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Abstract
We introduce the quantum stochastic differential equation (QSDE) approach to exactly analyze the
response of quantum systems to a continuous-mode two-photon input. TheQSDEdescription of the
two-photon process allows us to integrate the input–output analysis with the quantumnetwork
theory, and so the analytical computability of the output state of a general quantum system can be
addressedwithin this framework.We show that the time-domain two-photon output states can be
exactly calculated for a large class of quantum systems including passive linear networks,
optomechanical oscillators and two-level emitter inwaveguide systems. In particular, we propose to
utilise the results for the exact simulation of the stimulated emission aswell as the study of the
scattering of two-mode photonwave packets.

1. Introduction

The study of the dynamics of photon–photon interaction is fundamental in physics. Particularly, the
controllable photon–photon interactionmay play a vital role in the realisation of all-optical circuits and
quantum information processing [1–3]. For example, the transmission of single-photon signalmight be
controlled by a gated photon, leading to a novel design of photonic transistorwhich operates withminimum
energy usage [1]. Since photons rarely interact in free space, quantum systems are often employed tomediate the
interaction. There exist numerous proposals for themediation of light–light interaction using quantum systems
such as artificial atoms inwaveguides andmolecules [4–6].

In the language of system theory, themediated two-photon interaction can be understood as the response of
a quantum control system to a two-photon input. The output state carries the full information of the response of
the system,which can be further used for photon statistics and correlation analysis. The exact calculation of the
two-photon response of a two-level systemhas been studied using input–output formalism [7], Bethe-ansatz
method [4] and Lehmann–Symanzik–Zimmermann reduction [8]. The generalised treatment of photon–
photon interaction has also been studied in [9, 10], focusing on the analytical property of the scatteringmatrix. A
diagrammatic approach is studied in [11]which took into account the effect of the relaxation of two distant
qubits in scattering. In general, thesemethodsmodel the interaction between the photons and the system as an
inelastic scattering process, which could facilitate the stationary state analysis in either frequency or time domain
[12, 13]. Themulti-photon response of linear (harmonic oscillators) andfinite-level systems has also been
investigated in [14, 15] using quantumdifferential stochastic equation (QSDE) equations. These works have
shown that some important quantities such as output photonflux and covariance function can be conveniently
calculated using theQSDE equations. Generally speaking, it is straightforward to study the time-domain
dynamics by solving the Schrödinger equationwhich governs the interaction between the photonwave packets
and the control system [16, 17]. For example, numerical results for the scattering of photonwave packets by a
two-level emitter in one-dimensional waveguide have been obtained using this wave function approach [17].
Despite the progress, however, the exact calculation of the time-domain output state is still challenging due to
the complexity of two-photon dynamics.
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In this paperwe propose aQSDE approach for the generalmodelling of the two-photon process. QSDE [18]
is the generalisation of the equation ofmotion inHeisenberg picture, which can characterise the evolution of the
operators for a general quantum systemor a coherent quantumnetwork. Specifically, QSDE can be derived
using the parameters of the overall system,while theHamiltonian and field coupling operators of the overall
system are calculated according to the interconnection between the subsystems [19–21]. Therefore, theQSDE
approach is capable of dealingwith an integrated quantum systemwhichmay involve arbitrary number of
subsystems [22–24].Moreover, it is convenient to utilise theQSDE approach to calculate the analytical formof
the time-domain output state. Aswewill show in section 4, the time-domain output state can be analytically
calculated for a general passive linear network. The exact two-photon response of an optomechanical system
and a two-level emitter can be exactly calculated as well.

TheQSDE formalism for dealingwith two-photon response of a general quantum system is developed in
section 2. The analytical computability of the output state is discussed in section 3. In sections 4–6, we show
some applications of theQSDE approach. Particularly, we consider the simulation of the stimulated emission
and the scattering of two-photons in awaveguide, based on the exact calculation of the output state. Conclusion
is presented in section 7.

2. The input–output formalism for uncorrelated and general two-photon input states

In this section, we propose a formalism tomodel the interaction between a continuous-mode two-photon input
and a general quantum system.

First, we introduce theQSDEdescription of the dynamics of open quantum systems. The dynamics of an
open quantum system interacting with the input fields is generated by a unitary evolution characterised by a
unitary operator ( )U t t, 0 , where t0 is the initial time of the interaction. The dynamical equation of ( )U t t, 0 is
given by

⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎫⎬⎭ = - - +( ) ( ) ( ) ( ) ( )† † †U t t b t L L b t L L H U t t t t td ,
1

2
i , d , , 10 0 0 0

with + = +( ) ( ) ( )U t t t U t t U t td , , d ,0 0 0 and = Ä( )U t t I I,0 0 . The system is coupled to the externalfields
throughK channels (figure 1), with the coupling operator defined by = [ ]L L LK

T
1 which is a column vector of

operators.H0 is the systemHamiltonian. = ¼( ) [ ( ) ( )]b t b t b tK
T

1 is a column vector of Bosonic field
annihilation operators, and = ¼( )L b t i K, , 1, 2, ,i i are defined on the ith channel. The singularfield
operators satisfy the commutation relation d= - =[ ( ) ( )] ( )†b t b s t s i j, ,i j and = ¹[ ( ) ( )]†b t b s i j, 0,i j .

Formally, ò=( ) ( )B t b s sdi
t

i0
is the quantumWiener process and = + -( ) ( ) ( )B t B t t B td di i i is the operator-

valued Ito increment. Equation (1) is obtained bymodelling the environmentHamiltonian as

ò w w w w
-¥

¥
( ) ( )†b b d , and the interactionHamiltonian as ò w w w+

-¥

¥
( ( ) ( ) )† †L b b L d with L being independent

ofω. Here rotatingwave andMarkov approximations have been invoked to obtain the current solvable formof
interactionHamiltonian. It is worthmentioning that the rotatingwave andMarkov approximations are
generally valid for quantumphotonic systems [7, 19], where interaction strength is relatively low, the incident
photons are near resonancewith the system transition frequency and the environment has nomemory effects.
The systems considered in this paper can be operatedwithin this regime.

Please also note that the choice of stochastic calculuswould not affect the calculations of physical
quantities [25].

Denote ñ∣0 as the vacuumfield state and ñ∣0s as the ground state of the system. Throughout this paper we
concernwith systems possessing the simple passivity property

Figure 1.Aquantum systemmay havemultiple input channels. TheHamiltonian and the coupling operators of the total system are
determined by its internal structure, whichmay involve interconnection of subsystems.
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ñ = ñ( )∣ ∣ ( )U t t, 00 00 , 20 s s

bywhichwe can prove

ñ = ñ = ñ( )∣ ( ) ( )∣ ∣ ( )† †U t t U t t U t t, 00 , , 00 00 . 30 s 0 0 s s

The condition equation (2) can be easily established as long asH0 and the couplings add no energy to the overall
system. For later use, wemake the following assumption throughout this paper:

Assumption 1.The number of quanta in the overall system is a conserved quantity as time evolves.

Under this assumption, the systemwill remain at the ground state when initially the system is at the ground
state and thefield is vacuum. TheHeisenberg-picture evolution of a systemoperatorX is defined by

= Ä( ) ( )( ) ( )†X t U t t I X U t t, ,0 0 , with I being the identity operator on the field. Based upon equation (1), the
dynamical equations ofX(t) are derived asQSDEs [18, 26–28]:

= + +˙ ( ) ( ( )) ( )[ ( ) ( )] [ ( ) ( )] ( ) ( )† † †X t X t b t X t L t L t X t b t, , , 4

= +( ) ( ) ( ) ( )b t L t b t , 5out

where the generator ( ( ))† X t is given by



å

-

+ - -
=

( ( )) ≔ [ ( ) ( )]

( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )) ( )

†

† † †

X t X t H t

L t X t L t L t L t X t X t L t L t

i ,

1

2

1

2
. 6

k

K

k k k k k k

0

1

It is clear from equation (4) that the evolution of a systemoperator is driven by the input field.Moreover, the
outputfield operator bout(t) is related to the inputfield operator b(t) by the following relation [28]

t t t= =( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )† †b t U t t b t U t t U t b t U t t, , , , , . 7out 0 0 0 0

That is, the unitary evolution transforms b(t) into bout(t) in an infinitesimal time interval, which is a consequence
of theMarkov approximation.

Next, wewill define a continuous-mode two-photon state. Heuristically, we consider a singular input state
ñ( ) ( )∣† †b t b t 0i j1 2 (See figure 2)which contains two impulses of single-photon inputs at t1 and t2, respectively.

When the initial state of the system is ñ∣0s , the unitary evolution of the system-field state Y ñ∣ ( )t is given by

Y ñ = ñ∣ ( ) ( ) ( ) ( )∣ ( )† †t U t t b t b t, 00 . 8i j0 1 2 s

Here Î [ ]t t t t, ,1 2 0 is required in order to guarantee that ( )U t t, 0 covers the effective interaction process and so
Y ñ∣ ( )t is the output state. Since the continuous-mode single-photon pulse can bemodelled as the superposition
of single-photon impulses [28], the general formof an uncorrelated two-photon input state can be defined as

ò ò x xñ = ñx x
-¥

¥

-¥

¥
∣ ( ) ( ) ( ) ( )∣ ( )† †t t b t t b t t1 1 d d 0 , 91 2 1 1 1 2 2 21 2

where each x x x= ¼ =(·) [ ] (·) q, , , 1, 2q q qK
T

1 is the collection of pulse functions over theK channels for each

single photon. The pulse functions satisfy the normalisation condition ò xå ==
-¥

¥
∣ ( )∣t td 1k

K
qk1

2 . According to

the generalised definition equation (9), each single-photon input could be superposed over theK channels. Since
the input state equation (9) is defined on -¥ +¥( ), , wemust let  ¥t and  -¥t0 in order to obtain the
correct output state. The joint (systemplusfield) output state can thus be calculated by

Figure 2.The two-photon input ismodelled as two separated δ pulses. The first photon enters and interacts with the system at =t t1,
then the second photon enters at =t t2. The unitary operator ( )U t t, 0 governs the entire process.
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ò ò x x

Y ¥ ñ= ¥ -¥ ñ

= ¥ -¥ ñ

x x

-¥

¥

-¥

¥

∣ ( ) ( )∣

( ) ( ) ( ) ( ) ( )∣ ( )† †

U

t t U b t t b t t

, 1 1 0

d d , 00 . 10

s

1 2 1 1 1 2 2 2 s

1 2

Here ¥ -¥( )U , is well-defined due to equation (7).We need to convert equation (10) to a computable form.
Note that the output state Y ¥ ñ∣ ( ) is a two-photon state with two excitations in the field, according to
assumption 1.Herewe have ignored the component t tñ Î -¥ ¥( )∣ ( )†b 01 , ,i s in the output state, where ñ∣1s is
the system state containing one excitation. This component vanishes in the steady-state limit by taking
 -¥t0 .More details on the steady-state limit can be found in the next section.Hence, the basis vectors of

Y ¥ ñ∣ ( ) are

t t t tñ Î -¥ ¥( ) ( )∣ ( ) ( )† †b b 00 , , , . 11i j1 2 s 1 2

As a result, the outputfield state is calculated by

ò ò x xY ¥ ñ = á ¥ -¥ ñ
-¥

¥

-¥

¥
∣ ( ) ∣ ( ) ( ) ( ) ( ) ( )∣ ( )† †t t U b t t b t t0 d d , 00 . 12field s 1 2 1 1 1 2 2 2 s

Inserting the identity, i.e. ò ò t t t t t tå ñá=
-¥

¥

-¥

¥
( ) ( )∣ ∣ ( ) ( )† †b b b bd d 00 00i j

K
i j i j, 1 1 2 1 2 s s 1 2 onto the two-photon

subspace, we obtain

ò òå t t x t t t tY ¥ ñ = ¢ ñ
= -¥

¥

-¥

¥
∣ ( ) ( ) ( ) ( )∣ ( )† †b bd d , 0 , 13

i j

K

ij i jfield
, 1

1 2 1 2 1 2

with the coefficients x t t¢{ ( )},ij 1 2 of the basis vectors defined by

ò òx t t t t x x¢ = á ¥ -¥ ñ
-¥

¥

-¥

¥
( ) ∣ ( ) ( ) ( ) ( ) ( ) ( ) ( )∣ ( )† †b b t t U b t t b t t, 00 d d , 00 . 14ij j i1 2 s 2 1 1 2 1 1 1 2 2 2 s

According to this expression, x t t t t¢∣ ( )∣, d dij 1 2
2

1 2 is the probability of emitting the two-photons to the ith and jth

channels of the outputfield during t t t+[ ), d1 1 1 and t t t+[ ), d2 2 2 , respectively. The outputfield state
Y ¥ ñ∣ ( )field is analytically computable if x t t¢{ ( )},ij 1 2 are analytically computable. Inserting the identity

¥ -¥ ¥ -¥( ) ( )†U U, , helps simplify the expression, whichwill enable the analytical computability of
x t t¢ ( ),ij 1 2 to be studied by

ò ò

ò ò

x t t t

t x x

t t x x

¢ = á ¥ -¥ ¥ -¥ ¥ -¥

´ ¥ -¥ ¥ -¥ ñ

= á ñ

-¥

¥

-¥

¥

-¥

¥

-¥

¥

( ) ∣ ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )∣

∣ ( ) ( ) ( ) ( ) ( ) ( )∣ ( )

†

† † †

† †

t t U U b U

U b U b t t b t t

t t b b b t t b t t

, 00 d d , , ,

, , 00

00 d d 00 , 15

ij j

i

j i

1 2 s 1 2 2

1 1 1 1 2 2 2 s

s 1 2 ,out 2 ,out 1 1 1 1 2 2 2 s

where (·) (·)b b,i j,out ,out are the ith and jth components of (·)bout , respectively. Herewe have used the property
equation (3) and the input–output relation equation (7). Note that the pulse function x t t¢ ( ),ij 1 2 is symmetric
with respect to t t=1 2, which is due to the indistinguishability of photons.Making use of equation (5),
equation (15) can be decomposed into four terms

   ò òx t t¢ = + + +
-¥

¥

-¥

¥
( ) [ ˜ ˜ ˜ ˜ ] ( )t t, d d , 16ij I II III IV1 2 1 2

with









t t x x

t t x x

t t x x

t t x x

= á ñ

= á ñ

= á ñ

= á ñ

˜ ∣ ( ) ( ) ( ) ( ) ( ) ( )∣
˜ ∣ ( ) ( ) ( ) ( ) ( ) ( )∣
˜ ∣ ( ) ( ) ( ) ( ) ( ) ( )∣
˜ ∣ ( ) ( ) ( ) ( ) ( ) ( )∣ ( )

† †

† †

† †

† †

b b b t t b t t

L b b t t b t t

b L b t t b t t

L L b t t b t t

00 00 ,

00 00 ,

00 00 ,

00 00 . 17

I j i

II j i

III j i

IV j i

s 2 1 1 1 1 2 2 2 s

s 2 1 1 1 1 2 2 2 s

s 2 1 1 1 1 2 2 2 s

s 2 1 1 1 1 2 2 2 s

Thus far, we have developed the formalism for the calculation of the response of a general quantum system to
two-photon input. The analytical expression of the two-photon output state can be obtained if equation (17) can
be calculated. Equation (17) only contains the singularfield operators and theHeisenberg-picture system
operators which can be solved using theirQSDEs.

Interestingly, the four terms in equation (17) are not themost general form for the decomposition
equation (16).We are able to further decompose { }Li as

q= ¢ ¢ = ¢¼ ¢ = ¼[ ] ( )L L L L L i K, , 1, 2, , , 18i i
T

M
T

1

with q{ }i being constant column vectors. In otherwords, the coupling operator Li can bewritten as linear
combination of a set of component operators ¢ = ¼{ }L m M, 1, 2, ,m . Note that = ¢L Li i is a special case for
equation (18) butK andMmaynot be the same in general. Using equation (18), we can re-express equation (17)
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as the linear combination of the following four terms








t t x x

t t x x

t t x x

t t x x

= á ñ

= á ¢ ñ

= á ¢ ñ

= á ¢ ¢ ñ

∣ ( ) ( ) ( ) ( ) ( ) ( )∣
∣ ( ) ( ) ( ) ( ) ( ) ( )∣
∣ ( ) ( ) ( ) ( ) ( ) ( )∣
∣ ( ) ( ) ( ) ( ) ( ) ( )∣ ( )

† †

† †

† †

† †

b b b t t b t t

L b b t t b t t

b L b t t b t t

L L b t t b t t

00 00 ,

00 00 ,

00 00 ,

00 00 19

I j i

II n i

III j m

IV n m

s 2 1 1 1 1 2 2 2 s

s 2 1 1 1 1 2 2 2 s

s 2 1 1 1 1 2 2 2 s

s 2 1 1 1 1 2 2 2 s

for = ¼n M1, 2, , . Inmost cases, it ismore convenient to deal with equation (19) rather than equation (17).
This is because the information of the linear combination (e.g. coefficients of the component operators) does not
affect the analytical computability of the output state. As a consequence, component operators normally have
simpler forms compared to { }Li , and so applyingQSDE analysis on component operators often leads to simpler
conditions. Aswewill show in section 6, the coupling operator for a two-level atom could be ks k= >-L , 0.
However, theQSDE analysis of s¢ = -L is sufficient for proving the analytical computability of the output state.

The response to a general two-photon input state can be analyzed using the same formalism, simply by
replacing the uncorrelated state equation (9)with the general two-photon state in the derivations. For example,
if the system couples to the environment via a single channel, a general two-photon input is written as

ò ò xñ = ñx
-¥

¥

-¥

¥
∣ ( ) ( ) ( )∣ ( )† †t t t t b t b t2 d d , 0 , 201 2 1 2 1 2

with the normalisation condition ò ò x =
-¥

¥

-¥

¥
∣ ( )∣t t t t t td d , d d 11 2 1 2

2
1 2 . It is easy to see that the derivations

remain the same if we use the general input state equation (20) instead.

3. Analytical computability of the outputfield state

In this sectionwe focus on the analytical computability of equation (19). It is easy to see thatI can be exactly
calculated using the commutation relation of the field operators { }†b b,i i . The calculation of the rest terms in
equation (19) relies on theHeisenberg-picture dynamics of the operator ¢ ( )L tm , which is characterised by the
QSDE

¢ = ¢ + ¢ + ¢˙ ( ) ( ( )) [ ( ) ( )] ( ) ( )[ ( ) ( )] ( )† † †L t L t L t L t b t b t L t L t, , , 21m m m m

where ¢ = ¢ ¢[ ( ) ( )] [[ ( ) ( )] [ ( ) ( )]]† † †L t L t L t L t L t L t, , , , ,m m K m1 is a row vector of commutators. By equation (21),
we canwrite theQSDEof ¢ ( )L t in a vector form

¢ = ¢ + +˙ ( ) ( ( )) ˜( ) ( ) ( ) ˜( ) ( )† †L t L t B t b t b t C t , 22

where  ¢ = ¢ ¢( ( )) [ ( ( )) ( ( ))]† † †L t L t L tM
T

1 . The operatormatrix B̃ is defined by = ¢˜ {[ ]}†B L L,j m , i.e. the

(m, j)th entry of B̃ is the commutator ¢[ ]†L L,j m . Similarly, the operatormatrix C̃ is defined by = ¢˜ {[ ]}C L L,m j ,

i.e. the (m, j)th entry of C̃ is the commutator ¢[ ]L L,m j . equation (22) implies

á ¢ = á ¢ +∣ ˙ ( ) ∣( ( ( )) ˜( ) ( )) ( )†L t L t B t b t00 00 . 23s s

Therefore, if the following conditions

 ¢ = ¢( ( )) ( ) ( )† L t AL t , 24

á = á∣ ˜ ∣ ( )B B00 00 , 25s s

holdwith constantmatricesA andB, then equation (23) is a solvable ordinary differential equation (ODE). By
equation (24), each ¢( ( ))† L tm is required to be a linear combination of the component operators. Furthermore,
it is required thatAmust beHurwitz.Hurwitzmeans that the real parts of the eigenvalues ofA are strictly
negative. AHurwitzmatrixA can remove the instantaneous response of the system and keep only the steady-
state dynamics. In stability theory,A beingHurwitz is equivalent to the asymptotic stability of the linear system
equation (24). Inmost cases, since the energy is conserved in the overall system (see assumption 1), the photons
will eventually leak to the fields and the systemwill be stabilised to its ground state. As a result,A beingHurwitz
could be a natural property of the systems considered in this paper.

According to equation (25), the elements of = { }B bmj are given by á ¢ = á∣[ ] ∣†L L b00 , 00j m mjs s . In other

words, ñ∣00s is an eigenvector of the commutators ¢{[( ) ]}†L L,m j . Solving equation (23) and letting  -¥t0 we
have

òá ¢ = á
-¥

-∣ ( ) ∣ ( ) ( )( )L t Bb r r00 00 e d , 26
t

A t r
s s

which is in the formof a convolution. Obviously, a frequency-domain relation naturally follows from the
convolution.Here we have used the conditionA beingHurwitz, so that the instantaneous term in the solution of

5
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theODE converges to zero as  -¥t0 . It is worthmentioning that the steady-state solution equation (26) only
contains excitations in the field, which is consistent with our discussion in the last section.

Alternatively, we canwrite equation (26) as

òá ¢ = á -
-¥

∣ ( ) ∣ ( ) ( ) ( )L t g t r b r r00 00 d , 27m

t

ms s

where -( )g t rm is themth columnof -( )BeA t r . Using equation (27), we canwriteII as

 ò t t x x= á - ñ
t

-¥
∣ ( ) ( ) ( ) ( ) ( ) ( ) ( )∣ ( )† †g r b r rb b t t b t t00 d 00 , 28II n is 2 1 1 1 1 2 2 2 s

2

which can be readily calculated using the commutation relations. Similarly, we canwriteIV as

 ò t t x x= - á ¢ ñ
t

-¥
( ) ∣ ( ) ( ) ( ) ( ) ( ) ( )∣ ( )† †g r r b r L b t t b t td 00 00 . 29IV n m2 s 1 1 1 1 2 2 2 s

2

By equation (29),III andIV are analytically computable if

t t x xá ¢ ñ∣ ( ) ( ) ( ) ( ) ( ) ( )∣ ( )† †b L b t t b t t00 00 30j ms 1 1 1 1 2 2 2 s

is analytically computable for arbitrary j and τ. Now the question is whetherwe can express equation (30) using
field operators only so that we can again apply the commutation relations.

The formal integration of equation (22) leads to

ò¢ = +
-¥

-( ) ( ˜( ) ( ) ( ) ˜( )) ( )( ) †L t B r b r b r C r re d . 31
t

A t r

Substituting equation (31) into equation (30), and againmaking use of the commutation relation, it is
straightforward to show that the sufficient condition for equation (30) to be analytically computable is that the
following terms

tá ¢ ¢ ñ á ¢ ¢ ñ∣ ( )[( ) ( ) ( )] ( )∣ ∣[ ( ) ( )] ( ) ( )∣ ( )† † † †b L r L r b t L r L r b t b t00 , 00 , 00 , 00 32j n m i q n m i js s s 1 2 s

are analytically computable for arbitrary i j m n, , , . The analytical computability of the two terms is largely
dependent on the commutation property of the component operators.We consider two typical cases:

3.1. ¢ ¢[( ) ]†L L,n m = constant and ¢ ¢[ ]L L,n m = constant
In this case, equation (32) can be readily computed using the commutation relation. According to the above
discussion, the output state is analytically computable. Systems that satisfy this conditionwill be discussed in
sections 4 and 5.

3.2. ¢ ¢[( ) ]†L L,n m is a nontrivial operator and ¢ ¢[ ]L L,n m = constant
Since ¢ ¢[ ]L L,n m is a constant, we have á ¢ ¢ ñ =∣[ ( ) ( )] ( ) ( )∣† †L r L r b t b t00 , 00 0n m i js 1 2 s .When ¢ ¢[( ) ]†L L,n m is a nontrivial
operator, we can perform integration on equation (4) to obtain

ò

ò

ò

t

t

d t

d t

á ¢ ¢ ñ

= á ¢ ¢

+ ¢ ¢ ñ

= - á ¢ ¢ ñ

+ - á ¢ ¢ ñ

-¥

-

-¥

-

-¥

-

∣ ( )[( ) ( ) ( )] ( )∣

∣ ( ) {[ ( ) [( ) ( ) ( )]] ( )

( )[[( ) ( ) ( )] ( )]} ( )∣

( ) ∣ ( )[ [ ( ) [( ) ( ) ( )]]∣

( ) ∣[ [[( ) ( ) ( )] ( )] ( )∣ ( )

† †

( ) † †

† † †

( ) † †

( ) † †

b L r L r b t

b s L s L s L s b s

b s L s L s L s b t

s t b s L s L s L s

s s L s L s L s b t

00 , 00

00 d e , ,

, , 00

00 d e , , 00

00 d e , , 00 33

j n m i q

j

r
c r s

n m

n m i q

q j

r
c r s

i n m

r
c r s

n m j i q

s s

s

s

s s

s s

mn

mn

mn

if the condition

 ¢ ¢ = ¢ ¢ <([( ) ]) [( ) ] ( ) ( )† † †L L c L L c, , , 0 34n m mn n m mnR

is satisfied.Now recall equation (27), wherewe have proven that the component operators sandwiched between
single photon state and vacuum state are exactly calculable. As a result, equation (33) is analytically computable if

¢ ¢ = L ¢[[( ) ] ] ( )†L L L L, , , 35n m

withΛ being aK×M constantmatrix.
We have derived a set of algebraic conditionswhich are easily checkable. The component operators ¢{ }Lm in

these conditionsmay not necessarily be the actual coupling operators between the system and the fields.
Nevertheless, the actual coupling operatorsmust be linear combinations of the component operators.
Consequently, for the purpose of computing the two-photon output state, the key thing is to identify a set of
component operators ¢{ }Lm which satisfy the sufficient conditions. In the subsequent sections, wewill show that

6

New J. Phys. 18 (2016) 033004 YPan et al



the exact formof the time-domain output states can be obtained for the systemswhosemodelling and time-
domain calculation are difficult using conventional approaches. Particularly, we obtain the exact real-time two-
photon output state for one-channel and two-channel scattering by a two-level emitter. The scattering of a two-
level emitter is a problemof critical importance and has been extensively studied in the literature.

4. Passive linear network

Weconsider a linear network composed of single-mode harmonic oscillators which are coupled together via
interconnection. Thismay refer to an optical network. An optical linear network can be used to process the
information encoded in photons [29, 30]. Due to the application in linear quantum computation and photonic
circuitry, the linear optical network has been extensively studied in the engineering community [22–24, 31]. It is
well known that there are two basic types of interconnections for the construction of a network: cascade and
direct interaction. Coherent feedback and other types of interconnections can be built up from the two basic
types. Therefore, we just need to prove the analytical computability of the response of cascaded and directly
coupled linear systems.

A cascade connection of two single-mode open cavities with internalmodes a a,1 2 and resonant frequencies
w w,1 2 is depicted infigure 3(a). Suppose the coupling operators for the cavities are k=L a1 1 1 and

k=L a2 2 2, k k >, 01 2 , respectively. k k,1 2 are the decay rates of the cavities. The output signal of the first
cavity is fed into the second cavity as the input. Employing the network theory, the cascaded system is described
by the coupling operator k k= +L a a1 1 2 2 andHamiltonian

= + + -w w k k ( )† † † †H a a a a a a a a0 2 1 1 2 2 2 2i 2 1 1 2
1 2 1 2 [20, 21, 32, 33]. L is a linear combination of a1 and a2 and sowe

can let ¢ = [ ]L a a T
1 2 . By equation (4)wehave the linear equations





w k
k k

w k
k k

=- + +

=- + -

( ) ( )

( ) ( ) ( )

†

†

a a a

a a a

1

2
i

2
,

1

2
i

2
, 36

1 1 1 1
1 2

2

2 2 2 2
1 2

1

whose vector form is

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

w k

w k
¢ = ¢ =

- +

- - +

k k

k k
( )

( )

( )
( )† L AL A,

i

i
. 37

1

2 1 1 2

2

1

2 2 2

1 2

1 2

A isHurwitz if the real part ofA is negative definite. Since

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

k

k
=

-

- -
<

k k

k k
( ) ( )A 0 38

1

2 1 2

2

1

2 2

1 2

1 2
R

holds for any k k >, 01 2 , we can conclude thatA isHurwitz. Furthermore, since the commutators
= - = = - =[ ] [ ] [ ] [ ]† †a a a a a a a a, 1, , 0, , 1, , 01 1 1 1 2 2 2 2 are constants, the two-photon output state can be

exactly calculated.
The directly coupled system as plotted infigure 3(b) is described by the linear coupling operator

k k= [ ]L a a T
1 1 2 2 andHamiltonian g= + + +w w ( )† † † †H a a a a a a a a0 2 1 1 2 2 2 2 1 1 2

1 2 [20, 21]. γ is the coupling

strength. The two subsystems are coupled via a linear interaction term g +( )† †a a a a2 1 1 2 . In this case, we can still

Figure 3. (a)The cascade interconnection ofG1 andG2. The cascaded systemhas single input and output channel. (b)There is a linear
interaction betweenG1 andG2. The combined systemhas two input and two output channels.
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let ¢ = [ ]L a a T
1 2 as in the cascade case.We can obtain the linear equations





w k g

w k g

=- + -

=- + -

( ) ( )

( ) ( ) ( )

†

†

a a a

a a a

1

2
i i ,

1

2
i i . 39

1 1 1 1 2

2 2 2 2 1

The coefficientmatrix of ¢ = ¢( )† L AL is

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

w k g

g w k
=

- + -

- - +

( )

( )
( )A

i i

i i
40

1

2 1 1

1

2 2 2

which isHurwitz. Therefore, the output state is exactly calculable for the directly coupled system.

5.Optomechanical system

Anoptomechanical systemmay follow linearised dynamical equation under certain circumstances [34, 35]. The
optomechanical system as shown infigure 4 is composed of a linear cavity and amechanical oscillator in
interaction. The linearised systemHamiltonian is given by g= + + + +w w ( )( )† † † †H c c a a c c a a0 2 2

mc [34],
where γ can bemade a real number. c is the cavitymode and a is themechanicalmode. The optomechanical
system couples to the externalfield by the coupling operator k=L c. Letting ¢ =L c1 , we can derive

 w k g= - + - +( ) ( ) ( ) ( )† †c c a a
1

2
i i . 41c

Although the coupling operator L contains c only, the generator of c is dependent on †a a, . This observation
motivates us to define ¢ = [ ]† †L c c a a T . Note that L is still a linear combination of the component
operators, with the coefficients on † †c a a, , being zero. Since

 w g= - - +( ) ( ) ( )† †a a c c
1

2
i i , 42m

we can express ¢( )† L as a linear equation

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟



w k g g

w k g g

g g w

g g w

¢ = ¢ =

- + - -

- - -

- - -
¢( )

( )

( )
( )† L AL L

i 0 i i

0 i i i

i i i 0

i i 0 i

. 43
m

m

1

2 c

1

2 c

1

2
1

2

A isHurwitz due to <( )A 0R , which is also a consequence of the passivity of the system. Additionally, the
commutations between † †c c a a, , , are all constants. Thus the response of the optomechanical system to two-
photon input can be exactly computed.

6. Two-level emitter

Weconsider a two-level emitter in interactionwith the photons propagating in thewaveguide. The coupling of
the two-level emitter to the optical fields is oftenmodelled by k s w w så +- +( ( ) ( ) )†b bi i i i , where w( )bi is the
annihilation operator for the ithmode of the field.When the photons propagate along thewaveguide
unidirectionally, there is only one coupling channel. If there are twomodes for the travelling photons (e.g. left-
propagating and right-propagating), we shouldmodel the interaction using two coupling channels. To be
specific, the system is coupled to the left-goingmode via one channel, and coupled to the right-goingmode via

Figure 4.The optomechanical systemhas single input and output channel. The decay of themechanicalmode is negligible compared
to the decay of the cavitymode.
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another channel. Since the interaction is energy-preserving, the system is passive when there exists no additional
control that pumps energy into the system.We apply the results of section 3 to two processes of wide interests:
stimulated emission of a two-level atom and the inelastic scattering of two-photons.

6.1. Simulation of stimulated emission
The stimulated emission can bemodelled by a two-level emitter interactingwith a single-channel input field via

k s= -L 1 .Without loss of generality we assume the systemHamiltonian is =H 00 . In particular, introducing
a freeHamiltonian of the form s= wH z0 2

c will only induce an additional harmonic componentwith frequency

wc in the pulse functions.
When the system is fully excited and coupled to vacuum, the spontaneous emission rate is k1. However, if a

second incoming photon interacts with the population-inverted emitter, the emission of a photonmay either
accelerate or slow down, depending on the exact formof the input pulse.

It is easy to verify the commutation relations of s¢ = -L by s s s s s s s= = -+ - + + - +[ ] [ [ ]], , , , 2z and
s s sá = á = -á+ -∣[ ] ∣ ∣00 , 00 00zs s s . Also, we can obtain

s
k
s k s

s k s k s s

=- +

=- + - +

- -

- +

˙ ( ) ( ) ( ) ( )

˙ ( ) ( ( )) ( ( ) ( ) ( ) ( )) ( )†

t t t b t

t I t b t t t b t
2

2 . 44

z

z z

1
1

1 1

Therefore, we can conclude s s= - k
- -( )†

2
1 and s s s k s= = - ++ -([ ]) ( ) ( )† † I, z z1 .

Noting that the output field state is exactly solvable, we just need to design the pulse shapes so that the two-
photon interaction could simulate the stimulated emission process. Intuitively, the first photon, which is
followed immediately by the second photon, should be able to fully excite the system from the ground state to
the excited state. For this reason, we choose the pulse function of thefirst photon to be the following form

x g= - -
g

( ) ( ( )) ( )t u te 1 , 45t
1 1 12 1

where ( )u t1 is theHeaviside step function and γ is a controllable parameter. equation (45) is the famous rising
exponential pulse which can perfectly transfer the single photon to the two-level system at t=0 [36, 37]when
we let g k= 1. As a result, the second incoming photon should be defined on Î +¥( )t 0,2 . Following the
procedures in section 3, we can exactly calculate the outputfield state to be

ò ò t t x t t t tY ¥ ñ = ¢ ñ
-¥

¥

-¥

¥
∣ ( ) ( ) ( ) ( )∣ ( )† †b bd d , 00 , 46field 1 2 1 2 1 2 s

with the analytical formof the pulse function given by

 ò
x t t k x t k x t

k x t t

¢ = +

+

t t

t

t
t t

- -

- + -

k k

k

( ) ( ) ( )

( ) ( )( ) s s

, e e

e d , 0. 47s

1 2 1 2 2 1 2 1

1 2 2 1

1
2 1

1
2 2

1

2 1
2 1 2

It is straightforward to employ this analytical form to study the optimal stimulated emission, which could be
used for photon amplification [16]. For example, if the pulse function of the second photon is defined as
x k= -k

( ) ( )t u te t
2 2 2 2

2
2 2 with k2 being a controllable parameter, thenwe have

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭x t t k k
k

k k
k

k k
¢ = +

-
+ -

-
t t t t t- - - - -k k k k+

( ) ( )( ) ( ), e 1
2

e 1
2

e 481 2 1 2
1

1 2

1

1 2

1 2
2 1

1
2 2 1

2
2 2 1

for  t t 02 1 . Obviously the second photon cannot increase the decay rate if k k<2 1 and sowe only consider
the case k k>2 1.We aim tomaximise the component of equation (48) that decays with the rate k2, and
minimise the componentwith the decay rate k1. This is done by letting

k
k k

+
-

= ( )1
2

0. 491

1 2

In this case, the faster decay rate k2 dominates. The emission of the photon tends to synchronise with the faster
decay rate of the second incoming photon, causing photon bunching in the outputfield. As a consequence, we
will observe both photons in the outputfield earlier than the typical spontaneous emission time. The optimal k2

is thus given by

k k k= + ( )2 . 502 1 1

Since x t t¢ ( ),1 2 is a real function, we can conveniently plot x t t¢ ( ),1 2 to compare the performance of different
k2, see figure 5.We let k = 11 . Themaximal photon bunching is observedwhen k = 32 .When k = 102 ,
although there is higher probability that the stimulated emissionwould happen in a short time t t <( ), 0.51 2 , the
probability of observing a delayed second photon is also high compared to k = 32 case, e.g., t t» =( )0.1, 11 2 .
In otherwords, there is still significant probability for detecting the photon anti-bunching.
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The previous works [12, 16]model the stimulated emission as awaveguide containing an incident photon in
interactionwith a two-level excited atom. The output states are then obtained using a real-space approach, that
is, by solving the Schrödinger equation for two-photonwavefunctions. In contrast, our approach does not rely
on a stationary-state expansion and so the calculation ismore straightforward. In particular, the optimal
stimulated emission has been studied in [16] using the two-time correlation function of the output. Aswe have
mentioned before, the correlation analysis can be easily done sincewe can obtain the exact output state. As a
matter of fact, if the decay constant of the atom is normalised to 1, then the optimal k2 would be 3 according to
the calculations in [16], which is consistent with our result equation (50).

In the abovewe have considered the optimal stimulated emission. The spontaneous emissionwith decay
rate k1will be enhanced if equation (50) holds, and both photonswill tend to decaywith the faster rate k k>2 1.
Nextwewill discuss the suppression of spontaneous emissionwhen k k<2 1. Again considering equation (48),
we still need tomaximise the component that decays with the slower rate k2. However, since k k> > 01 2 ,
equation (50) is not feasible and so the optimal suppression of spontaneous emission cannot be realised. In order
to prolong the life time of the excited atom,we need to consider alternative pulse function for the second

photon. For example, we could define the piecewise pulse function x k= - Îk k
( ) ( ) [ ]t t Te 1 e , 0,T t

2 2 2 2
2

2
2 2

and x =( )t 02 2 elsewhere. Thenwe have

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭x t t
k k k

k k
k

k k
¢ =

-
+

-
+ -

-k
t t t t t- - - -k k k k-

( ) ( )( ) ( ),
e 1

e 1
2

e 1
2

e 51
T

1 2
1 2 1

1 2

1

1 22

1 2
2 1

2
2 2 1

1
2 2 1

Figure 5.The value of x t t¢ ( ),1 2 for different k2, calculated using equation (48). The result is symmetric with respect to t t=1 2.
k = 11 . k = 32 (left, lower row) gives the optimal performance.When k = 0.52 or k = 1.22 , the emitter decays slowly.When
k = 102 , there is a high probability that the interval between the emission of the two-photons is longer than 1.
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for   t tT 02 1 . The condition tominimise the spontaneous emission is given by

k
k k

-
-

= ( )1
2

0, 521

1 2

or

k k k= - ( )2 , 532 1 1

which requires k > 41 .Whenwe choose k2 to satisfy equation (53), thefirst emission at t1 is induced by the
reduced decay rate k k-1 2, and the spontaneous emissionwith the decay rate k1 ismaximally suppressed before
the emission of the second photon.Note that x ( )t2 2 is similar to the rising exponential pulse functionwhich is
designed to excite the atom.

6.2. Two-channel and one-channel scattering
Aswe havementioned, two coupling channels are used for themodelling of the left-going and right-going
opticalfields which are scattered at the emitter. The coupling operator is given by

k s k s k k s= =- - -[ ] [ ]L T T
1 2 1 2 . Let s¢ = -L andwe can exactly calculate the outputfield state.

Suppose the two input photons are separated in two channels, with x =( )t i, 1, 2i being the pulse functions
of the input photons travelling in the ith channel. The outputfield state is expressed as

ò ò t t x t t x t t x t tY ¥ ñ = ¢ + ¢ + ¢ ñ
-¥

¥

-¥

¥
∣ ( ) [ ( )( ) ( )( ) ( ) ]∣ ( )† † † †b b b bd d , , , 0 . 54field 1 2 11 1 2 1

2
22 1 2 2

2
12 1 2 1 2

There are three different two-photon components in the outputfield, namely, the probability of two-photons in
thefirst channel, two-photons in the second channel, and one in the first and one in the second.

We consider the probability P of observing at least one photon in the first output channel

ò ò t t x t t x t t= ¢ + ¢
-¥

¥

-¥

¥
(∣ ( )∣ ∣ ( )∣ ) ( )P d d , , . 551 2 11 1 2

2
12 1 2

2

For simplicity we assume k k k= =1 2 which is the case for awaveguide system (the emitter couples to the
opticalfields with equal strength). The expressions for x t t¢ ( ),11 1 2 and x t t¢ ( ),12 1 2 with t t1 2 are calculated as
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Suppose the pulse functions of the two input photons are given by

x g x g= - - = - -
g g

( ) ( ( )) ( ) ( ( )) ( )t u t t u te 1 , e 1 , 57t t
1 1 1 1 2 2 2 2

1
2 1

2
2 2

with g g,1 2 being controllable parameters. In this case, the relation between the transmission probability P and
the parameters g g,1 2 is shown infigure 6. Alsowe have calculated the two-photon output state if the two-level
emitter is replaced by a linear cavity. Thefirst observation is that the responses of the linear and two-level system
are quite distinct. The nonlinearity induced by the two-level emitter could significantly decrease the
transmission probability in a two-photon process. This conversion of the transmission behaviour is consistent
with the previous findings, e.g. in [4, 7, 11, 13, 17]. For instance, for a single photon incident on the emitter, the
transmission probability goes to zero for long pulses and goes towards 1 as the pulse width goes to 0. For the
latter case, the photon is no longer on resonancewith the emitter. However, the presence of a second photon
drastically changes the above behavior. This is because the two-photon state has different resonant frequencies
compared to single-photon state. A two-photon state is in resonance if its energymatches the two-excitation
eigenstate of the system [8, 38]. As a two-level emitter can store atmost one quanta, the photons cannot enter the
emitter simultaneously. This leads to the nonlinear behaviour which is different from the single photon case. In
addition, since photons do not interact in linear systems, the switching property of a linear cavity is the same for
single-photon and two-photon states. Secondly, whenwe change the values of g1 and g2 for a linear system, the
corresponding variation of P is smooth.However for a two-level emitter, the variation ofP exhibits nonlinear
behaviourwhen g1 is small, which is a signature of strong photon–photon correlation [4, 8, 13]. To be specific, if
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wefix a small g1, the transmission probability Pmayfluctuate from theminimumvalue to themaximumvalue
for a small variation of g2.

For the purpose of further illustrating the nonlinearity of two-photon interaction, next we consider the one-
channel scattering by defining ks= -L . In the literature, the analytical study of the two-photon scattering
oftenmakes use of frequency-domain scattering analysis [7, 9, 10] or diagrammatic approaches [11]. Following
the previous derivations, the time-domain pulse function x t t¢ ( ),1 2 of the output state can be exactly calculated.

Defining the Fourier transformof f(t) as òw = pw

-¥

¥
-( ) ( )f f t te dt2 i , the frequency-domain representation of

x t t¢ ( ),1 2 is given by
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where x x(·) (·),1 2 are the pulse functions of the first and second photon, respectively. The last term in the above
equation characterises the inelastic scattering of two-photons. To bemore specific, the output photonswith
frequencies w1 and w2 can be generated by a pair of incident photonswith different frequencies τ and
w w t+ -1 2 . This energy-preserving inelastic scattering propertymatches the previous findings in [7, 9, 11].

7. Conclusion

Wehave proposed aQSDE approach tomodel the two-photon scattering process for a general quantum system
and calculate the time-domain response.We have studied only two cases in section 3which enable the exact
calculation of the two-photon output state. Nevertheless, theremay exist quantum systemswhich allow exact
analysis but do not belong to the two cases. For example, the response of a two-level system embedded in an
open cavity or a linear cavity withKerr nonlinearity has been analytically studied in [10, 38]. The specific system
operators considered in these works do not satisfy the sufficient conditions proposed in section 3.However, it is
easy to show that the coefficient terms of the output state can be exactly calculated based on aQSDE analysis. As a
result, these systems are all amendable to theQSDE approach proposed in this paper. It will be interesting to

Figure 6. Left: the transmission probability of a two-level emitter. Right: the transmission probability of a single-mode linear cavity in
response to the same two-photon input equation (57). The decay rate of the cavitymode isκ, which is the same as the decay rate of the
emitter. There exists a rapid transition ofP for a two-level emitter when g < 0.51 .
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investigate whether there exists amore general conditionwhich implies the analytical computability of two-
photon response for all these systems.

As pointed out in [12], a photonmust exist as a pulse in bothwaveguide and free-space. The analytical
approach proposed in this paper is thus directly applicable to temporal pulse shaping [39], as compared to the
previous frequency-domain approaches.Moreover, theQSDE approach is extremely powerful inmodelling a
network of quantum systems, which has also been demonstrated in section 4. Therefore, the analysis of two-
photon response for a complicated quantum system could be benefited from this research.We expect that our
resultsmay bemore general and directly applicable to the design of on-chip quantum circuit, inwhich the
propagating photons could be scattered by linear and two-level components. For such practical systems, the
QSDE approach and network theorymay need certain extension in order to study arbitrary systemparameters,
relaxation and non-Markovian effects [11].
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