
Social Resistance∗

Michael P. Friedlander, Nathan Krislock, Ting Kei Pong

January 21, 2016

0 500 1000 1500 2000 2500 3000 3500 4000

nz = 26850

0

500

1000

1500

2000

2500

3000

3500

4000

0 50 100 150 200 250 300

nz = 778

0

50

100

150

200

250

300

Figure 1: Collaboration (left) and traffic (right) networks.

Abstract.

Can we measure how close two people in a social network are just by
knowing who is friends with whom? Can we infer the closeness of two
people’s research areas just by observing coauthor relations? Can
we predict the importance of new roads just by looking at a current
traffic network? In this case study, we investigate an approach to
these questions and the algorithms behind the computations.
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1 Introduction

This case study concerns an important question in social networks: how closely
related two people are in the network. The notion of proximity that we use
is the resistance distance. This notion of distance had its origin in the study
of electrical networks [2]. In that context, it computes the resistance between
the two points i and j in the network, assuming unit resistance on each edge.
Its relationship with the information distance in social networks was recently
identified [3, 1].

For large networks, this distance measure can be expensive to compute. As
the network changes, it’s useful to have an inexpensive way to make updates.
We will study how various techniques for updating matrix factorizations can
help to efficiently compute the resistance distances upon small changes in the
network. We focus on Cholesky rank-one updates, and also briefly discuss the
Sherman-Morrison-Woodbury formula (as one of the last exercises). We expect
that you are familiar with the idea of the Cholesky factorization of positive
definite matrices. See Trefethen and Bau [4, Lecture 23] for an accessible intro-
duction to the Cholesky factorization. You will be guided through a derivation
of the formula for the Cholesky rank-one update. There are two aspects of this
exercise that may be new for you. First, you will have to figure out the vector
used for the rank-one update when one additional connection in the network
is identified. Second, when matrices are large, you will observe that there can
be a big difference in the computational effort when the computation involves
matrix-matrix multiplications rather than only matrix-vector multiplications.

As you read through this case study, you will be asked to work on a series of
activities. These include short mathematical exercises, and short programming
exercises for trying out these ideas on real data. You will need a working copy
of Matlab to complete the programming activities.

2 Background

In a social network, the question of how “close” are two people (or groups) is of
great importance. The notion of closeness makes this question tricky. Take the
network structure induced by Facebook friendship as an example. Such a struc-
ture can be conveniently modeled using an undirected graph. Mathematically,
an undirected graph G = (V, E) consists of a set of nodes V, and a set of edges
E that describes connections between pairs of nodes. To model friendship on
Facebook, one may represent an individual by a node and join two nodes with
an edge if these two people are friends on Facebook. Figure 2 shows a small
undirected graph representing the friendship of 6 individuals.

A natural measure of closeness in a graph is the length of the shortest path
between two nodes. This is the least number of edges that need to be traversed
in order to get from one node to another. Though well-studied mathematically,
this notion is not an appropriate one when it comes to measuring how close
two people are on a social network. For instance, according to this measure,
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Figure 2: A small social network of 6 individuals.

Jane is equally close to Alfred and Felix in Figure 2. Intuitively, however, one
would expect Jane to be closer to Felix because they have two common friends.
Similarly, according to the shortest path measurement, as immediate friends,
Dave is equally close to Jane and Felix. But again, one should expect Dave to
be actually closer to Jane because they share two common friends. Intuition
tells us that our closeness measurement should obey the following rule:

Two individuals are closer if they have more common friends.

The resistance distance conforms with this intuitive definition.

3 Resistance distance

To describe the resistance distance, we need more notions from graph theory.
We can conveniently represent an undirected graph G = (V, E) with n nodes

using an n× n symmetric matrix A which is called the adjacency matrix of the
graph. The entries of this matrix are defined by

Aij =

{
1 if (i, j) ∈ E ,
0 otherwise,

where we use (i, j) to denote an edge between nodes i and j, and the set E
contains a list of all the edges in the graph. For example, the adjacency matrix
of the graph in Figure 2 is given by

A =

Alfred Jane Lucy Dave Erica Felix


0 0 1 0 0 0 Alfred

0 0 1 1 1 0 Jane

1 1 0 1 0 0 Lucy

0 1 1 0 1 1 Dave

0 1 0 1 0 1 Erica

0 0 0 1 1 0 Felix

,
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and the sets of nodes and edges are given by

V = {Alfred, Jane, Lucy, Dave, Erica, Felix},
E = {(Alfred,Lucy), (Jane,Lucy), (Jane,Dave), (Jane,Erica),

(Lucy,Dave), (Dave,Erica), (Dave,Felix), (Erica,Felix)}.

Note that this graph is undirected, i.e., it does not distinguish between an edge
(i, j) and (j, i).

Let d be the vector whose ith entry is the degree of node i, i.e., the number
of edges attached to node i. Then d = Ae, where e is the vector of all ones. In
our example, d = (1, 3, 3, 4, 3, 2). The Laplacian matrix L is defined as

L := Diag(d)−A,

where Diag(d) is the diagonal matrix having the vector d along its diagonal. For
the graph in Figure 2,

L =


1 0 −1 0 0 0
0 3 −1 −1 −1 0
−1 −1 3 −1 0 0

0 −1 −1 4 −1 −1
0 −1 0 −1 3 −1
0 0 0 −1 −1 2

 .

The Laplacian matrix a symmetric matrix and is always positive semidefinite;
that is, xTLx ≥ 0 for all vectors x.

A graph is called connected if any two nodes in the graph are connected by
a set of edges. For example, the graph in Figure 2 is connected; however, if the
edges (Jane, Lucy) and (Dave, Lucy) are removed, then the resulting graph is
not connected since there would be no path from Alfred to Felix, for example.
The nullspace for the Laplacian matrix of a connected graph is the set of vectors
that are constant, i.e.,

Lv = 0 if and only if v = λe

for some λ ∈ R. You will explore these properties in Activity 1, below.

Activity 1

1. Prove that

L =
∑

(i,j)∈E

(
e(i) − e(j)

)(
e(i) − e(j)

)T
, (1)

where e(i) is the vector that is one in the ith entry, and is zero in every
other entry.

2. Use the relationship (1) to show that the Laplacian matrix is positive
semidefinite.
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3. Show that Le = 0.

4. Let G be a connected graph and let L be its Laplacian matrix. Show that
L + eeT is positive definite, i.e., that xT (L + eeT )x > 0 for all nonzero
vectors x.

The resistance distance between nodes i and j on a connected graph is
defined as

rij :=
∥∥e(i) − e(j)∥∥2

M
,

where M = (L+eeT )−1, and ‖x‖M is the weighted 2-norm of a vector x, defined
by

‖x‖M =
√
xTMx.

As required for ‖ · ‖M to be a valid vector norm, M is positive definite because

L+ eeT is positive definite. Note that the usual 2-norm of a vector corresponds

to M = I, i.e., ‖x‖ ≡ ‖x‖I =
√
xTx.

Activity 2

1. For the network in Figure 2, compute the resistance distances between
Alfred and Jane, Alfred and Felix, Dave and Jane, as well as Dave and
Felix. Does this notion of distance conform with our intuition?

Our next activity computes the resistance distances in a larger network: an
author collaboration network on arXiv on the subject of “General Relativity”.
The data comes in the form of an adjacency matrix: the (i, j)th entry is 1 if
person i and person j are coauthors, and is zero otherwise.

Activity 3

1. Download the matrix file Graph.mat (taken and modified from the UF
Sparse Matrix Database). This matrix is an adjacency matrix of the col-
laboration network in Figure 1. Use the following Matlab commands to
load and view the matrix, as in Figure 1.

load Graph

spy(A);

2. Let L+ eeT = UTU be the Cholesky factorization of L+ eeT , where U is
upper triangular. Show that the resistance distances can be computed as

rij =
∥∥U−T (e(i) − e(j))

∥∥2,
where U−T = (U−1)T = (UT )−1. Based on this, write a Matlab function

to compute rij for any given i and j. To compute z = U−T (e(i) − e(j))
efficiently, you should solve the lower-triangular system UT z = b, with

b = e(i) − e(j), using forward substitution; this is done in Matlab using
the command z = U’\b. Do not be tempted to use the Matlab command
z = inv(U’)*b! This is less efficient and less accurate.
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[rij,U] = Resistance(Lones,i,j);

The inputs are the positive definite matrix Lones (corresponding to L+eeT

in the problem), i and j. The first output argument rij is the resistance
distance rij , and the second output argument U is the Cholesky factor of
Lones. You may use the Matlab built-in function chol to compute U .

You may compare your output against Resistance soln.p.

3. Download and complete changeResistance.m.

r = changeResistance(A,i,j,k);

This code takes in the adjacency matrix A, i and j, and also a positive
integer k. It connects i to at most k random neighbors of j one by one,
and recomputes the resulting resistance distance between i and j after
each addition. The k computed resistances are recorded in the output
vector r.

Experiment with the values i = 500, j = 3000 and k = 10. You may
compare your output against changeResistance soln.p. You can use
rng(’default’) to reset the random seed for comparing the two codes.

Plot the decrease in the resistance distance as k increases. This indicates,
intuitively, if researcher i works with coauthors of researcher j, then i and
j get “closer” to each other on this collaboration network.

4 Rank-one updates

In the above activity, we performed a Cholesky factorization each time a col-
laboration is added. The overall work can be significantly reduced by using a
Cholesky rank-one update, as we describe next.

Suppose that B is an n × n positive definite matrix and B = UTU is its
Cholesky factorization. Given this upper triangular matrix U and a vector x,
we would like to obtain a Cholesky factorization for B + xxT . Note that

B + xxT = UTU + xxT = [UT x]

[
U

xT

]
,

where the matrix [
U

xT

]
(2)

is of size (n+ 1)× n.

Activity 4
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1. Let (a, b) ∈ R2 be given with a > 0. Find (c, s) with c ≥ 0 and c2 + s2 = 1
so that [

c −s
s c

](
a
b

)
=

(√
a2 + b2

0

)
. (3)

The matrix (3) is an example of a Givens rotation matrix. One way to per-
form a Cholesky rank-one update is to apply successive Givens rotation matrices
Q to “zero out” the last row of the matrix in (2) step by step, and obtain a new

U in the process that is the Cholesky factor of B + xxT .
Using the formulas you discover in Activity 4, you can find (c, s) with c ≥ 0

and c2 + s2 = 1 such that[
c −s
s c

](
U11

x1

)
=

(√
U2
11 + x21
0

)
.

Then let Q1 be the Givens matrix

Q1 =

c 0 −s
0 In−1 0
s 0 c


where In−1 is the (n− 1)× (n− 1) identity matrix, and 0 is used to represent a
vector or matrix of zeros with the appropriate dimension. Multiply the matrix
in (2) by Q1, and “zero out” the first entry of the last row:

Q1

[
U

xT

]
= Q1

U11 ∗
0 ∗
x1 ∗

 =


√
U2
11 + x21 ∗
0 ∗
0 ∗

 =:

 U (1)(
x(1)

)T
 .

The symbol ∗ is used as a wild card to denote a possibly nonzero entry. Because
of the position of In−1 in Q1, it only affects the first and last rows of the matrix
that it multiplies.

Activity 5

1. Verify that Q1 is orthogonal—that is, show that QT
1Q1 is the identity

matrix of size (n+ 1). Then show that U (1)(
x(1)

)T
T  U (1)(

x(1)
)T
 = B + xxT .

A matrix Q2 is then similarly chosen to operate on the second and last
rows of  U (1)(

x(1)
)T
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so as to zero out the second entry of the last row, and so on. Thus, after
k iterations we have U (k)(

x(k)
)T
 = Qk · · ·Q2Q1

[
U

xT

]
.

Download and complete mycholupdate.m, which takes the above approach
to compute Cholesky factor of B + xxT , given U and x.

U = mycholupdate(U,x);

Remember, you do not need to form the whole Givens matrix; in each
iteration you only need to find (c, s) with c ≥ 0 and c2 + s2 = 1 such that[

c −s
s c

](
U

(i−1)
ii

x
(i−1)
i

)
=

√(U (i−1)
ii

)2
+
(
x
(i−1)
i

)2
0

 .

Test your code with random instances:

B = randn(3000); B = B'*B;

U = chol(B); x = randn(3000,1);

You may compare your code against mycholupdate soln.p. After that,
you may also take a look at the Matlab built-in function cholupdate.m.

2. Download and complete changeResistance r1.m:

r = changeResistance_r1(A,i,j,k);

It has the same inputs and outputs as changeResistance.m, and it uses
the Cholesky rank-one update in the loop instead of computing Cholesky
factors afresh. Guided by Activity 1.1, you will need to figure out what
the x is when an edge is added to the graph.

Experiment with your code using i = 500, j = 3000 and k = 10. You may
compare your output against changeResistance r1 soln.p. How does
it compare with the method in Activity 3.3 in terms of speed? You may
also try to use the Matlab built-in function cholupdate.m in place of
mycholupdate.m.

5 The Sherman-Morrison-Woodbury Formula

Another widely used method for obtaining (B + xxT )−1 given B−1 is the
Sherman-Morrison-Woodbury (SMW) formula. The SMW formula states that

(B + xxT )−1 = B−1 − 1

1 + xTB−1x
B−1xxTB−1.

The formula is particularly useful in our scenario because we only need to find
the matrix-vector product (B + xxT )−1v for a suitable B, x and v.
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Activity 6

1. Argue that if B−1 is given, then computing (B+xxT )−1v for given vectors
x and v using the SMW formula only requires at most Cn2 additions and
multiplications, for some constant C independent of n.

2. Download and complete chol vs smw.m, which computes

y = (L+ eeT + xxT )−1(e(i) − e(j)),

where x corresponds to adding an edge between node i and a random
neighbor of j:

[errchol,errsmw] = chol_vs_smw(A,i,j);

In this code, we assume knowledge of the Cholesky factor U of L + eeT ,
and compare the additional cost needed to obtain y from performing the
Cholesky update or using the SMW formula. The outputs errchol and
errsmw are residuals

‖(L+ eeT + xxT )y − (e(i) − e(j))‖,

with the y obtained from the corresponding approach.

You may compare your code against chol vs smw soln.p. You may also
try to use Matlab’s built-in function cholupdate.m in place of mycholupdate.m.

The SMW formula is convenient, but for some matrices, it can be unstable—
that is, roundoff errors intrinsic to a computer’s finite-precision arithmetic can
overwhelm the final calculated answer [5]. It doesn’t happen often, but it’s
something to bear in mind.

In our last activity, we are going to apply what we learned above to analyze
the traffic network shown in the panel on the right-hand side of Figure 1.

Activity 7

1. Download the matrix file Graph2.mat (taken and modified from the UF
Sparse Matrix Database). This is the adjacency matrix of the traffic net-
work in Figure 1, and represents a subset of the road network of California.
Load and view the matrix as in Activity 3.1.

2. Compute the resistance distances for all pairs of nodes. What is the av-
erage resistance distance across the whole network? Plot a histogram of
the resistance distances.

3. As a greedy approach to decrease the average resistance distance, one can
build a new road between the pair of nodes i and j that have the largest
resistance distance.

What is the average resistance distance across the whole network after such
a new road is built? You can use either the Cholesky rank-one update or
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the SMW formula to compute the new resistance distances. You may also
want to test the effectiveness of the greedy approach by comparing the
resulting average resistance distance with that obtained by adding a new
road between two randomly chosen nodes.

6 Conclusion

We have only touched on a few of the basic methods in numerical linear algebra
needed to analyze networks. With just a few refinements, it’s possible to apply
the techniques that you have learned to much larger networks. Can you spot
opportunities to make your code more efficient? For example, in Activities 3
and 6 you computed the Cholesky factorization of L + eeT by first explicitly
forming this matrix. But the very same techniques you studied for updating
the Cholesky factorization could be used: first compute the Cholesky factor-
ization UTU = L, and then obtain the required factorization of L + eeT via
U = mycholupdate(U,e).

We also haven’t touched on a crucial property of most networks that arise in
practice: they have relatively few edges as compared to nodes, which means that
the adjacency and Laplacian matrices that we studied are sparse—i.e., they have
very few nonzero entries. The traffic network from which Figure 1 is extracted
exemplifies this property. The original network, which has 19, 171, 281 nodes, is
too large to treat with the dense-matrix techniques used in this case study, but
could be easily stored and manipulated by taking advantage of sparsity.

Numerical linear algebra is a cornerstone of countless practical problems,
both old and new. We hope this case study has piqued your interest!
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