil use 29 
Offsite septic-tank 2 Regularly measured data 

(4) 
Accounting receipt (5) 

Note: a. The number list in “()” is the DQI score; 
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5. Results and Discussions

Table 6 illustrates the ranking list of the construction activities in terms of their 

contribution and uncertainty. 

Table 6 Results of contribution analysis and uncertainty analysis 

Construction activities Contribution Construction activities Uncertainty 

1 Steel 48.95% Construction equipment transportation (7.5～16t) 24.77% 
2 Concrete 13.24% Company cars 24.73% 
3 Talcum powder 8.79% Construction equipment transportation (16～32t) 24.65% 
4 U. F. foamed plastic 5.26% Construction equipment transportation (3.5～7.5t) 24.64% 
5 Polyamides safety net 2.79% Building materials production (>32t) 20.82% 
6 Onsite electricity use 2.42% Building materials transportation 16～32t 20.72% 
7 Cement 2.12% Building materials transportation 3.5～7.5t 20.63% 
8 Aluminum 2.00% Building materials transportation 7.5～16t 20.61% 
9 Offsite electricity use 1.52% Concrete block 19.21% 
10 Glass 1.07% Timber 19.21% 

As two of the most important and frequently used materials for construction, steel and 

concrete represented the highest relative contribution with proportions of 49% and 

13%, respectively, cumulatively accounting for approximately 2/3 of the total carbon 

emissions. The transportation of construction equipment and building materials 

played a major role in the uncertainty analysis with CVs of 24% and 20%, 

respectively. 

Figure 2 shows the distribution of all construction activities in the parameter 

categorization coordinate. Each point in the figure represents one certain construction 

activity. Most construction activities converged on the area with an uncertainty 

interval of 15% to 20% and a contribution of 0% to 1%. To comprehensively 

investigate the effect of changes in uncertainty and contribution on the determination 

of critical construction activities, this study identified the key parameters by 

considering the different levels of contribution and uncertainty. Given the 

aforementioned converged area and the results obtained in Table 6, we established 12 

scenarios. The minimum value for each scenario in terms of their contribution and 

uncertainty is listed in the first two columns of Table 7. 
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Figure 2: Distribution of construction activities in parameter categorization coordinate 

Table 7 shows the results of the scenario analysis (10000 runs MCS). Scenarios 1, 2, 

and 3 revealed that the number of key parameters decreased dramatically when the 

uncertainty increased. Electricity use and a number of building materials were defined 

as key parameters at above the 0.1% level of contribution. Considering that several 

building materials, such as aluminum and polyamide safety netting, have a relatively 

small weight (<0.1%) while a significant quantity of GHG (2% to 3%) is released 

during the construction phase, alternatives with low carbon intensity should be 

selected. When the frequency of occurrence for each key parameter was considered 

(see Figure 3), steel was regarded as the key parameter in eight scenarios, followed by 

concrete, aluminum, and glass in six scenarios. The result further demonstrated the 

important status of these four types of building materials in CO2 emissions during 

building construction. Two scenarios did not display any result under the assumption 

that the contribution proportion is more than 10% and the CV is more than 19%. This 

condition verifies that because of great efforts in data collection and consolidation, 

this study can improve the data quality and minimize the possible uncertainties. 

Considering the change trends of key parameters in 12 scenarios, the proportion of 

1% in contribution analysis and a CV of 18% in uncertainty analysis can be selected 

as the basic value to determine the input parameters that need special attention and 

careful processing. Therefore, eight building materials not only generated large 

amount of GHG emissions but also represented a high level of uncertainty in the final 

output. These materials are steel, concrete, talcum powder, U. F. foamed plastic, 

polyamide safety netting, cement, aluminum, and glass. 
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Table 7 Result of scenario analysis 

Contribution Uncertainty Key parameters Distribution 

1 >0.1% >15% Onsite electricity use; Offsite 
electricity use; Steel; Concrete; 
Talcum powder; U. F. foamed plastic; 
Polyamides safety net; Cement; 
Aluminum; Glass; Slag; Clay 
haydite; Welding rod; Polyurethane; 
Perlite; Timber plates; Wire 
entanglement; Formwork; UPVC 
pipe; Marble; Gravel; Ceramic;  

2 >0.1% >18% Steel; Concrete; Talcum powder; U. 
F. foamed plastic; Polyamides safety
net; Cement; Aluminum; Glass; Slag;
Clay haydite; Welding rod;
Polyurethane; Perlite; Timber plates;
Wire entanglement; Formwork;
UPVC pipe; Marble; Gravel;
Ceramic;

3 >0.1% >19% Aluminum; Glass; Slag; Timber 
plates; Gravel; 

4 >1% >15% Steel; Concrete; Talcum powder; U. 
F. foamed plastic; Polyamides safety
net; Cement; Aluminum; Glass;

5 >1% >18% Steel; Concrete; Talcum powder; U. 
F. foamed plastic; Polyamides safety
net; Cement; Aluminum; Glass;

6 >1% >19% Aluminum; Glass; 
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7 >10% >15% Steel; Concrete; 

8 >10% >18% Steel; Concrete; 

9 >10% >19% NULL 

10 >25% >15% Steel 

11 >25% >18% Steel 

12 >25% >19% Null 
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Figure 3: Frequency of occurrence for key construction activities in 12 scenarios 

Figure 4 shows the results of MCS in terms of the total GHG emissions. The mean 

value of MCS was 8791.5 tonnes of carbon dioxide equivalent (CO2e), which was in 

line with the deterministic result of 8779.4 t CO2e. The standard deviation and CV for 

the total emissions were 863.1 and 9.8% respectively, revealing that the uncertainties 

from the input parameters in this study were acceptable. According to the uncertainty 

results, a confidence interval within a 90% certainty was estimated from 7422.3 t 

CO2e to 10202.7 t CO2e with the range width of 2780.4 t CO2e. 

Figure 4: Monte Carlo simulation result for total GHG emissions 
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Table 8 shows the GHG emission intensity of different buildings in China. Given the 

geographic and structural similarities of these buildings, the estimated GHG emission 

intensity was highly consistent with the findings summarized in Table 8, especially 

with the building cases analyzed in Shenzhen and Hong Kong. Chang et al. (2015) 

conducted a disaggregated I–O analysis to quantify the GHG emission for different 

types of buildings at the national average level. Such benchmark provides a 

macro-level perspective to examine the reliability of results obtained in present study. 

Given the emission intensity provided by Chang et al. (2015) for the category of urban 

residential and office buildings, the result obtained from the uncertainty analysis 

framework in this study was also acceptable and reasonable. 

Table 8 GHG emission intensity obtained in previous research 
Source Location Building type Structure Gross floor 

area (m2) 
Assessment 
model 

GHG emissions 
(tCO2e/m2) 

Xing et al. (2008) Shanghai Office RC 34620 Process-based 0.606 
SF 46240 0.315 

Wu et al. (2012) Dalian Office RC 36500 Process-based 0.803 
Wang et al. (2016) Shenzhen Office RC 25023.9 Process-based 1.183 
Yan et al. (2010) Hong Kong Commercial RC 43210 Process-based 0.525 
Mao et al. (2013) Shenzhen Residential FSS 216000 Process-based 0.348 
Liu et al. (2009) Beijing Residential FSS 35356 Process-based 0.374 

Beijing Residential FSS 33290 0.49 
Beijing Office RC 91371 0.541 

Gao (2012) Jiangsu Residential FSS 5644-28032 Process-based 0.326 
Jiangsu Residential RC 1176-8809 0.273 

Yao (2013) Wuhan Office RC 5712-41260 Process-based 0.271-0.48 
Chang et al. (2015) China Urban 

Residential 
- - I-O based 0.260 

Office 0.320 
Present study Guangzhou Residential+ 

commercial 
RC 11508 Process-based 0.645-0.887* 

Note: “RC” represents the reinforced concrete frame; “SF” represents the steel-framed structure “FSS” 

represents the frame-shear wall structure; “*” represents that this result was obtained with the confidence interval 

of 90%. 

Figure 5 shows the trend of convergence for the total GHG emissions with the 

increasing number of iterations. The mean value of the total amount of emissions 

became stable after 4500 simulations were run, whereas the standard deviation 

converged significantly from 5500 iterations. Therefore, the result of MCS with 

10000 runs can be considered effective and valid to reflect the real amount of GHG 
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emissions from the building construction phase. 

Figure 5: The trend of convergence of mean and SD for the total GHG emissions 

6. Discussions and policy implications

The uncertainty analysis for LCA is scarcely conducted in the construction industry 

because the actual process data for building products are often irreproducible and 

unavailable. As such, the related data and results are limited. This study mitigates 

such problem by developing an uncertainty assessment framework with the 

combination of qualitative and quantitative approaches. The framework switches the 

focus of concern from the contribution-oriented analysis in traditional GHG 

assessment toward the uncertainty effect examination. The results obtained in this 

study further emphasize the importance of identifying the uncertainty factors in GHG 

emission assessment. 

In addition to the exploration of typical carbon-intensive construction activities 

according to their significant emission contributions, this study also provides evidence 

for the uncertainty-related sensitive factors for assessing GHG emissions. 

Traditionally, steel and concrete are regarded as the major CO2 contributors owing to 

their carbon-intensive manufacturing process. The result of the scenario analysis 

indicated that aluminum, glass, slag, timber, and gravel are also important, especially 

considering the effect of their uncertainty (>19%). Given the basic characteristics of 

building construction, the data measurement for inventory analysis is a significant 

uncertainty source that influences emission evaluation. Most material flow data are 

collected or calculated based on the bill of quantities, originally compiled and 

pre-estimated under numerous assumptions. The quantity changes in the adopted 

materials and fuels due to wastage, reconstruction, and unexpected events in the 

construction site may suffer from a high level of uncertainty, thereby underestimating 
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the actual GHG emissions. Furthermore, the emission factors lack the consideration of 

regional diversity and case-specificity, which has weakness in technical and 

geographical representativeness to reflect the current GHG emission status in China. 

Although the carbon emissions generated from the construction practice have been 

extensively studied in China, no uniform, authoritative, and official emission factor 

database applicable for such context has been established. The major barriers for 

regional specific data measurement include the complexity of geographical conditions, 

the variation in climate zones, and the differences in manufacturing technologies. 

Therefore, the corresponding strategies that can holistically mitigate the uncertainty 

that emanates from building construction should be developed and implemented. 

First, to address the temporal uncertainty during assessment, the validity of time 

period applicable for the corresponding analysis should be indicated. The length of 

valid time is critical because the assessment result with a short temporal validity 

reinforces the accuracy level under the current production technology but restrains the 

future use of such study. Therefore, one compromise for such dilemma is to integrate 

the national average data from I–O analysis into a process-based model. In this 

situation, the result can include the case-specific information on actual material inputs 

and the emission outputs of unit primary process, and it can also reflect the national 

technology progress in a fixed period. 

Second, the national level variations during production may be caused by the different 

levels of technology and economic development. Therefore, such discrepancy can be 

reduced by using region-specific production data. For instance, this study utilizes the 

international emission factors to extrapolate GHG emissions generated from the target 

building to establish a general situation to examine the effect of data geographic 

representativeness on the accuracy of final results. However, the overdependence of 

international data has a disadvantage in reflecting the real situation of GHG emission 

status in China’s construction industry. Therefore, to reflect the real transition of 

China’s building emission patterns, this study collected emission factors for primary 

construction activities based on the data measured and estimated in the context of 

China (see Table 9). The results show that the target building generated 8962.3 t CO2e 

to 9491.3 t CO2e according to different data sources collected in Table 9 that is 2.1% 

to 8.1% higher than the deterministic result and 1.9% to 8.0% higher than the mean 

value of MCS. Such fluctuation of value is still consistent with the CV (9.8%), 

demonstrating the validity of the uncertainty analysis framework developed in this 
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study. Most importantly, the total amount of emissions estimated according to China’s 

construction practice is higher than the international level, implying the importance of 

using localized emission factors. 

Table 9 Emission factors collected in the context of China 
Unit Emission factor Data source 

Onsite construction equipment use 
Diesel kgCO2/kg 2.17-3.78 [1]-[7] 

Onsite electricity use 
Electricity kgCO2/KWh 0.700-0.953 [1]-[7] 

Onsite water use 
Water kgCO2/m3 0.259-0.414 [3]-[5], [7] 

Transportation 
Road transportation kgCO2/tkm 0.159-0.227 [1], [3], [5], [6] 

Materials production 
Steel kgCO2/kg 1.33-2.60 [1]-[7] 
Concrete kgCO2/m3 251-425 [1]-[7] 
Cement kgCO2/kg 0.698-1.035 [1]-[7] 
Aluminum kgCO2/kg 26.0-29.8 [1]-[5] 
Glass kgCO2/kg 1.10-2.82 [1]-[7] 
UPVC pipe kgCO2/kg 4.65-4.70 [1], [3], [5] 
Gravel kgCO2/kg 0.002 [4], [5] 
Ceramic kgCO2/kg 0.740 [1], [3]-[5] 

Source: [1] Liu et al. (2009); [2] Li (2010); [3] Gao (2012); [4] Yao (2013); [5] Wang et al. (2016); [6] Yan et al. 

(2010); [7] Mao et al. (2013) 

Third, besides the geographic uncertainty at the international level, intra-national 

difference has also been emphasized in previous studies (Williams et al., 2009). Such 

variation is exaggerated in China owing to its imbalanced regional economic 

development. A promising solution is to identify the major material supply regions 

according to the material flows in the upstream supply chain of China’s construction 

industry (Hong et al. 2016a). Therefore, the focus of concern can be narrowed into 

only several typical resource-supply regions, allowing the leading authority to 

establish an emission factor database by only investigating the resource-abundant 

suppliers. 

Fourth, given a high level of uncertainties generated from data measurement, adopting 

a precast construction or an industrialization building system is an effective means to 

improve data accuracy. Compared with conventional construction technologies, 

prefabrication provides a standard, resource-efficient, and modular construction 

process that can not only minimize the waste and resource depletion during 
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manufacturing but also reduce reconstruction and unexpected events in the 

construction site (Hong et al. 2016b). As such, the preliminary estimation of the 

material inventory flow through the bill of quantity can relatively reflect the actual 

materials used during building construction. 

7. Conclusions

This study quantifies the uncertainty associated with GHG inventories in building 

construction in China. The GHG emissions from a real construction project are 

assessed reliably and accurately by establishing a comprehensive uncertainty analysis 

framework. This analytical method enables the decision maker to explore the most 

critical input parameters significantly attributable to the total GHG emissions. The 

method also addresses the limited data availability in the construction practice and 

provides information on the overall uncertainty in a transparent manner. The findings 

of this study are listed as follows: 

(1) The uncertainty in measurement method and geographic representativeness is

considered the major uncertainty source for elementary flow estimation and emission

factor collection during building construction.

(2) The total GHG emissions obtained from the analytical framework for the target

building was 8791.5 t CO2e with a CV of 9.8%, which was in line with the result

calculated by the deterministic method and the result extrapolated based on the data

collected from China.

(3) Apart from the sensitive parameters explored in the traditional uncertainty analysis,

the result of the scenario analysis showed that aluminum, glass, slag, timber, and

gravel are also important, especially considering the effect of their uncertainty

(>19%).

(4) According to the parameter coordinate in the scenario analysis, the proportion of

1% in contribution analysis and the CV of 18% in uncertainty analysis can be

regarded as the baseline for determining the critical input parameters. Under this

assumption, steel, concrete, talcum powder, U. F. foamed plastic, polyamide safety

netting, cement, aluminum, and glass are the key parameters that should be given due

attention.
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In sum, this study develops an uncertainty analysis framework for future LCA 

analysis in the construction practice. Although this study has limitations in terms of 

the insufficient number of construction projects investigated, its findings can benefit 

related research on life cycle uncertainty analysis and can be regarded as a solid 

reference foundation for future uncertainty analysis in China. 
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