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Abstract

With the aim of understanding epidemic spreading in a general multiplex net-

work and designing optimal immunization strategies, a mathematical model based

on multiple degree is built to analyze the threshold condition for epidemic out-

break. Two kinds of strategies, the multiplex node-based immunization and the

layer node-based immunization, are examined. Theoretical results show that the

general framework proposed here can illustrate the effect of diverse correlations

and immunizations on the outbreak condition in multiplex networks. Under a set

of conditions on uncorrelated coefficients, the specific epidemic thresholds are

shown to be only dependent on the respective degree distribution in each layer.

Keywords: multiplex network, epidemic spreading, threshold condition,

immunization.

1. Introduction

In recent years, the study of complex networks has been extended from a single

network to a multilayer network with an overlapping fraction q of shared individu-

als. When q = 0, the multilayer network is a disjoint interdependent/interconnected

network; while the multilayer network becomes a multiplex/overlay network when

q = 1. Most recently, multilayer networks have attracted wide attentions due to

their novel features, such as complexity [1], diversity [2] and fragility [3]. Diffu-

sion processes over multilayer networks are reviewed in recent work [4].

An susceptible-infected-susceptible (SIS) and an susceptible-infected-recovered

(SIR) compartmental structures are two fundamental frameworks in modelling

disease spreading. Recently, these compartmental frameworks were incorporated
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into multilayer networks and wonderful results were obtained. For example, Dick-

ison et al. [5] studied the spreading of an SIR epidemic model in multilayer net-

works, where each layer has a random Poissonian degree distribution. Under

a certain condition, the model exhibits a mixed phase where an epidemic occurs

only in one network, which illustrates the role of the internal layer structure on the

spreading process. Almost at the same time, Saumell-Mendiola et al. [6] explored

the spreading of an SIS epidemic model in interconnected networks by using the

heterogeneous mean-field (HMF) approach [7] and obtained the condition under

which an epidemic can spread even though the epidemic is not able to propagate

on each network separately. Their results also suggest that the mixed phase does

not emerge for the SIS model in multilayer networks. More recently, Salehi et al.

[1] proposed a general SIR model in disjoint interdependent networks. By map-

ping the original network to a colored degree-driven random graph, the authors in

[1] obtained analytically exact conditions for epidemic outbreak. They also fig-

ured out a multidimensional epidemic threshold, which thoroughly determines the

alternative dynamical patterns. Zhu et al. [8] analyzed an SIS epidemic model in

a multilayer network with three layers of featured structures and derived the basic

reproduction number R0 [9].

As a general multilayer network, the study of multiplex networks is also im-

portant and interesting [10]. Buono et al. [11] studied an SIR model in partially

overlapped multiplex networks and found that the epidemic threshold decreases as

the overlapped fraction between layers increases. They also concluded that in the

limit of a small overlapping fraction, the epidemic threshold is dominated by the

most heterogeneous layer. By using the microscopic Markov-chain approximation

(MMA) [12], Wu et al. studied the epidemic spreading of SIS models in multi-

plex networks for both concatenation case and switching case [13]. The MMA

approach allows the authors to determine the mutual relationship between the epi-

demic thresholds of two cases. By a continuous-time MMA approach, Sahneh et

al. [14] investigated the dynamic of competitive epidemics in multiplex networks

and found that competitive epidemics can coexist under a certain condition.

Several other studies investigated the immunization of multiplex networks,

another important topic related to cost-effectiveness evaluation of disease control

measures [15]. Buono et al. [16] applied the targeted immunization in one of the

layers in partially overlapped multiplex networks and found the targeted immu-

nization is not very efficient because the epidemic threshold is dominated by the

most heterogeneous network [11]. In [17], Zuzek et al. studied the random im-

munization implemented in one layer of a partially overlapped multiplex network,

and found that the critical threshold of the epidemic is dominated by the threshold
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of the most heterogeneous layer when q is very small. Zhao and coauthors in-

vestigated the spreading [18] and immunization [19] of SIR models in multiplex

networks (i.e., completely overlapping), where epidemic thresholds for the model

with the random immunization and targeted immunization were determined.

With the aim of designing an optimal immunization scheme in a complicated

social network, in this paper, we are going to investigate a general immunization

strategy for SIS epidemic models in multiplex networks. In particular, we will

develop a novel heterogeneous mean-field (HMF) formulation that allows us to

analyze several different kinds of the immunization schemes. Based on the devel-

oped formulation, we then analyze the epidemic spreading in multiplex networks

without (and with) immunization through novel applications of the generalized

HMF theory [7].

2. The epidemic spreading in multiplex networks

2.1. The model

We assume the infectious disease in this study, for example the common cold,

obeys the SIS epidemiological transmission structure where infected nodes can

be recovered, but may be infected again [7, 20]. In this modelling framework,

each node may stay in either susceptible (S) or infected (I) state. At each time

step, every infected node may transmit the pathogen to its susceptible neighbors

with rate λ (i.e., the infection rate) and meanwhile get recovered and become

susceptible again with rate µ (i.e., the recovery rate). In what follows, we are

going to embed the SIS structure to a multiplex network by the HMF approach.

A multiplex network is a network with multiple links connecting the same

nodes. The multiplex network accounts for two typical scenarios: (i) the links be-

tween two individuals may be determined by many different kinds of interactions

[21]; (ii) various pathogens spread in several routers separately [22]. For simplic-

ity, we consider the multiplex network with two layers, denoted by A and B. It is

natural to assume that an infectious disease spreads along different layer with its

specific infection rate. To incorporate this heterogeneity, we assume that layer A
(B) has the infection rate λa (λb resp.). For the convenience of mathematical anal-

ysis and in accordance to realistic cases, we also assume that the whole network

has a finite size N [23], which implies the existence of a maximal degree Ma for

A and Mb for B, respectively.

Recently, Sanz et al. [24] studied the dynamics of two interacting pathogens

with the successful application of the HMF approach to the analysis of epidemic

spreading in multiplex networks. The work of Saumell-Mendiola et al. [6] in
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the interdependent network also illustrates the effectiveness of HMF approach in

analyzing SIS epidemic models in a multiplex network. Motived by these studies

[6, 24], we are going to employ the HMF approach to our study. It is worth to

highlight that although the following HMF model can be derived in a similar way

as previous investigations, the analysis performed here is different. In order to

obtain the mean-field rate equations, we divide all the nodes into many classes

based on their degrees and epidemiological states. We use a vector degree ~k =
(ka, kb) to denote a class of nodes with degree ka in layer A and degree kb in

layer B [6], following the joint probability distribution p(ka, kb). The respective

marginal probability distributions of node with degree ~k can be computed as

p(ka) =
∑

kb

p(ka, kb) and p(kb) =
∑

ka

p(ka, kb).

Moreover, the n order moment of the joint probability p(ka, kb) can be written as

〈kn
a 〉 =

∑

ka,kb

kn
ap(ka, kb) =

∑

ka

kn
ap(ka),

and

〈kn
b 〉 =

∑

ka,kb

kn
b p(ka, kb) =

∑

kb

kn
b p(kb).

Let N~k denote the number of nodes in class with degree ~k, and I~k(t) represent

the number of infected nodes at time t in class with degree ~k. Clearly, N~k
=N ×

p(ka, kb), where N is the size of whole network. Then the HMF version for an SIS

epidemic model in a multiplex network can be described as the following ordinary

differential equations:

dI~k
dt

= −I~k + (N~k
− I~k)(λakaθa + λbkbθb),

where the recovery rate is scaled as unitary. In the above system, θa and θb rep-

resent the probabilities that a randomly-selected link emanating from a node of

degree ~k leads to infected nodes in the layer A and B, respectively. Suppose each

layer in the network underlying disease transmission is uncorrelated to its degree,

then we have the probabilities

θa =

∑

~k
kaI~k(t)

∑

~k
kaN~k

and θb =

∑

~k
kbI~k(t)

∑

~k
kbN~k

.
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Let ρ~k = I~k/N~k
be the proportion of nodes with degree ~k, then its dynamics are

determined by the following system:

dρ~k
dt

= −ρ~k + (1− ρ~k)(λakaθa + λbkbθb), (1)

where

θa =

∑

~k
kap(ka, kb)ρ~k(t)
∑

~k
kap(ka, kb)

=

∑

~k
kap(ka, kb)ρ~k(t)

〈ka〉
, (2)

and

θb =

∑

~k kbp(ka, kb)ρ~k(t)
∑

~k kbp(ka, kb)
=

∑

~k kbp(ka, kb)ρ~k(t)

〈kb〉
. (3)

We would like to remark that model (1) is similar to the SIS model in directed net-

works [25, 26] if we regard ka as the in-degree and kb as the out-degree. However,

the main difference lies in the additional summation term in system (1).

2.2. The outbreak condition

In theoretical epidemiology, the condition of an epidemic outbreak, such as the

value of the basic reproduction number R0, plays an important role. The epidemic

will prevail and persist in a population when the outbreak condition is satisfied;

while it is not satisfied, the pathogen will not spread in the population. There are

two frequently-used methods (although sometimes not rigorous) to determine the

outbreak condition: (i) Analyzing the existence of a positive stationary state, such

as performed in Pastor-Satorras and Vespignani [7]; (ii) Determining the linear

stability of the disease-free equilibrium or deriving the basic reproduction number

R0 characterized as the spectral radius of the next generation matrix [9]. If we use

the second method to our model (1), the basic reproduction number R0 is equal to

the spectral radius of the next generation matrix, ρ(FV −1), where F is the matrix

describing the rate of new occurring infections and V is the matrix characterising

the rate of transferring individuals out of the original group. For model (1), it is

easy to see that

F =
(

λakak
′
ap(k

′
a, k

′
b)〈ka〉−1 + λbkbk

′
bp(k

′
a, k

′
b)〈kb〉−1

)

(Ma×Mb)×(Ma×Mb)
(4)

and V = I , an identity matrix. Therefore, R0 = ρ(F ). Note that each entry of F
is a summation of two terms, which is different from the matrix form studied in

[6, 8], and as a result, it is challenging to obtain an explicit expression directly for

R0, the leading eigenvalue of F .
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Now, we turn to the first method, by analysing the existence of a positive

steady state, to identify an outbreak condition. Following Pastor-Satorras and

Vespignani [7], we utilize the stationarity condition
dρ~k
dt

= 0 in (1) and obtain

ρ~k =
λakaθa + λbkbθb

1 + λakaθa + λbkbθb
. (5)

Substituting (5) into (2) and (3) leads to the following equalities

θa =
1

〈ka〉
∑

ka,kb

kap(ka, kb)
λakaθa + λbkbθb

1 + λakaθa + λbkbθb
:= Ga(θa, θb), (6)

and

θb =
1

〈kb〉
∑

ka,kb

kbp(ka, kb)
λakaθa + λbkbθb

1 + λakaθa + λbkbθb
:= Gb(θa, θb). (7)

According to the implicit function theorem, Eq. (6) defines a function θa =
h(θb) when the following inequality holds:

∂Ga

∂θa
=

1

〈ka〉
∑

ka,kb

λak
2
ap(ka, kb)

(1 + λakaθa + λbkbθb)2
6= 1. (8)

This inequality implies that ∂Ga

∂θa
(0, 0) 6= 1, which is equivalent to λa

〈k2a〉
〈ka〉

6= 1.

Let us regard model (1) as a system of parameter λb. Denote the matrix F de-

fined in (4), with parameter λb, as Fλb
. According to the monotonicity of spectral

radius of nonnegative matrix, ρ(Fλb
) is a monotonically increasing function of λb,

which implies that R0 =ρ(Fλb
) increases as λb increases.

When λb = 0, the system is reduced to the standard SIS model in a single

network [7]. In the case λa
〈k2a〉
〈ka〉

> 1, it is well known that λa
〈k2a〉
〈ka〉

> 1 implies

ρ(F0) > 1. Therefore,

R0 = ρ(Fλb
) > ρ(F0)

for each positive λb. In this case, the epidemic spreads certainly.

Now we consider the case where λa
〈k2a〉
〈ka〉

≤ 1. Since λa
〈k2a〉
〈ka〉

6= 1 implies the

existence of h, we firstly consider λa
〈k2a〉
〈ka〉

< 1. In this scenario, ∂Ga

∂θa
< λa

〈k2a〉
〈ka〉

and inequality (8) holds. Hence a unique function θa = h(θb) can be defined by

Eq. (6). Substituting the implicit function θa = h(θb) into (7), one can obtain a

scalar self-consistency equation

θb = Gb[h(θb), θb]. (9)
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Define H(θa, θb) = θa − Ga(θa, θb) = θa +
1
〈k〉

∑

ka,kb

kap(ka,kb)
1+λakaθa+λbkbθb

− 1. The

first and second derivatives of the right hand side of Eq. (9) with respect to θb are

given by

d

dθb
Gb[h(θb), θb] =

∂Gb

∂θa
h′(θb) +

∂Gb

∂θb
= −∂Gb

∂θa

∂H

∂θb
/
∂H

∂θa
+

∂Gb

∂θb
> 0

and

d2

dθ2b
Gb[g(θb), θb] =

[

∂2Gb

∂θaθa
h′(θb) +

∂2Gb

∂θaθb

]

h′(θb) +
∂Gb

∂θa
h′′(θb)

+
∂2Gb

∂θbθa
h′(θb) +

∂2Gb

∂θbθb
.

Since the following inequalities hold

∂2Gb

∂θaθa
< 0,

∂2Gb

∂θaθb
< 0,

∂2Gb

∂θbθa
< 0,

∂2Gb

∂θbθb
< 0,

∂Gb

∂θb
> 0, h′(θb) > 0, h′′(θb) < 0,

we deduce that
d2

dθ2b
Gb[h(θb), θb] < 0.

Therefore, in the interval 0 < θb ≤ 1, there exists a unique non-zero solution of

(9) if and only if d
dθb

Gb[h(0), 0] > 1, from which one can obtain

λaλb〈kakb〉2
〈ka〉〈kb〉

1

1− λa
〈k2a〉
〈ka〉

+ λb

〈k2
b 〉

〈kb〉
> 1, which implies

λaλb〈kakb〉2
〈ka〉〈kb〉

>

(

1− λa

〈k2
a〉

〈ka〉

)(

1− λb

〈k2
b 〉

〈kb〉

)

. (10)

Similarly, if λb
〈k2

b
〉

〈kb〉
< 6= 1, we can get the same condition for epidemic out-

break.

At last, we consider the critical case λa
〈k2a〉
〈ka〉

= λb
〈k2

b
〉

〈kb〉
= 1. It seems very

difficult to determine the existence of a positive solution for (6) and (7) in a direct

way. So we would like to take an indirect method to solve this issue. Notice that

(10) holds for the threshold case. Hence, the critical point (λc
a, λ

c
b) lies outside the

curve L defined as

curve L:
λaλb〈kakb〉2
〈ka〉〈kb〉

=

(

1− λa

〈k2
a〉

〈ka〉

)(

1− λb

〈k2
b 〉

〈kb〉

)

. (11)
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Figure 1: A parametric diagram for λa and λb, where a threshold curve L (defined in Eq. (11))

divides the parameter space into two parts: the endemic phase and the extinction phase. The curve

L is sketched according to its simple properties, such as the monotonic property and the spans of

parameter λa and λb.

In Figure 1, we sketch a parametric diagram for the curve L. By the monotonicity

of spectral radius of a nonnegative matrix on parameters, the infectious disease

spreads at the critical point.

Summarizing the above arguments, we conclude the condition of an epidemic

outbreak as follows:

Case 1: λa
〈k2a〉
〈ka〉

≥ 1 and λb
〈k2

b
〉

〈kb〉
≥ 1. In this case, the epidemic always spreads over

the network;

Case 2: λa
〈k2a〉
〈ka〉

< 1 or λb
〈k2

b
〉

〈kb〉
< 1. At this time, an epidemic breaks out when

λaλb〈kakb〉
2

〈ka〉〈kb〉
>
(

1− λa
〈k2a〉
〈ka〉

)(

1− λb
〈k2

b
〉

〈kb〉

)

.

In particular, when λa = 0 (or λb = 0), the multiplex network is actually a single

network and the epidemic threshold λa
c (or λb

c) can be obtained by the outbreak

condition for the case 2. In addition, based on the geometric relation between the

extinction and endemic phases as shown in Fig. 1, a unified formulation of out-

break conditions for two cases can be obtained. One formulation can be derived

as follows: when λa = λb = λ, if we introduce c1 = 〈kakb〉
2

〈ka〉〈kb〉
, c2 = 〈k2a〉

〈ka〉
, and

c3 =
〈k2

b
〉

〈kb〉
, then a simple computation deduces that an epidemic breaks out when
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λ > λc, where λc is defined as

λc =

{

c2+c3+
√

(c2−c3)2+4c1

2(c2c3−c1)
, c2c3 > c1,

1
c2+c3

, c2c3 = c1.

In [13], by using the MMA approach, the authors found that the epidemic

threshold is inversely proportional to the leading eigenvalue of the summation

of each layer’s adjacency matrix. Similar to the analysis performed for a single

network [29, 30], it is interesting to compare the accuracy between the epidemic

thresholds based on the MMA and HMF approaches. However, we are not going

to investigate the problem here while leaving it for future work. Instead, we are in-

terested in investigating the sensitivity of the outbreak condition on the correlation

of two layers.

Case 1 is trivial as it does not incorporate the connections between layers,

we focus on case 2 in the following analysis, highly motivated by [14]. In order

to investigate the effect of inter-layer correlation on the outbreak threshold, we

employ the Pearson correlation coefficient to quantify how the degree sequences

of two layers are correlated

r =
〈(ka − 〈ka〉)(kb − 〈kb〉)〉
√

〈k2
a〉 − 〈ka〉

√

〈k2
b 〉 − 〈kb〉

=
〈kakb〉 − 〈ka〉〈kb〉

√

〈k2
a〉 − 〈ka〉

√

〈k2
b 〉 − 〈kb〉

where r ∈ [−1, 1]. The outbreak condition (10) can be expressed in terms of r as

∆ :=
√

λaλb

(

r
√

〈k2
a〉 − 〈ka〉

√

〈k2
b 〉 − 〈kb〉+ 〈ka〉〈kb〉

)

−
√

〈ka〉 − λa〈k2
a〉
√

〈kb〉 − λb〈k2
b 〉 (12)

> 0.

Hence the sign of ∆ determines whether or not an epidemic outbreak happens.

In some sense, the value of δ also quantifies the possibility of epidemic outbreak.

Based on the expression of ∆ in (12), it is easy to see that ∆ is positively correlated

with the Pearson correlation coefficient r. When r > 0, there is a high possibility

that hub nodes in layer A are also hub ones in layer B. These hub nodes become

the bridges that effectively transmit the pathogen rapidly from one layer to the

other one. In the regime [0, λc
a] × [0, λc

b] of the coordinate plane λb − λa, we

examine the effect of r on the threshold curve ∆ = 0 in Figure 2. Hence, a larger

r can lead to a higher possibility of epidemic outbreak. From the location and

pattern of the threshold curve ∆ = 0 in Fig. 2, one can also see that the inter-layer

correlation has a strong impact on the outbreak threshold.
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Figure 2: The contour plot of ∆ (defined in Equation (12)), where the x coordinate is the infection

rate λb and the y coordinate is the infection rate λa. Five panels correspond to different r values:

r = −1 (a), −0.5 (b), 0 (c), 0.5 (d) and 1.0 (e), respectively. In a multiplex network, layer A is

a Barabási-Albert (BA) scale-free network [27] with degree distribution p(k) ∼ k−3 and average

degree 〈k〉 = 6, while layer B is an Erdös-Rényi (ER) network with connecting probability p =
0.006 [28]. The dashed line in each panel represents the curve L (∆ = 0). In panel (a), the line L

is very close to the boundary and not easy to observe since the boundary is a little smaller than the

epidemic threshold for a single network.

3. The immunization model in multiplex networks

On the basis of the results in the previous section, we further consider immu-

nization schemes in multiplex networks [19, 16]. Before or during the transmis-

sion process, an immunized node will be removed and can not get infected from

or infect other nodes. Since the infection occurs along the links of the network,

the immunization in multiplex network can be classified into two basic schemes:

(i) The multiplex node-based immunization, where each immunized node can

not get infected from or pass pathogens to nodes in all layers;

(ii) The layer node-based immunization, where each immunized node can not

get infected by or transmit the pathogen to other nodes in a certain layer,

and at the meanwhile, immunized nodes can still get infected from or pass

pathogen to nodes in other layers.
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The case (ii) can approximate the real situation when the immunization means a

removed state due to the vaccination or isolation. Taking a social network coupled

with the friend and colleague relationship network as an example, when an indi-

vidual does not go to work, he/she loses all connections with his/her colleagues,

but still potentially keeps connected links with his/her friends.

Epidemic spreading process starts with infecting some randomly chosen sus-

ceptible nodes and suppose the spreading process follows the SIS dynamics in

both layers. Recent work [31] proposed an improved HMF approach to analyze

the immunization of an SIS epidemic model in a single network which is shown to

be better than previous work [15, 20] through stochastic simulations. In this sec-

tion, we will extend this approach to analyze the spreading dynamics in multiplex

networks with various immunization schemes. We firstly consider the multiplex

node-based immunization.

3.1. The multiplex node-based immunization

3.1.1. A general model

Unlike the previous mean-field model with immunization presented in [15],

the degree class in each layer consists of not only the old degree before immu-

nization but also the new degree after immunization [31]. To characterise degree

variation, we use notation (ka, la) to denote a class of nodes with the old degree ka
and the new degree la (0 ≤ la ≤ ka) in layer A. Similar notations are introduced

for nodes in layer B. Let ρka,la,kb,lb(t) represent the densities of infected nodes at

time t in class with degree (ka, la, kb, lb), which follows the joint probability dis-

tribution p(ka, la, kb, lb). Then, the respective marginal probability distributions of

the old degree and the new degree read as

p(ka) =

ka
∑

la=0

Mb
∑

kb=1

kb
∑

lb=0

p(ka, la, kb, lb) and p(la) =

Ma
∑

ka=la

Mb
∑

kb=1

kb
∑

lb=0

p(ka, la, kb, lb).

It is clear that p(ka) and p(kb) are degree distributions of layer A and B, respec-

tively. Moreover, the n order moments of the joint probability p(ka, la, kb, lb) can

be written as

〈kn
a 〉 =

Ma
∑

ka=1

ka
∑

la=1

Mb
∑

kb=1

kb
∑

lb=1

kn
ap(ka, la, kb, lb) =

Ma
∑

ka=1

kn
ap(ka),
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and

〈lna〉 =
Ma
∑

ka=1

ka
∑

la=0

Mb
∑

kb=1

kb
∑

lb=0

lnap(ka, la, kb, lb)

=
Ma
∑

la=0

Ma
∑

ka=la

Mb
∑

kb=1

kb
∑

lb=1

lnap(ka, la, kb, lb) =
M
∑

la=0

lnap(la).

Here, we use

∑

k,l

u(k, l) =

M
∑

l=0

M
∑

k=l

u(k, l) =

M
∑

k=1

k
∑

l=0

u(k, l).

Also, one can write its mixed moments as

〈lalb〉 =
Ma
∑

ka=1

ka
∑

la=0

Mb
∑

kb=1

kb
∑

lb=0

lalbp(ka, la, kb, lb)

=

Ma
∑

la=0

Mb
∑

lb=0

Ma
∑

ka=la

Mb
∑

kb=lb

lalbp(ka, la, kb, lb) =

Ma
∑

la=0

Mb
∑

lb=0

lalbp(la, lb).

Other mixed forms 〈kala〉, 〈kakb〉, 〈kalb〉, 〈kblb〉, 〈lakb〉 can be given in a similar

way. Therefore, a general HMF model with immunization can be described by

dρka,la,kb,lb
dt

= −ρka,la,kb,lb + (1− ρka,la,kb,lb)(λalaθa + λblbθb). (13)

When the network is degree-correlated [32], both θa and θb are defined by

θa =
∑

k′a,l
′

a,k
′

b
,l′
b

pa((k
′
a, l

′
a, k

′
b, l

′
b)|(ka, la, kb, lb))ρk′a,l′a,k′b,l′b(t),

and

θb =
∑

k′a,l
′

a,k
′

b
,l′
b

pb((k
′
a, l

′
a, k

′
b, l

′
b)|(ka, la, kb, lb))ρk′a,l′a,k′b,l′b(t),

where the conditional probability pa((k
′
a, l

′
a, k

′
b, l

′
b)|(ka, la, kb, lb)) means that a ran-

domly chosen link of layer A emanating from a node of degree (ka, la, kb, lb) leads

12



to a node of degree (k′
a, l

′
a, k

′
b, l

′
b). When the connectivity of nodes in the network

is uncorrelated (assumption A1), we have

pa((k
′
a, l

′
a, k

′
b, l

′
b)|(ka, la, kb, lb)) =

l′ap(k
′
a, l

′
a, k

′
b, l

′
b)

〈la〉
.

Similarly,

pb((k
′
a, l

′
a, k

′
b, l

′
b)|(ka, la, kb, lb)) =

l′bp(k
′
a, l

′
a, k

′
b, l

′
b)

〈lb〉
.

Similar to the analysis in Section 2, the condition of epidemic outbreak can be

represented as

λaλb〈lalb〉2
〈la〉〈lb〉

>

(

1− λa

〈l2a〉
〈la〉

)(

1− λb

〈l2b〉
〈lb〉

)

.

Hence, the epidemic threshold after immunization is completely determined by

the distribution of new degrees. Since the information of new degree distribution

is not directly provided, we need to derive the specific expression of the epidemic

threshold by using its relation to the degree distribution p(ka, kb) before an immu-

nization program is performed.

In order to show the main idea, we use a simplified case by assuming that both

degrees of layer A and B are also uncorrelated (assumption A2). Then we have

p(ka, la, kb, lb) = p(ka, la)p(kb, lb).

So 〈lalb〉 = 〈la〉〈lb〉. Hence the threshold condition becomes

λaλb〈la〉〈lb〉 >
(

1− λa

〈l2a〉
〈la〉

)(

1− λb

〈l2b〉
〈lb〉

)

. (14)

In what follows, we focus on two specific immunization strategies: the random

immunisation (subsection 3.1.2) and the targeted immunisation (subsection 3.1.3).

The comparison of two strategies are presented through numerical simulations in

subsection 3.1.4.

3.1.2. The random immunization

In the case of random immunization, a fraction g of nodes are removed. In

layer X = A, B, a typical node, with old degree kx(x = a, b), gets vaccinated

with probability g uniformly. So

p(lx|kx) =
(

kx
lx

)

gkx−lx(1− g)lx , x = a, b.

13



Moreover, 〈lx〉 = (1− g)〈kx〉 and 〈l2x〉 = (1− g)g〈kx〉+(1− g)2〈k2
x〉. According

to Eq. (14), the outbreak condition for the random immunization becomes

λaλb(1− g)2〈ka〉〈kb〉

>

(

1− λag − λa(1− g)
〈k2

a〉
〈ka〉

)(

1− λbg − λb(1− g)
〈k2

b 〉
〈kb〉

)

. (15)

It is interesting to consider a trivial case for a single network, that is λa = 0 or

λb = 0. For example, when λb = 0, model (17) reduces to

dρka,la
dt

= −ρka,la + (1− ρka,la)λalaθa

with the corresponding outbreak condition

0 > 1− λag − λa(1− g)
〈ka2〉
〈ka〉

, that is λa >
〈ka〉

(1− g)〈k2
a〉+ g〈ka〉

.

This is consistent with the epidemic threshold for an SIS network model with

random immunization [31].

3.1.3. The targeted immunization

In the targeted immunization, those nodes with large degrees are removed.

Since the degree of each node has two kinds in layers A and B, we classify five

forms of targeted immunization in terms of constant indexes κa, κb and κ:

(i) All nodes with degree ka > κa are removed;

(ii) All nodes with degree kb > κb are removed;

(iii) All nodes with degree ka > κa or kb > κb are removed;

(iv) All nodes with degree ka > κa and kb > κb are removed;

(v) All nodes with the so-called spreading degree [19] λaka + λbkb > κ are

removed.

We introduce two probabilities first: pA (pB) represents the probability that any

link in layer A (B resp.) will lead to an immunized node. Now we investigate

each immunisation form.

Form (i): All nodes with degree ka > κa are removed. In this case, based on [15],

we have the following expression

pA =

∑

ka>κa
kap(ka)

∑

ka
kap(ka)

.

14



For notational simplicity, we denote 〈ka〉t and 〈k2
a〉t as the average quantities

∑κa

ka=1 kap(ka) and
∑κa

ka=1 k
2
ap(ka), respectively. Then

pA =
〈ka〉 − 〈ka〉t

〈ka〉
.

Therefore, if ka ≤ κa, the conditional probability p(la|ka) =

(

ka
la

)

pka−la
A (1 −

pA)
la ; if ka > κa, then p(la|ka) = δla0. From this, one can obtain that

〈la〉 = (1− pA)〈ka〉t and 〈l2a〉 = (1− pA)pA〈ka〉t + (1− pA)
2〈k2

a〉t.

Similarly, the probability pB can be computed by

pB =

∑

k′a>κa,k
′

b

k′
bp(k

′
a, k

′
b|kb)

∑

k′a,k
′

b

k′
bp(k

′
a, k

′
b|kb)

=

∑

k′a>κa,k
′

b

k′
bp(k

′
a, k

′
b)

∑

k′a,k
′

b

k′
bp(k

′
a, k

′
b)

=
∑

k′a>κa

p(k′
a).

Here we use p(k′
a, k

′
b|kb) = p(k′

a, k
′
b) = p(k′

a)p(k
′
b). Hence, although there is no

direct immunization strategy performed in layer B, the overlapped nodes immu-

nized in layer A also get immunized in layer B but at a random proportion [16].

Therefore, p(lb|kb) =
(

kb
lb

)

pkb−lb
B (1− pB)

lb . Moreover, we have

〈lb〉 = (1− pB)〈kb〉 and 〈l2b 〉 = (1− pB)pB〈kb〉+ (1− pB)
2〈k2

b 〉.

According to Eq. (14), the outbreak condition for this case is

λaλb(1− pA)(1− pB)〈ka〉t〈kb〉

>

(

1− λapA − λa(1− pA)
〈k2

a〉t
〈ka〉t

)(

1− λbpB − λb(1− pB)
〈k2

b 〉
〈kb〉

)

.

We are interested in a special case when a single network is involved, that is,

λa = 0 or λb = 0. For example, when λb = 0, the outbreak condition of model

(16) is given by

0 > 1− λapA − λa(1− pA)
〈k2

a〉t
〈ka〉t

, that is λa >
〈ka〉

〈k2
a〉t + 〈ka〉 − 〈ka〉t

.

This result agrees with those obtained in [15, 31].
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Form (ii): All nodes with degree kb > κb are removed. Letting 〈kn
b 〉t =

∑κb

kb=1 k
n
b p(kb),

we have

pA =
∑

kb>κb

p(kb) and pB =
〈kb〉 − 〈kb〉t

〈kb〉
.

Using a similar argument to the previous analysis, the outbreak condition is given

by

λaλb(1− pA)(1− pB)〈ka〉〈kb〉t

>

(

1− λapA − λa(1− pA)
〈k2

a〉
〈ka〉

)(

1− λbpB − λb(1− pB)
〈k2

b 〉t
〈kb〉t

)

.

Form (iii): All nodes with degree ka > κa or kb > κb are removed. In this case,

we have

pA = 1−
(

1− 〈ka〉 − 〈ka〉t
〈ka〉

)

(

1−
∑

kb>κb

p(kb)

)

and

pB = 1−
(

1− 〈kb〉 − 〈kb〉t
〈kb〉

)

(

1−
∑

ka>κa

p(ka)

)

.

Notice that la ≤ κa for layer A and lb ≤ κb for layer B after immunization, so we

have

〈la〉 = (1− pA)〈ka〉t and 〈l2a〉 = (1− pA)pA〈ka〉t + (1− pA)
2〈k2

a〉t.

Similarly, for nodes in layer B, we have

〈lb〉 = (1− pB)〈kb〉t and 〈l2b 〉 = (1− pB)pB〈kb〉t + (1− pB)
2〈k2

b 〉t.

Here 〈ka〉t, 〈k2
a〉t, 〈kb〉t, 〈k2

b 〉t are defined as in Form (i). Substituting these into

Eq. (14), we obtain the condition of an epidemic outbreak as follows

λaλb(1− pA)(1− pB)〈ka〉t〈kb〉t

>

(

1− λapA − λa(1− pA)
〈k2

a〉t
〈ka〉t

)(

1− λbpB − λb(1− pB)
〈k2

b 〉t
〈kb〉t

)

.

Form (iv): All nodes with degree ka > κa and kb > κb are removed. In this case,

pA =
〈ka〉 − 〈ka〉t

〈ka〉
∑

kb>κb

p(kb) and pB =
〈kb〉 − 〈kb〉t

〈kb〉
∑

ka>κa

p(ka).
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Considering the fact that nodes with large degrees may exist in each layer after

immunization, an infectious disease can prevail under the following condition

λaλb(1− pA)(1− pB)〈ka〉〈kb〉

>

(

1− λapA − λa(1− pA)
〈k2

a〉
〈ka〉

)(

1− λbpB − λb(1− pB)
〈k2

b 〉
〈kb〉

)

where 〈ka〉t, 〈k2
a〉t, 〈kb〉t, 〈k2

b 〉t are defined as above.

Form (v): All nodes with the so-called spreading degree [19] λaka+λbkb > κ are

removed. In order to compute two relevant quantities pA and pB , we first define

two probabilities: (i) the probability that any link in layer A will lead to a node

with degree (ka, kb), denoted by qA(ka, kb); (ii) the probability that any link in

layer B will lead to a node with degree (ka, kb), denoted by qB(ka, kb). Under

both two assumptions (assumptions A1 and A2), we have

qA(ka, kb) =
kap(ka, kb)

∑

~k kap(ka, kb)
=

kap(ka)p(kb)

〈ka〉
, and

qB(ka, kb) =
kbp(ka, kb)

∑

~k
kbp(ka, kb)

=
kbp(ka)p(kb)

〈kb〉
.

So we can obtain

pA =
∑

λaka+λbkb>κ

qA(ka, kb) =
∑

λaka+λbkb>κ

kap(ka)p(kb)

〈ka〉
,

and

pB =
∑

λaka+λbkb>κ

qB(ka, kb) =
∑

λaka+λbkb>κ

kbp(ka)p(kb)

〈kb〉
.

In order to determine the expression of p(lx|kx), x = a, b, we need to know what

degree classes are all removed after immunization. Apparently, those with large

original degrees are likely removed. However, we should try to find the exact

threshold value ~z about the original degree (ka, kb), above which the nodes with
~k > ~z (this means the inequality holds for each component) are all removed. To

this end, we define two integers (if both exist)

zmax
a = max {za : λaza + λb ≤ κ and 1 ≤ za ≤ Ma} and

zmax
b = max {zb : λa + λbzb ≤ κ and 1 ≤ zb ≤ Mb} .
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According to the domain of (ka, kb) determined by the constraint λaka+λbkb > κ,

we can obtain ~z = (zmax
a , zmax

b ). Then the outbreak condition can be written as

λaλb(1− pA)(1− pB)〈ka〉t〈kb〉t

>

(

1− λapA − λa(1− pA)
〈k2

a〉t
〈ka〉t

)(

1− λbpB − λb(1− pB)
〈k2

b 〉t
〈kb〉t

)

where

〈kn
x〉t =

zmax
x
∑

kx=1

kn
xp(kx), n = 1, 2, x = a, b.

3.1.4. Simulation observations and comparisons

Although outbreak conditions are obtained in six immunization schemes, it

is not easy to compare the effectiveness of these immunization strategies quali-

tatively. However, finding the most effective and optimal immunization strategy

is an interesting and important problem. Herein, we will perform simulations to

give a visual comparison. Similar to the previous simulation in Figure 2, we take a

multiplex network coupled with a BA scale network (layer A) and an ER random

network (layer B) as an example.

In order to investigate the effacacy of immunization strategies, Pastor-Satorras

and Vespignani [15] analyzed the critical immunization thresholds gc, above which

the epidemic dies out. By using the HMF approach, they obtained the respective

immunization thresholds for random/proportional/targeted immunization strate-

gies. In contrast to a single network, the extinction conditions as stated above

hold under a certain condition, which are similar to case 2 in Sec. 2.2.

Let us take the random immunization as an example. In this case, when λag+

λa(1 − g) 〈k
2
a〉

〈ka〉
< 1 and λbg + λb(1 − g)

〈k2
b
〉

〈kb〉
< 1, the epidemic dies out under the

condition (15). For simplicity, we introduce three notations:

(i) ∆1 = λag + λa(1− g)
〈k2

a〉
〈ka〉

− 1;

(ii) ∆2 = λbg + λb(1− g)
〈k2

b〉
〈kb〉

− 1; and (16)

(iii) ∆3 = −
(

1− λag − λa(1− g)
〈k2

a〉
〈ka〉

)(

1− λbg − λb(1− g)
〈k2

b〉
〈kb〉

)

+

λaλb(1− g)2〈ka〉〈kb〉.
Hence, the epidemic dies out if and only if ∆x < 0 hold for all x = 1, 2, 3.

Notice that ∆x, x = 1, 2 decrease with g, then from ∆x = 0 for x = 1, 2, one
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Figure 3: Plots of ∆x (x = 1, 2, 3 as defined in Eq. (16)) as functions of the immunization fraction

g. Six Panels correspond to different immunization schemes: The random immunization (a), the

targeted immunization form (i) (b), (ii) (c), (iii) (d), (iv) (e) and (v) (f). In a multiplex network,

layer A is a Barabási-Albert (BA) scale-free network [27] with degree distribution p(k) ∼ k−3

and average degree 〈k〉 = 6, while layer B is an Erdös-Rényi (ER) network with connecting

probability p = 0.006 [28]. In each panel, the inset shows the zoom in results for a small range

and all simulations assume λa = λb = 0.5. In addition, it is assumed that κa = κb for the targeted

immunization (iii) and (iv).

can determine two critical values gc,x, x = 1, 2 for the immunization rate g when

infection rates λa and λb are given. Furthermore, when g ≥ max{gc,1, gc,2}, the

immunization threshold gc can be derived by solving ∆3 = 0. Similar notations

and analysis can be made for the targeted immunization.

In Fig. 3, the immunization thresholds gc for different immunization strategies

are shown when λa = λb = 0.5. One can read that the random immunization is not

effective since the immunization threshold gc ≃ 1. We also find that the targeted

immunization based on hub nodes in one layer is not very effective, regardless of

the heterogeneity of the network layer. In contrast, other targeted immunization

schemes shown in the second row of Fig. 3 are much more effective. Moreover,

the most effective immunization strategy is the targeted immunization (iii), i.e, all

the nodes with degree ka > κa or kb > κb are removed. This indicates that hub

nodes to be immunized should include all layers rather than one layer.
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3.2. The layer node-based immunization

In the layer node-based immunization, each immunized node can not get in-

fected from or transmit pathogen to nodes in a certain layer while in the meantime

still can be infected by or infect nodes in other layers [19, 16, 17]. In other words,

the immunization strategy is only implemented in one layer. This kind of im-

munization is different from the asymmetrical interaction on two-layer networks

[33, 34] but similar to the immunization in a single network [15, 35]. Hence, the

layer node-based immunization is more simpler than the multiplex node-based

immunization.

Without loss of generality, we assume that the immunization is implemented

in layer A. Then, the epidemic dynamics are described by

dρka,la,kb,lb
dt

= −ρka,la,kb,lb + (1− ρka,la,kb,lb)(λalaθa + λbkbθb).

Similar analysis to that in the above section gives the condition of epidemic out-

break
λaλb〈lakb〉2
〈la〉〈kb〉

>

(

1− λa

〈la2〉
〈la〉

)(

1− λb

〈kb2〉
〈kb〉

)

. (17)

By using assumption A2, we can simplify Eq. (17) into the following form

λaλb〈la〉〈kb〉 >
(

1− λa

〈la2〉
〈la〉

)(

1− λb

〈kb2〉
〈kb〉

)

. (18)

Next, we consider a specific immunization strategy by taking the random immu-

nization as an example. In the case of random immunization, a fraction g of nodes

are removed, that is, in layer A, for the node with old degree ka, its neighbors are

immunized with rate g uniformly. Then

p(la|ka) =
(

ka
la

)

gka−la(1− g)la.

Hence 〈la〉 = (1 − g)〈ka〉 and 〈l2a〉 = (1 − g)g〈ka〉 + (1 − g)2〈k2
a〉. Plugging

these into (18), we obtain the epidemic threshold for the layer node-based random

immunization

λaλb(1− g)〈ka〉〈kb〉 >
(

1− λag − λa(1− g)
〈ka2〉
〈ka〉

)(

1− λb

〈kb2〉
〈kb〉

)

.
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4. Discussions

In this paper, we investigate two problems: (i) the epidemic spreading of an

SIS model on multiplex networks; and (ii) the immunization of an SIS model on

multiplex networks. These two issues are basic and important for the spreading

dynamics and disease control on networks. Motivated by previous work [6, 24],

we utilize the HMF theory with multiple degree to solve these issues.

We analytically derive the explicit condition of epidemic outbreak through

analyzing the self-consistency equation together with the monotonicity of spectral

radius of nonnegative matrices. Furthermore, we propose a general framework

that allows us to investigate the immunization strategy of SIS models on multiplex

networks. This framework includes not only the old degree information before

immunization, but also the new degree information after immunization, therefore

it allows us to study some general immunization problems.

As we know, the immunization of SIR models on multiplex networks has been

studied by the percolation theory [16, 19, 17]. However, the immunization of

SIS models on multiplex networks has not been explored in previous studies but

deserves detailed investigations as some diseases, such as the common cold, are

more appropriately described by an SIS compartmental model. Hence the present

research fills this gap. Although our work only focuses on the multiplex network

with two layers, the proposed approach can be used for general cases with many

layers. We also expect our approach to be extended to the immunization of the

partially overlapped multiplex networks [11] and the interconnected networks [6,

36].
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