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An analytic theory is presented that demonstrates that noise-induced amplitude and quadratic chirp jitter
in a dispersion-managed soliton system can impose a fundamental transmission limit. Using a variational
method, we show that the nonlinear amplitude and chirp dynamics are well approximated by a two-dimensional
random-walk process.  1998 Optical Society of America
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Dispersion management has become increasingly im-
portant because of its excellent performance charac-
teristics. As a result, growing research efforts have
focused on the nonlinear pulse propagation dynamics
of so-called dispersion-managed solitons.1 – 5 Of par-
ticular importance is the interaction of the propagat-
ing soliton with the noise f ield that arises from the
amplified spontaneous emission of the erbium-doped
fiber amplifiers. It has been shown6 – 10 that disper-
sion management reduces the Gordon–Haus timing
jitter11 by the power enhancement factor required to
support the periodic dispersion-managed solitons.1 – 5

In addition to timing jitter, the noise f ield can also
induce significant amplitude and quadratic chirp jit-
ter, leading to bit errors and a fundamental transmis-
sion limit when the pulse amplitude falls below the
detection threshold of a receiver or the chirp is large
at a detector. We present a variational description
of the nonlinear amplitude and chirp dynamics when
driven by a noise f ield and show that the resulting non-
linear dynamics can be well approximated by a simple
two-dimensional (2-D) random-walk process for which
its mean-square statistics can be evaluated. This de-
scription allows for an analytic calculation of the bit er-
ror rate associated with amplitude and chirp jitter and
a comparison with the Gordon–Haus jitter penalty.

The evolution of the (slowly varying) electric-f ield
envelope propagating in an optical fiber that includes
noise, loss and gain f luctuations, a periodically vary-
ing dispersion, and the Kerr nonlinearity is governed
by the dispersion-managed nonlinear Schrödinger
equation
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where Q is the envelope normalized by the initial peak
field intensity jE0j2, T is the physical time normalized
by T0y1.76, T0 is the FWHM intensity of the pulse, Z
is the physical distance divided by the nonlinear length
ZNL ­ sl0Aeffdys2pn2jE0j2d, n2 ­ 2.6 3 10216 cm2yW is
the nonlinear coefficient of the f iber, Aeff ­ 60 mm2

is the effective cross-sectional area of the fiber, l0 ­
1.55 mm is the carrier’s free-space wavelength, and c is
0146-9592/98/131022-03$15.00/0
the speed of light. Here jSsZ, T dj ,, 1 is a white-noise
process and asZd gives the loss–gain f luctuations, so
daydZ 1 Ga ­ G

PN
n­1 dsZ 2 nZada, where Za is the

normalized amplifier spacing, G ­ 0.023 km21 is the
loss rate (0.2 dBykm), G ­ expsGZad is the gain, N
is the total number of amplif iers, and d is the Dirac
delta function (see Fig. 1). We take ssZd to be the
minimally deforming, symmetrized dispersion map2

given by ssZd ­ sl0
2ZNLdyf2pcsT0y1.76d2gDsZd, where

DsZd ­

8><>:
D2 0 , Z , Z2y2ZNL

D1 Z2y2ZNL , Z , sZ2y2 1 Z1dyZNL

D2 sZ2y2 1 Z1dyZNL , Z , P
,

(2)

P ­ sZ2 1 Z1dyZNL, DsZd ­ DsZ 1 P d and D1 . 0 .

D2 are the dispersion values in each segment of fiber,
and Z6 is the length of each fiber segment (see Fig. 1).

Because the pulses under consideration are far from
idealized solitons, standard perturbation theories are
inadequate to capture the dynamics inasmuch as the
chirp is not described by the soliton perturbation
equations. In contrast, the variational approach is

Fig. 1. Typical dispersion map (top) with loss-gain inten-
sity f luctuations (middle) and average intensity f luctua-
tions h (bottom).
 1998 Optical Society of America
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successful and accurate in capturing the essential fea-
tures of the nonlinear dynamics.2 – 4 The Lagrangian
associated with Eq. (1) is
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2`
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For the pulse ansatz2 – 4 we assume that

QsZ, T d ­
p

h sechfhsT 2 CdgexphifVsT 2 Cd

1 bsT 2 Cd2 1 sfy2dgj , (4)

where h, b, C, V, and f are free parameters that
depend on Z and correspond to amplitude, chirp, center
position, frequency, and phase, respectively.

Variations of Eq. (3) with respect to the free parame-
ters2– 4 give the coupled amplitude-chirp system:

dh
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­ 22ssZdbh 2 sSbyp2d , (5a)
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which is decoupled from C and V (Refs. 6 and 8) and
where
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is the projection of the noise f ield on each of the
evolution parameters. Note that for SsZ, T d ­ 0 the
equations for the amplitude and the chirp reduce to
those reported previously.2,3

As noted by Gordon and Haus,11 a broadband (white)
noise source excites all orthogonal modes with equal
mean energies and with random uncorrelated phases.
Here we assume that the ansatz in Eq. (4) is the ground
state of the soliton modes. In this approximation
the resulting orthogonal modes can be constructed
from the adjoint operator of the linearized nonlinear
Schrödinger equation.12 Thus the noise-field phasor
components that contribute to the amplitude and chirp
dynamics are

SsZ, T d ­ z

NX
n­0

dsZ 1 nP dQsZ, T dsssis1 1 s2

3 h1 2 hsT 2 CdtanhfhsT 2 Cdgjddd , (7)

where z represents the (real) strength of the noise
term at each of the (identical) amplifiers and si are
random variables assumed to be Gaussian distributed
with mean zero and unit variance. We note that, for
a typical experiment, T0 ­ 25 ps, which gives ZNL ­
516 km for the ideal, periodic solution.2 Further,
D1 ­ 17.4 psyskm nmd and D2 ­ 17.0 psyskm nmd,
with Z1 ­ Z2 ­ Za ­ 40 km, so the correspond-
ing noise strength is z 2 ø 0.0002 (see, for example,
Ref. 13).

In the absence of noise and at the critical value of
the initial power enhancement,1,2 the pulse undergoes a
periodic evolution,1– 3 so at the end of a dispersion map
period the pulse returns to the initial, chirp-free state
sh, bd ­ s1, 0d. With noise, however, the dynamics in
the h b phase plane experiences a random, discrete
jump at each amplifier location given by [substitute
Eq. (7) into Eqs. (5) and (6)]

h1 ­ h2 2 h2A1 , b1 ­ b2 1
3 1 p2

6
h2

2A2 ,

(8)

where h6 and b6 are the amplitude and the chirp
before and after an amplif ier and Ai ­ siz yap is the
noise strength determined by the amplif ied stimulated
emission divided by ap sø1d, the value of asZd at the
amplifier. Between amplifiers, the amplitude and the
chirp are completely described by Eqs. (5) with Sx ­ 0.

For illustrative purposes only, we take z 2 ­ 0.005
and demonstrate in Fig. 2 the periodic pulse dynamics
in the absence of noise (left) and a typical realization
of the dynamics in the presence of noise (right). The
light-gray curves are the amplitude-chirp f luctuations
during a dispersion map period, whereas the dots
(connected by solid curves) depict the location in the
phase plane after every dispersion map period, i.e.,
the Poincaré section.2 Thus the noise field causes
the pulse to evolve (randomly) away from the ideal,
periodic solution that corresponds to chirp-free, error-
free transmission.

To quantify the effects of the noise-induced ampli-
tude and chirp jitter, we measure the mean-square
radial growth away from the sh, bd ­ s1, 0d initial con-
dition at the end of each dispersion map period by
calculating kR2l ­ ksh 2 1d2l 1 kb2l. We simplify the
analysis by observing that Fig. 2 (right) resembles a
2-D random walk; i.e., the discrete jumps in h and b
cause a random motion in the phase plane. We can
then approximate the dynamics of Eqs. (5) and (8) by
defining a 2-D random-walk process:

X1 ­ X2 2 A1 , Y1 ­ Y2 1
3 1 p2

6
A2 , (9)

where X6 and Y6 are random-walk variables that
correspond to h and b, respectively, and the jumps

Fig. 2. Periodic phase-plane dynamics in the absence of
the noise field (left) and a typical realization of amplitude-
chirp dynamics and Poincaré section (dots) when driven by
noise (right) for z 2 ­ 0.005.
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Fig. 3. Root-mean-square radial distance from starting
values sh, bd ­ s1, 0d for 8000 realizations and z 2 ­ 0.005
for the nonlinear dynamics, the approximate 2-D random
walk, and the analytic formula for the 2-D random walk.

occur at each amplifier in analogy to Eqs. (8). For
such a random walk the mean-square radial growth of
the pulse from the initial point sX, Y d ­ s1, 0d is simply

kR2D
2l ­

∑
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2l 1

µ
3 1 p2

6
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kA2
2l

∏
M , (10)

where M is the dispersion map periods traversed. We
test the validity of the 2-D random-walk approxima-
tion by comparing in Fig. 3 the growth of the mean-
square radius for the nonlinear evolution given by
Eqs. (5) and (8), the approximation in Eqs. (9), and the
analytic prediction given by Eq. (10). We note that the
mean-square radial growth from Eqs. (5) and (8) grows
approximately as the square root of distance traveled,
agreeing reasonably well with the 2-D random-walk
process of Eqs. (9). Even at 12,000 km the disagree-
ment is only ø15%.

From a system performance perspective, the random
motion of the pulse in the h b phase plane can impose
transmission penalties in the following way: Either
the amplitude h can drop below the detection threshold
of the receiver or, alternatively, the chirp b can be large
enough to degrade the performance of the detectors be-
cause of its spreading of the pulse spectrum, which is
important because of filtering before detection in dense
wavelength-division-multiplexed systems. As it is dif-
ficult to evaluate bit errors that are due to the chirp,
we simply compare the amplitude jitter with the Gor-
don–Haus jitter6 – 9 and evaluate the critical distance
of propagation at which a bit error rate of 1029 oc-
curs for the realistic case of z 2 ­ 0.0002. The Gordon–
Haus penalty,11 assuming that the detection window is
four times the pulse width, can be evaluated when we
note that6 kdT2l ­ 4z 2L3y27P , so the critical distance
is achieved at L ø 5.3 sø2700 kmd. Alternatively, a
1029 bit error rate in a 1 that is due to amplitude
jitter occurs when14 kdh2l ø fsI1 2 ID dy5.9g2, where
I1 2 ID measures the difference between the peak of
a 1 and its detection threshold.14 Approximating the
amplitude jitter by the random walk in Eqs. (9) gives
kdh2l ø kX2l ­ z 2LyP . For an amplitude-detection
window of I1 2 ID ø 0.67 (which is larger than the nor-
mal 0.5), the amplitude jitter contributes also at a criti-
cal distance of L ­ 5.3. Thus the amplitude jitter in
this strongly dispersion-managed, physically realizable
system is as important as the Gordon–Haus jitter. We
note, however, that in practice it is difficult to distin-
guish between an error that is due to Gordon–Haus
timing jitter and one that is due to amplitude jitter
from an eye diagram or detector, thus making it dif-
ficult to separate the two effects. Further, for longer
distances, the Gordon–Haus jitter grows much faster
because of its L3 dependence. Finally, we should point
out that careful comparisons between the variational
formalism and governing equation (1) have been shown
to be highly accurate in predicting the pulse dynam-
ics,2– 5 even in the presence of noise.6 – 9 Thus the
results here, although they are approximate, are quan-
titatively and qualitatively accurate representations of
the resulting dispersion-managed dynamics.

In conclusion, we have shown that amplified stimu-
lated emission noise induces amplitude and quadratic
chirp jitter that can result in a fundamental transmis-
sion penalty of the same order as the Gordon–Haus
timing jitter. By the variational method, a reduced,
coupled nonlinear system of equations is found that
can be well approximated by a simple 2-D random-walk
process for which the growth of the mean-square radius
from the ideal periodic, chirp-free solution can be easily
calculated. This then provides a valuable method for
understanding the noise-induced amplitude and chirp
jitter and determining roughly the transmission penal-
ties other than Gordon–Haus timing jitter that arise.
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