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Abstract 

We describe the fundamental issues that long-horizon event studies face in choosing 
the proper research methodology, and summarize findings from existing simulation 
studies about the performance of commonly used methods.  We document in details how 
to implement a simulation study and report our own findings on large-size samples.  The 
findings have important implications for future research.  

We examine the performance of more than twenty different testing procedures that 
fall into two categories.  First, the buy-and-hold benchmark approach uses a benchmark 
to measure the abnormal buy-and-hold return for every event firm, and tests the null 
hypothesis that the average abnormal return is zero.  Second, the calendar-time portfolio 
approach forms a portfolio in each calendar month consisting of firms that have had an 
event within a certain time period prior to the month, and tests the null hypothesis that the 
intercept is zero in the regression of monthly portfolio returns against the factors in an 
asset-pricing model.  We find that using the sign test and the single most correlated firm 
being the benchmark provides the best overall performance for various sample sizes and 
long horizons.  In addition, the Fama-French three-factor model performs better in our 
simulation study than the four-factor model, as the latter leads to serious overrejection of 
the null hypothesis.  

We evaluate the performance of bootstrapped Johnson’s skewness-adjusted t-test. 
This computation-intensive procedure is considered because the distribution of long-
horizon abnormal returns tends to be highly skewed to the right.  The bootstrapping 
method uses repeated random sampling to measure the significance of relevant test 
statistics.  Due to the nature of random sampling, the resultant measurement of 
significance varies each time such a procedure is used.  We also evaluate simple 
nonparametric tests, such as the Wilcoxon signed-rank test or the Fisher’s sign test, which 
are free from random sampling variation. 
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14.1 Introduction 

A large number of papers in finance literature have documented evidence that 

firms earn abnormal returns over a long time period (ranging from one to five years) after 

certain corporate events.  Kothari and Warner (2007) report that a total of 565 papers 

reporting event study results were published between 1974 and 2000 in 5 leading journals: 

the Journal of Business (JB), Journal of Finance (JF), Journal of Financial Economics 

(JFE), Journal of Financial and Quantitative Analysis (JFQA), and the Review of 

Financial Studies (RFS).  Approximately 200 of the 565 event studies use a maximum 

window length of 12 months or more.   

The evidence of long-horizon abnormal returns contradicts the Efficient Market 

Hypothesis that stock prices adjust to information fully within a narrow time window (a 

few days).  To reconcile the contradiction, Fama (1998) argues that, “Most important, 

consistent with the market efficiency prediction that apparent anomalies can be due to 

methodology, most long-term return anomalies tend to disappear with reasonable changes 

in technique.”  Several simulation studies such as Kothari and Warner (1997) and Barber 

and Lyon (1997) document evidence that statistical inference in long horizon event 

studies is sensitive to the choice of methodology.  Therefore, it is crucial to gain an 

understanding of the properties and limitations of the available approaches before 

choosing a methodology for a long-horizon event study.   

At the core of a long-horizon event study lie two tasks: the first is to measure the 

event-related long horizon abnormal returns; and the second is to test the null hypothesis 

that the distribution of these long horizon abnormal returns concentrates around zero.  A 

proper testing procedure for long-horizon event studies has to do both tasks well.  

Otherwise, two types of error could arise and lead to incorrect inference.  The first error 

occurs when the null hypothesis is rejected, not because the event has generated true 

abnormal returns, but because a biased benchmark has been used to measure abnormal 

returns.  A biased benchmark shifts the concentration of abnormal returns away from zero 

and leads to too many false rejections of the null hypothesis.  The second error occurs 

when the null hypothesis is accepted, not because the event has no impact, but because 

the test itself does not have enough power to statistically discriminate the mean abnormal 

return from zero.  A test with low power is undesirable, as it will lead researchers to reach 
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the incorrect inference that long term effect is statistically insignificant.  Thus the 

researchers would want a procedure that minimizes both sources of error, or at least, 

choose a balance between them.  

Two approaches have been followed in recent finance literature to measure and 

test long-term abnormal returns.  The first approach uses a benchmark to measure the 

abnormal buy-and-hold return for every event firm in a sample, and tests whether the 

abnormal returns have a zero mean.  The second approach forms a portfolio in each 

calendar month consisting of firms that have had an event within a certain time period 

prior to the month, and tests the null hypothesis that the intercept is zero in the regression 

of monthly calendar-time portfolio returns against the factors in an asset-pricing model.  

To follow either approach, researchers need to make a few choices as illustrated in 

Figure 14.1.  For the calendar-time portfolio approach, researchers choose an asset-

pricing model and an estimation technique to fit the model.  Among the most popular 

asset-pricing models are Fama and French’s (1993) three-factor model and its four-factor 

extension proposed by Carhart (1997) that includes an additional momentum-related 

factor.  Two techniques are commonly used to fit the pricing model: the ordinary least 

squares (OLS) technique and the weighted least squares (WLS) technique.  On the other 

hand, if adopting the buy-and-hold benchmark approach, researchers choose either a 

reference portfolio or a single control firm as the benchmark for measuring abnormal 

returns and select either parametric or nonparametric statistic for testing the null 

hypothesis of zero abnormal return.   

Permutations of these choices under both approaches generate a large number of 

possible testing procedures that can be used in a long-horizon event study.  It is neither 

practical nor sensible to implement all the testing procedures in an empirical study of a 

financial event.  Therefore, it would be very useful to provide guidance on the strength 

and weakness of the procedures based on simulation results. Simulation study generates 

large number of repetitions under various circumstances for each testing procedure, 

which allows the tabulations of these two types of error for comparison.    

 We organize this chapter as follows.  Section 14.2 discusses the fundamental 

issues in long-horizon event studies that have been documented in the literature.  Section 
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14.3 reviews existing simulation studies.  Section 14.4 reports results from a simulation 

study of large-size samples.  Section 14.5 contains some suggestions for future research.   

  

14.2 Fundamental issues in long-horizon event studies 
 

14.2.1 The buy-and-hold benchmark approach 

The long-term buy-and-hold abnormal return of firm i , denoted as iAR , is 

calculated as 

 iii BRRAR −=  ,  (14.1) 

where iR  is the long-term buy-and-hold return of firm i , and iBR  is the long-term return 

on a particular benchmark of firm i . The buy-and-hold return of firm i  over τ  months is 

obtained by compounding monthly returns, that is,  

 1)1(
1

−+=∏ =

τ

t iti rR  ,   (14.2) 

where itr  is firm i ’s return in month t.  Calculation of the benchmark return iBR  is given 

below.  The benchmark return, iBR , estimates the return that an event firm would have 

had if the event had not happened. 

Several articles clearly show that long-term abnormal returns are very sensitive to 

choice of benchmarks, see, e.g. Ikenberry Lakonishok and Vermaelen (1995), Kothari 

and Warner (1997), Barber and Lyon (1997), and Lyon, Barber and Tsai (1999).  If 

wrong benchmarks were used in measuring long-term abnormal returns, inference on the 

significance of a certain event would be erroneous.  Most existing studies use either a 

single matched firm or a matched reference portfolio as the benchmark.  Barber and Lyon 

(1997) point out that the control firm approach eliminates the new listing bias, the 

rebalancing bias, and the skewness problem.  It also yields well-specified test statistics in 

virtually all the situations they consider.  Further, Lyon, Barber and Tsai (1999) advocate 

a reference portfolio of firms that match on size and BE/ME. The issue on choice of the 

benchmark is practically unresolved.  Ang and Zhang (2004) additionally argue that the 

control firm method overcomes another important problem that is associated with the 

event firm not being representative in important aspects of the respective matched 

portfolio in the reference portfolio approach.  This leads to the matched portfolio return 
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generating a biased estimate of expected firm return. This problem is particularly severe 

with small firms.  

A common practice in computing an event firm’s long-term abnormal return is to 

utilize a benchmark that matches the event firm on size and BE/ME. The practice is often 

justified by quoting the findings in Fama and French (1992) that size and BE/ME 

combine to capture the cross-sectional variation in average monthly stock returns and that 

market beta has no additional power in explaining cross-sectional return differences. 

However, in a separate paper, Fama and French (1993) demonstrate that expected 

monthly stock returns are related to three factors: a market factor, a size related factor and 

a book-to-market equity ratio (BE/ME) related factor.  To resolve this issue, Ang and 

Zhang (2004) show that matching based on beta in addition to size and BE/ME does not 

improve the performance of the approach.   

A recent trend is to use computation-intensive bootstrapping-based tests, such as 

the bootstrapped Johnson’s skewness-adjusted t-statistic (e.g., Sutton (1993), and Lyon, 

Barber and Tsai (1999)) and the simulated empirical p-values (e.g., Brock, Lakonishok, 

and LeBaron (1992), and Ikenberry, Lakonishok, and Vermaelen (1995)).  These 

procedures rely on repeated random sampling to measure the significance of relevant test 

statistics.  Due to the nature of random sampling, the resultant measurement of 

significance varies every time such a procedure is used.  As a consequence, different 

researchers could reach contradictory conclusions using the same procedure on the same 

sample of event firms.  In contrast, simple nonparametric tests, such as the Wilcoxon 

signed-rank test or the Fisher’s sign test, are free from random sampling variation. Barber 

and Lyon (1997) examined the performance of the Wilcoxon signed-rank test in a large-

scale simulation study.  They show that the performance depends on choice of the 

benchmark.  The signed-rank test is well specified when the benchmark is a single size 

and BE/ME matched firm, and misspecified when the benchmark is a size and BE/ME 

matched reference portfolio.  However, Barber and Lyon (1997) present only simulation 

results for one-year horizon.  No simulation study in the finance literature has examined 
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the performance of these simple nonparametric tests for three- or five-year horizons, 

which are the common holding periods in long-horizon event studies.1  

Power is an important consideration in statistical hypothesis testing.  Lyon, Barber 

and Tsai (1999) report that bootstrapping-based tests are more powerful than Student’s t-

test in testing one-year abnormal returns in a large-scale simulation study.  However, they 

do not report evidence on the power of these tests for the longer three- or five-year 

horizon.  In statistics literature, bootstrapping is primarily for challenging situations when 

the sampling distribution of the test statistic is either indeterminate or difficult to obtain, 

and that bootstrapping is less powerful in hypothesis testing than other parametric or 

simple non-parametric methods when both bootstrapping and other methods are 

applicable (See, e.g., Efron and Tibshirani (1993, Chapter 16) and Davison and Hinkley 

(1997, Chapter 4)).  In a recent study on five-year buy-and-hold abnormal returns to 

holders of the seasoned equity offerings, Eckbo, Masulis, and Norli (2000) note that 

bootstrapping gives lower significance level relative to the Student’s t-test.   

Ang and Zhang (2004) find that most testing procedures have very low power for 

samples of medium size over long event horizons (three or five years).  This raises 

concern about how to interpret long-horizon event studies that fail to reject the null 

hypothesis.  Failure to reject is often interpreted as evidence that supports the null 

hypothesis.  However, when power of the test is low, such interpretation may no longer 

be warranted.  This problem gets even worse when event firms are primarily small firms.  

They observe that all tests, except the sign test, have much lower power for samples of 

small firms.   

More recently, Schultz (2003) argue via simulation that the long-run IPO 

underperformance could be related to the endogeneity of the number of new issues.   

Firms choose to go IPO at the time when they expect to obtain high valuation in the stock 

market.  Therefore, IPOs cluster after periods of high abnormal returns on new issues.  In 

such a case, even if the ex ante returns on IPO are normal, the ex post measures of 

abnormal returns may be negative on average.  Schultz suggests using calendar-time 

returns to overcome the bias.  However, Dahlquist and de Jong (2008) find that it is 

                                                 
1 The sign test has an advantage over the signed-rank test in that it does not require a symmetric underlying 
distribution while the signed-rank test does. 
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unlikely that the endogeneity of the number of new issues explains the long-run 

underperformance of IPOs.  Viswanathan and Wei (2008) present a theoretical analysis 

on event abnormal returns when returns predict events.  They show that, when the sample 

size is fixed, the expected abnormal return is negative and becomes more negative as the 

holding period increases.  This implies that there is a small-sample bias in the use of 

long-run event returns.  Asymptotically, abnormal returns converge to zero provided that 

the process of the number of events is stationary.  Nonstationarity in the process of the 

number of events is needed to generate a large negative bias.   

The issues discussed above are associated with the buy-and-hold approach to 

testing long-term abnormal returns.2  In addition, this approach suffers from the cross-

correlation problem and the bad model problem (Fama (1998), Brav (1999), and Mitchell 

and Stafford (2000)).  The cross-correlation problem arises because matching on firm-

specific characteristics fails to completely remove the correlation between event firms’ 

returns.  The bad model problem arises because no benchmark gives perfect estimate of 

the counter factual (i.e., what if there was no event) return of an event firm and 

benchmark errors are multiplied in computing long-term buy-and-hold returns.  Therefore, 

Fama (1998) advocates a calendar-time portfolio approach.3 

 

14.2.2 The calendar-time portfolio approach  

In the calendar-time portfolio approach, for each calendar month, an event 

portfolio is formed, consisting of all firms that have experienced the same event within 

the τ  months prior to the given month. Monthly return of the event portfolio is computed 

as the equally weighted average of monthly returns of all firms in the portfolio.  Excess 

returns of the event portfolio are regressed on the Fama-French three factors as in the 

following model:  

 ( ) tttftmtftpt hHMLsSMBRRRR εβα +++−+=−  ,  (14.3) 

                                                 
2 Variations of this approach have been used extensively, see, e.g. Ritter (1991), Ikenberry, Lakonishok, 
and Vermaelen (1995), Ikenberry, Rankine, and Stice (1996), and Desai and Jain (1997), among many 
others. 
3 Loughran and Ritter (1995), Brav and Gompers (1996), and Brav, Geczy and Gompers (2000), among 
others, have used the calendar-time portfolio approach. 
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where ptR  is the event portfolio’s return in month t, ftR  is the one-month Treasury bill 

rate, observed at the beginning of the month, mtR  is the monthly market return, tSMB  is 

the monthly return on the zero investment portfolio for the common size factor in stock 

returns, and tHML  is the monthly return on the zero investment portfolio for the common 

book-to-market equity factor in stock returns. 4 Under the assumption that the Fama-

French three-factor model provides a complete description of expected stock returns, the 

intercept, α , measures the average monthly abnormal return on the portfolio of event 

firms and should be equal to zero under the null hypothesis of no abnormal performance.  

A later modification that has gained popularity is the four-factor model that added 

a momentum-related factor to the Fama-French three factors: 

( ) ttttftmtftpt pPRhHMLsSMBRRbRR εα ++++−+=− 12 ,  (14.4) 

where tPR12  is the momentum-related factor advocated by Carhart (1997).  Typically, we 

compute tPR12  by first ranking all firms by their previous 11-month stock return lagged 

one month and then taking the average return of the top one third (i.e. high past return) 

stocks minus the average return of the bottom one third (i.e. low past return) stocks.  

Under the assumption that the asset pricing model adequately explains variation in 

expected stock returns, the intercept, α , measures the average monthly abnormal return 

of the calendar-time portfolio of event firms and should be equal to zero under the null 

hypothesis of no abnormal performance.  If the test concludes that the time series 

conforms to the asset pricing model, the event is said to have had no significant long-term 

effect; otherwise, the event has produced significant long-term abnormal returns. Lyon, 

Barber and Tsai (1999) report that the calendar-time portfolio approach together with the 

Fama-French three-factor model, which shall be referred to as the Fama-French calendar-

time approach later, is well specified for random samples in their simulation study. 

However, we do not know how much power the Fama-French calendar-time 

approach has. Loughran and Ritter (1999) criticize the approach as having very low 

power. They argue that reduction in power is caused by using returns on contaminated 

                                                 
4 See Fama and French (1993) for details on construction of the mimicking portfolios for the common size 
and book-to-market equity factors. We thank Eugene Fama for providing us with returns on ftR , mtR , 

tSMB  and tHML .   
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portfolios as factors in the regression, by weighting each month equally and by using 

value-weighted returns of the calendar-time portfolios. However, their empirical evidence 

is based only on one carefully constructed sample of firms and is hardly conclusive. No 

large-scale simulation study has been done to examine power of the Fama-French 

calendar-time approach, which we will remedy in this paper. 

The Fama-French calendar time approach, estimated with the ordinary least 

squares (OLS) technique, could suffer from a potential heteroskedasticity problem due to 

unequal and changing number of firms in the calendar-time portfolios. The weighted least 

square (WLS) technique, which is helpful in addressing the heteroskedasticity problem, 

has been suggested as a way to deal with the changing size of calendar-time portfolios. 

When applying WLS, we use the monthly number of firms in the event portfolio as 

weights. 

 

14.3 A review of simulation studies on long-horizon event study methodology 

 

Several papers have documented performance of testing procedures in large-scale 

simulations.  Table 14.1 surveys these papers with reference to testing procedures under 

their investigation and their simulation settings.  The simulation technique was pioneered 

by Brown and Warner (1980, 1985) to evaluate size and power of testing procedures.  In 

this section, we review these simulation studies.   

[ Table 14.1 is about here ] 

As shown in Figure 14.1, there are two approaches for a long-term event study: 

the calendar-time portfolio approach versus the buy-and-hold benchmark approach.  

There has been a debate on which approach prescribes the best procedure for long-term 

event studies.  Both approaches have been under criticisms.  The buy-and-hold 

benchmark approach is susceptible to biases associated with cross-sectional correlation, 

insufficient matching criteria, new equity issues, periodic balancing, and skewed 

distribution of long-term abnormal returns, while the calendar-time portfolio approach 

may suffer from an improper asset pricing model and heteroskedasticity in portfolio 

returns.  See Kothari and Warner (1997), Barber and Lyon (1997), Fama (1998), 

Loughran and Ritter (1999), Lyon, Barber, and Tsai (1999) and others for more detailed 
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discussions.  Kothari and Warner (1997) argue that the combined effect of these issues is 

difficult to specify a priori and, thus, “a simulation study with actual security return data 

is a direct way to study the joint impact, and is helpful in identifying the potential 

problems that are empirically most relevant.”   

In their simulation study, Kothari and Warner (1997) measure the long-term (up 

to 3 years) impact of an event by cumulative monthly abnormal returns, where monthly 

abnormal returns are computed against four common models: the market-adjusted model, 

the market model, the capital asset pricing model, and the Fama-French three-factor 

model.  They find that tests for cumulative abnormal returns are severely misspecified.  

They identify sample selection, survival bias, and bias in variance estimation as potential 

sources of the misspecification and suggest that nonparametric and bootstrap tests are 

likely to reduce misspecification. 

Barber and Lyon (1997) address two main issues in their simulation study.  First, 

they argue that buy-and-hold return is a better measure of investors’ actual experience 

over a long horizon and should be used in long-term event study (up to 5 years).  They 

show simulation evidence that approaches using cumulative abnormal returns cause 

severe misspecification, which is consistent with the observation in Kothari and Warner 

(1997).  Second, they use simulations to measure both size and power of testing 

procedures that follow the buy-and-hold benchmark approach.  An important finding is 

that using a single control firm as benchmark yields well-specified tests, whereas using 

reference portfolio causes substantial over-rejection.  

In a later paper, Lyon, Barber and Tsai (1999) report another simulation study (for 

up to the 5-year horizon) that investigates the performance of both buy-and-hold 

benchmark approach and calendar-time portfolio approach.  They find that using the 

Fama-French three-factor model yields a well-specified test.  However, they advocate a 

test that uses carefully constructed reference portfolio as benchmark and the bootstrapped 

Johnson’s statistic for testing abnormal returns.  They present evidence that this test is 

well specified and has high power at the one-year horizon.   

Two questions remain unanswered in Lyon, Barber and Tsai (1999).  First, how 

much power does the bootstrap test have for event horizons longer than 1 year (e.g. 3 or 5 

years that is common in long-horizon studies)?  It is known in statistics literature that a 
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bootstrap test is not as powerful as simple non-parametric tests in many occasions (See 

Efron and Tibshirani (1993, Chapter 16) and Davison and Hinckley (1997, Chapter 4)).  

It is necessary to know the actual power of such test for event horizons beyond one year.  

Second, is the calendar-time portfolio approach as powerful as the buy-and-hold 

benchmark approach?  Loughran and Ritter (2000) argue that the calendar-time portfolio 

approach has low power, using simulations and empirical evidence from a sample of new 

equity issuers.  However, they do not measure how much power the approach actually 

has, which makes it impossible to compare the two approaches directly in more general 

settings.   

Mitchell and Stafford (2000) is the only study that empirically measures power of 

the calendar-time portfolio approach using simulations.  Their main focus is to assess 

performance of several testing procedures in three large samples of major managerial 

decisions, i.e., mergers, seasoned equity offerings, and share repurchases (up to 3 years).  

They find that different procedures lead to contradicting conclusions and argue that the 

calendar-time portfolio approach is preferred.  To resolve Loughran and Ritter (2000)’s 

critique that the calendar-time portfolio approach has low power, they conduct 

simulations to measure the empirical power and find that the power is actually very high 

with an empirical rejection rate of 99% for induced abnormal returns of %15±  over a 

three-year horizon. Since they have a large sample size, this finding is actually consistent 

with what we document in Table 14.5.    However, their simulations focus on only 

samples of 2,000 firms.  Many event studies have much smaller sample sizes, especially 

after researchers slice and dice a whole sample into sub-samples.  More evidence is 

needed in order to have great confidence in applying the calendar-time portfolio approach 

in such studies.  

Cowan and Sergeant (2001) focus on the buy-and-hold benchmark approach in 

their simulations.  They find that using the reference portfolio approach cannot overcome 

the skewness bias discussed in Barber and Lyon (1997), and that the larger the sample 

size, the smaller the magnitude of the skewness bias.  They also argue that cross-sectional 

dependence among event firms’ abnormal returns increases in event horizon due to 

partially contemporaneous holding periods, which may cause the overlapping horizon 

bias.  They propose a two-group test using abnormal returns winsorized at three standard 
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deviations to deal with these two biases, and report evidence that this test yields correct 

specifications and considerable power in many situations. 

All previous simulation studies use only size and BE/ME to construct benchmarks, 

which is often justified by the findings in Fama and French (1992) that size and BE/ME 

together adequately capture the cross-sectional variations in average monthly stock 

returns.  Ang and Zhang (2004) use two other matching criteria to explore whether better 

benchmarks could be used for future studies.  The two criteria are market beta and pre-

event correlation coefficient.  Using market beta is motivated by the fact that Fama and 

French’s (1993) three-factor model has a market factor, a size-related factor, and a 

BE/ME related factor.  Matching on the basis of size and BE/ME does not account for the 

influence of the market factor.  The rationale for using pre-event correlation coefficient is 

that matching on size and BE/ME may fail to control for other factors that could 

influence stock returns, such as industry factor, seasonal factor, momentum factor, and 

other factors shared by only firms of same characteristics, such as geographical location, 

ownership and governance structures.  Matching on the basis of pre-event correlation 

coefficient helps remove the effect of these factors on the event firm’s long-term return.  

The main findings in Ang and Zhang (2004) include the following.  First, the 

four-factor model is inferior to the well-specified three-factor model in the calendar-time 

portfolio approach in that the former causes too many rejections of the null hypothesis 

relative to the specified significance level.  Second, WLS improves the performance of 

the calendar-time portfolio approach over OLS, especially for long event horizons.  Third, 

the Fama-French three-factor model has relatively high power in detecting abnormal 

returns, although power decreases sharply as event horizon increases.  Fourth, the simple 

sign test is well specified when it is applied with a single firm benchmark, but 

misspecified when used with reference portfolio benchmarks.  More importantly, the 

combination of the sign test and the benchmark with the single most correlated firm 

consistently has much higher power than any other test in our simulations and is the only 

testing procedure that performs well in samples of small firms.  

Jegadeesh and Karceski (2009) propose a new test of long-run performance that 

allows for heteroskedasticity and autocorrelation.  Previous tests used in Lyon, Barber 

and Tsai (1999) implicitly assume that the observations are cross-sectionally uncorrelated.  
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This assumption is frequently violated in nonrandom samples such as samples with 

industry clustering or with overlapping returns.  To overcome the cross-correlation bias in 

event firms’ returns, they recommend a t-statistic that is computed using a generalized 

version of the Hansen and Hodrick (1980) standard error.  Their simulation studies show 

that the new tests they propose are reasonably well-specified in random samples, in 

samples that are concentrated in particular industries, and also in samples where event 

firms enter the sample on multiple occasions within the holding period.   

In summary, these simulation studies show that testing procedures differ 

dramatically in performance.  Some procedures reject the null hypothesis at an 

excessively high rate, while others have very low power.  These findings confirm the 

Fama (1998) statement that evidence for long-term return anomalies is dependent upon 

methodology, and suggest that caution must be exercised in choosing the proper 

methodology for a long-term event study. 

  

14.4 A simulation study of large-size samples  

 

A simulation study of large-size samples serves two purposes.  First, it is well 

documented that the distribution of buy-and-hold abnormal returns tends to be skewed to 

the right.  Kothari and Warner (2007) mentions that the extent of skewness bias is likely 

to decline with sample size.  It is of interest to provide evidence on how much is the level 

of right-skewness in the average abnormal returns of large-size samples.  Second, 

although it is expected that testing power increases with sample size, it is of practical 

interest to know more precisely how much power a test can have in a sample of 1,000 

observations. Large sample simulation defines the limits of a procedure.   

 

14.4.1 Research design  

In this simulation study, we construct 250 samples each consisting of 1,000 event 

firms.  To produce one sample, we randomly select, with replacement, 1,000 event 

months between January 1980 and December 1992, inclusively.5 6  This allows us to 

                                                 
5 We use a pseudorandom number generator developed by Matsumoto and Nishimura (1998) to ensure high 
quality of random sampling. 
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calculate five-year abnormal returns until December 1997.  For each selected event 

month, we randomly select, without replacement, one firm from a list of qualified firms.  

The qualified firms satisfy the following requirements: (i) they are publicly traded firms, 

incorporated in U.S., and have ordinary common shares with Center for Research in 

Security Prices (CRSP) share codes 10 and 11; (ii) they have return data found in the 

CRSP monthly returns database for the 24-month period prior to the event month; (iii) 

they have nonnegative book values on COMPUSTAT prior to the event month so that we 

can calculate their book-to-market equity ratios.  

The 250 samples, each of 1,000 randomly selected firms, comprise the simulation 

setting for comparing the performance of different testing procedures.7  We apply all 

testing procedures under our study to the same samples.  Such controlled comparison is 

more informative because it eliminates difference in performance due to variation in the 

samples. 

For the buy-and-hold approach, we compute the long-term buy-and-hold 

abnormal return of firm i  as the difference between the long-term buy-and-hold return of 

firm i  and the long-term return of a benchmark.  The buy-and-hold return of firm i  over 

τ  months is obtained by compounding monthly returns.  In case that firm i  does not 

have return data for all τ  months, we replace missing returns by the same-month returns 

of a size and BE/ME matched reference portfolio. 8   We evaluate a total of five 

benchmarks and four test statistics in this study.  We briefly describe them in the 

following and give the details in the Appendix.   

Three of the benchmarks are reference portfolios.  The first reference portfolio 

consists of firms that are similar to the event firm in both size and BE/ME.  We follow 

the same procedure as in Lyon, Barber and Tsai (1999) to construct the two-factor 

reference portfolio.  We use the label “SZBM” for this benchmark.  The second reference 

                                                                                                                                                  
6 Kothari and Warner (1997) use 250 samples, each of 200 event months between January 1980 and 
December 1989 inclusively.  Barber and Lyon (1997) use 1,000 samples, each of 200 event months in a 
much longer period from July 1963 through December 1994.  The period under our study, between January 
1980 and December 1992, is of similar length to Kothari and Warner’s.  
7 Ang and Zhang (2004) examine two other simulation settings.  Under one setting, they have another 250 
samples of 200 event firms, a smaller sample size than the setting in this paper.  Under the other setting, 
they have the sample size of 200 with the requirement that event firms belong to the smallest quintile sorted 
by NYSE firm size.  The second setting is used to examine the effect of small firms. 
8 Filling in missing returns is a common practice in calculating long-term buy-and-hold returns, e.g. see 
Barber and Lyon (1997), Lyon, Barber and Tsai (1999) and Mitchell and Stafford (2000).  
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portfolio consists of firms that are similar to the event firm not only in size and BE/ME 

but also in market beta.  We use the label “SZBMBT” for this benchmark.  The third 

reference portfolio consists of ten firms that are most correlated with the event firm prior 

to the event.  We use the label “MC10” for this benchmark. 

The other two of the five benchmarks consist of a single firm.  The first single 

firm benchmark is the firm that matched the event firm in both size and BE/ME.  To find 

the two-factor single firm benchmark, we first identify all firms whose market value is 

within 70% to 130% of the event firm’s market value and then choose the firm that has 

the BE/ME ratio closest to that of the event firm.  We use the label “SZBM1” for this 

benchmark.  The second single firm benchmark is the firm that has the highest correlation 

coefficient with the event firm prior to the event.  We use the label “MC1” for this 

benchmark.  

We apply four test statistics to test the null hypothesis that the mean long-term 

abnormal return is zero.  They include Student’s t -test, Fisher’s sign test, Johnson’s 

skewness-adjusted t -test, and the bootstrapped Johnson’s t -test.  Fisher’s sign test is a 

nonparametric test and is described in details in Hollander and Wolfe (1999, Chapter 3).  

Johnson’s skewness-adjusted t -statistic was developed by Johnson (1978) to deal with 

the skewness-related misspecification error in Student’s t -test.  Sutton (1992) proposes to 

apply Johnson’s t -test with a computationally intensive bootstrap re-sampling technique 

when the population skewness is severe and the sample size is small.  Lyon, Barber and 

Tsai (1999) advocate use of the bootstrapped Johnson’s t -test because long-term buy-

and-hold abnormal returns are highly skewed when buy-and-hold reference portfolios are 

used as benchmarks.  We follow Lyon, Barber and Tsai (1999) and set the re-sampling 

size in the bootstrapped Johnson’s t -test to be one quarter of the sample size. 

For the Fama-French calendar-time approach, we use both the Fama-French three-

factor model and the four-factor model.  We apply both ordinary least squares (OLS) and 

weighted least squares (WLS) techniques to estimate parameters in the pricing model.  

The WLS is used to correct the heteroskedasticity problem due to the monthly variation 

in the number of firms in the calendar-time portfolio.  When applying WLS, we use the 

number of event firms in the portfolio as weights.  
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14.4.2 Simulation results for the buy-and-hold benchmark approach 

In this section, we examine the performance of testing procedures that follow the 

buy-and-hold benchmark approach.  Implementation of the buy-and-hold benchmark 

approach involves choosing both benchmark and test statistic.  For this reason, rather than 

focusing on what is the best among all benchmarks, or focusing on what is the best 

among all test statistics, we address the more practical question of finding the best 

combination of benchmark and test statistic.  Combination of the five benchmarks and the 

four test statistics yields 20 testing procedures, out of which we look for the best 

combination. 

For each sample of 1,000 abnormal returns, we compute mean, median, standard 

deviation, inter-quartile range, skewness coefficient, and kurtosis coefficient.  Table 14.2 

reports the average of these statistics over 250 samples.  

[ Table 14.2 is about here ] 

Since these event firms, being randomly selected, may not experience any event or 

may experience events that have offsetting effects on averaged stock returns, we expect 

their abnormal returns to concentrate around zero.  In Table 14.2, means are close to zero 

for all five benchmarks at all three holding periods, but medians differ systematically 

according to the type of benchmark used.  Medians are clearly negative under the three 

reference portfolio benchmarks (i.e., SZBM, SZBMBT, and MC10), but close to zero 

under the two single firm benchmarks (i.e., SZBM1 and MC1).  The evidence suggests 

that reference portfolio benchmarks overestimate holding period returns of many event 

firms, resulting in far too many event firms having negative abnormal returns under the 

portfolio-based benchmarks.  The extent of the overestimation bias by portfolio-based 

benchmarks is quite severe, and gets worse as the time horizon lengthens.  The bias, as 

measured by the magnitude of median, ranges from around 4% at a one-year horizon, to 

12% at a three-year horizon, and to more than 20% at a five-year horizon.  Bias of this 

magnitude could cause too many events to be falsely identified as having significant 

long-term impact. 

Volatility of abnormal returns increases with the length of holding period under all 

five benchmarks.  For the same holding period, volatility is higher under the two single 

firm benchmarks than under the three reference portfolio benchmarks.  This is expected 
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because reference portfolios have lower volatility due to averaging.  As for kurtosis, all 

five benchmarks produce highly leptokurtic abnormal returns, with kurtosis coefficients 

ranging from 41.4 to 67.5, which are far greater than three, the kurtosis coefficient of any 

normal distribution.  At last, skewness coefficients for the two single firm benchmarks 

are close to zero regardless of event horizons, while skewness coefficients for the three 

portfolio benchmarks are excessively positive.   

To sum up, probability distributions of long-term abnormal returns exhibit different 

properties, depending on whether the benchmark is a reference portfolio or a single firm.  

Under a reference portfolio benchmark, the distribution is highly leptokurtic and 

positively skewed, with a close-to-zero mean but a highly negative median.  Under a 

single firm benchmark, the distribution is highly leptokurtic but symmetric, with both 

mean and median close to zero.  Statistical properties of long-term abnormal returns have 

important bearings on performance of test statistics. Overall, it seems single firm 

benchmarks have more desirable properties.  Between the two single firm benchmarks, 

MC1 shows better performance than SZBM1, because the abnormal returns based on 

MC1 have both mean and median being closer to zero and smaller standard deviation.   

A superior test should control for the probability of committing two errors.  First, it 

is important to control for the probability of misidentifying an insignificant event as 

having statistical significance; in other words, the empirical size of the test, which is 

computed from simulations, is close to the pre-specified significance level at which the 

test is conducted.  When this happens, the test is well specified.  Second, power of the test 

should be large, that is, the probability of finding a statistically significant event if one 

did exist.   

Table 14.3 reports empirical size of all 20 tests for three holding periods.  Empirical 

size is calculated as the proportion of 250 samples that rejects the null hypothesis at the 

5% nominal significance level.  With only a few exceptions, Student’s t -test is well 

specified against the two-sided alternative hypothesis.  Despite excessively high 

skewness in abnormal returns from reference portfolio benchmarks, Student’s t-test is 

well specified against two-sided alternative hypothesis because the effect of skewness at 

both tails cancels out (See, e.g., Pearson and Please (1975)).  When testing against the 

two-sided alternative hypothesis, Johnson’s skewness-adjusted t -test is in general 



18 
 

misspecified, but its bootstrapped version is well specified in most situations.  The sign 

test is misspecified when applied to abnormal returns from reference portfolio 

benchmarks, and the extent of misspecification is quite serious and increases in the length 

of holding period.  This is not surprising because abnormal returns from reference 

portfolio benchmarks have highly negative medians.  

[ Table 14.3 is about here ] 

Table 14.4 reports empirical power of testing the null hypothesis of zero abnormal 

return against the two-sided alternative hypothesis.  We follow Brown and Warner (1980, 

1985) to measure empirical power by intentionally forcing the mean abnormal return 

away from zero with induced abnormal returns.  We induce nine levels of abnormal 

returns ranging from –20% to 20% at an increment of 5%.  To induce an abnormal return 

of -20%, for example, we add -20% to the observed holding period return of an event 

firm.  Empirical power is calculated as the proportion of 250 samples that rejects the null 

hypothesis at 5% significance level.   

[ Table 14.4 is about here ] 

With a large sample size of 1,000, the power of these tests remains reasonably high 

at the longer holding period.  Ang and Zhang (2004) report that, with the sample size of 

200, the power of all tests deteriorates sharply as holding period lengthens from one- to 

three- and to five-years and is alarmingly low at the five-year horizon.  For example, 

when the induced abnormal return is –20% over a five-year horizon, the highest power of 

the bootstrapped Johnson’s t -test is 13.6 percent for a sample of 200 firms, whereas the 

highest power is 62.8 percent for a sample of 1,000 firms.  

We compare the power of the three test statistics: Student’s t-test, the bootstrapped 

Johnson’s skewness-adjusted t-test, and the sign test.  All three test statistics are applied 

together with the most-correlated single firm benchmark.  The evidence shows that all 

three tests are well specified.  However, the sign test clearly has much higher power than 

the other two tests.  

 

14.4.3 Simulation results for the calendar-time portfolio approach 

Table 14.5 reports the rejection frequency of the calendar-time portfolio approach 

in testing the null hypothesis that the intercept is zero in the regression of monthly 
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calendar-time portfolio returns, against the two-sided alternative hypothesis.  Rejection 

frequency is measured as the proportion of the total 250 samples that reject the null 

hypothesis.  We compute rejection frequencies at nine nominal levels of induced 

abnormal returns, ranging from –20% to 20% at an increment of 5%.  Since monthly 

returns of the calendar-time portfolio are used in fitting the model, to examine the power 

of testing the intercept, we need to induce abnormal returns by adding an extra amount to 

actual monthly returns of every event firm before forming the calendar-time portfolios.  

For example, in order to induce the –20% nominal level of abnormal holding period 

return, we add the extra amount of –1.67% (=-20%/12) to an event firm’s twelve monthly 

returns for a one-year horizon, or add the abnormal amount of –0.56% (= -20%/36) to the 

firm’s 24 monthly returns for a three-year horizon, or the abnormal amount of –0.33% 

(=-20%/60) to the firm’s 60 monthly returns for a five-year horizon.   

[ Table 14.5 is about here ] 

Note that the nominal induced holding period return is different from the effective 

induced abnormal holding period return, because adding the abnormal amount each 

month does not guarantee that an event firm’s holding period return will be increased or 

decreased by the exact nominal level.  We measure the effective induced holding period 

return of an event firm as the difference in the firm’s holding period return between 

before and after adding the monthly abnormal amount.  The average effective induced 

holding period return is computed over all event firms in the 250 samples.  The average 

induced holding period return allows us to compare power of the buy-and-hold 

benchmark approach with that of the calendar-time portfolio approach at the scale of 

holding period return.   

We first examine empirical size of the calendar-time portfolio approach, which is 

equal to the rejection frequency when no abnormal return is induced.  In Table 14.5, the 

empirical size is in the column with zero induced return.  It is very surprising that when 

the four-factor model is used, the test has excessively high rejection frequency at three-

year and five-year horizons.  The rejection frequency, for example, is 94.0% at the five-

year horizon with the WLS estimation!  In contrast, when the Fama-French three-factor 

model is used, the empirical sizes are not significantly different from the 5% significance 

level.  The evidence strongly suggests that the three-factor model is preferred for the 
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calendar-time portfolio approach, whereas the four-factor model suffers from overfitting 

and should not be used.  

Table 14.5 shows that, for a sample of 1,000 firms, the power of this approach 

remains high as event horizon increases.  WLS estimation does improve the power of the 

procedure over the OLS, and the extent of improvement becomes greater as holding 

period gets longer.  By comparing Tables 14.4 and 14.5, we find that the power of the 

Fama-French calendar-time approach implemented with WLS technique, i.e. (FF, WLS), 

has almost the same power as the buy-and-hold benchmark approach implemented with 

the most-correlated single firm and the sign test, i.e. (MC1, sign), at the one-year horizon, 

but slightly less at the three- and five-year horizons.   

 

14.5 Conclusion 

Comparing the simulation results in Section 14.4 with those in Ang and Zhang 

(2004), we find that sample size has a significant impact on the performance of tests in 

long-horizon event studies.  With a sample size of 1,000, a few tests perform reasonably 

well, including the Fama-French calendar-time approach implemented with WLS 

technique and the buy-and-hold benchmark approach implemented with the most-

correlated single firm (MC1) and the sign test.  In particular, they have reasonably high 

power even for the long five-year holding period.  On the contrary, with a sample size of 

200, Ang and Zhang (2004) find that the power of most well-specified tests is very low 

for the five-year horizon, only in the range of 10% to 20% against a high level of induced 

abnormal returns, while the combination of the most-correlated single firm and the sign 

test stands out with a power of 41.2%.  Thus, the most correlated single firm benchmark 

dominates for most practical sample sizes and, in addition, the simplicity of the sign test 

is appealing.   

The findings have important implications for future research.  For long-horizon 

event studies with a large sample, it is likely to be more fruitful to spend efforts on 

understanding the characteristics of the sample firms, than on implementing various 

sophisticated testing procedures.  The simulation results here show that the commonly 

used tests following both the Fama-French calendar-time approach and the buy-and-hold 

benchmark approach perform reasonably well.  In a recent paper, Butler and Wan (2010) 
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reexamine the long-run underperformance of bond-issuing firms and find that straight 

debt and convertible debt issuers appear to have systematically better liquidity than 

benchmark firms, and controlling for liquidity by having an additional matching criterion 

eliminates the underperformance.  This resonates well with Barber and Lyon (1997)’s 

suggestion that “as future research in financial economics discovers additional variables 

that explain the cross-sectional variation in common stock returns, it will also be 

important to consider these additional variables when matching sample firms to control 

firms” (pp. 370–71).  One reason why the benchmark with a single most correlated firm 

performs well in our simulations may be that returns of highly correlated firms are likely 

to move in tandem in response to changes in risk factors that are well known, such as the 

market, size, book-to-market ratio, but also changes in other factors, such as industry, 

liquidity, momentum, and seasonality, etc.   

On the other hand, for long-horizon event studies with a small sample, it may be 

necessary to use a wide range of tests and interpret their outcome with care.  This 

prompts researchers to continue searching for better test statistics.  For example, Kolari 

and Pynnonen (2010) find that even relatively low cross-correlation among abnormal 

returns in a short event window causes serious over-rejection of the null hypothesis.  

They propose both cross-correlation and volatility-adjusted as well as cross-correlation-

adjusted scaled test statistics and demonstrate that these statistics perform well in samples 

of 50 firms.  It is an open and interesting question whether these statistics have high 

power in long-horizon event studies with a small sample.   
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Appendix  

 

This appendix includes the details on the benchmarks and the test statistics that 

are used in our simulation studies.  We use five benchmarks.  The first benchmark is a 

reference portfolio constructed on the basis of firm size and BE/ME.  We follow Lyon, 

Barber and Tsai (1999) to form 70 reference portfolios at the end of June in each year 

from 1979 to 1997.  At the end of June of year t , we calculate the size of every 

qualitified firm as price per share multiplied by shares outstanding.  We sort all NYSE 

firms by firm size into ten portfolios, each having the same number of firms, and then 

place all AMEX/Nasdaq firms into the ten portfolios based on firm size.  Since a majority 

of Nasdaq firms are small, approximately 50 percent of all firms fall in the smallest size 

decile.  To obtain portfolios with the same number of firms, we further partition the 

smallest size decile into five subportfolios by firm size without regard to listing exchange.  

We now have 14 size portfolios.  Next, we calculate each qualified firm's BE/ME as the 

ratio of the book equity value (COMPUSTAT data item 60) of the firm's fiscal year 

ending in year t-1 to its market equity value at the end of December of year t-1.  We then 

divide each of the 14 portfolios into five subportfolios by BE/ME, and conclude the 

procedure with 70 reference portfolios on the basis of size and BE/ME. 

The size and BE/ME matched reference portfolio of an event firm is taken to be 

the one of the 70 reference portfolios constructed at the month of June prior to the event 

month that matches the event firm in size and BE/ME. The return on a size and BE/ME 

matched reference portfolio over τ  months is calculated as: 
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where month 0=t  is the event month, tn  is the number of firms in month t , and jtr  is 

the monthly return of firm j  in month t .  We use the label ‘SZBM’ for the benchmark 

that is based on firm size and BE/ME. 

The second benchmark is a reference portfolio constructed on the basis of firm 

size, BE/ME, and market beta.  The Fama-French three factor model suggests that 
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expected stock returns are related to three factors: a market factor, a size related factor 

and a BE/ME related factor.  Reference portfolios constructed on the basis of size and 

BE/ME account for the systematic portion of expected stock returns due to the size and 

BE/ME factors, but not the portion due to the market factor.  Our second benchmark is 

based on firm size, BE/ME, and market beta to take all three factors into account.  

To build a three-factor reference portfolio for a given event firm, we first 

construct the 70 size and BE/ME reference portfolios as above and identify the one that 

matches the event firm.  Next, we pick firms within the matched portfolio that have 

returns in CRSP monthly returns database for all 24 months prior to the event month and 

compute their market beta by regressing the 24 monthly returns on the value weighted 

CRSP return index.  Lastly, we divide these firms that have market beta into three 

portfolios by their rankings in beta and pick the one that matches the event firm in beta as 

the three-factor reference portfolio.  The return on a three-factor portfolio over τ  months 

is calculated as: 
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where month 0=t  is the event month, tn  is the number of firms in month t , and jtr  is 

the monthly return of firm j  in month t .  We use the label ‘SZBMBT’ to indicate that 

the benchmark is based on firm size, BE/ME, and market beta. 

The third benchmark is a reference portfolio constructed on the basis of firm size, 

BE/ME, and pre-event correlation coefficient.  The rational for using pre-event 

correlation coefficient as an additional dimension is that returns of highly correlated firms 

are likely to move in tandem in response to not only changes in “global” risk factors, such 

as the market factor, the size factor, and the BE/ME factor in the Fama-French model, but 

also changes in other “local” factors, such as the industry factor, the seasonal factor, 

liquidity factor, and the momentum factor.  Over a long time period following an event, 

both global and local factors experience changes that affect stock returns.  It is reasonable 

to expect more correlated stocks would be affected by these factors similarly, and should 

have resulting stock return patterns that are closer to each other.  Therefore, returns of a 
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reference portfolio on the basis of pre event size, BE/ME, and pre-event correlation 

coefficient are likely to be better estimate of the status quo (i.e., what if there was no 

event) return of an event firm.  

To build a reference portfolio on the basis of size, BE/ME and pre-event 

correlation coefficient, we first construct the same 70 size and BE/ME reference 

portfolios as above and identify the combination that matches the event firm.  Next, we 

pick firms within the matched size and BE/ME reference portfolio that have returns in 

CRSP monthly returns database for all 24 months prior to the event month, and compute 

their correlation coefficients with the event firm over the pre-event 24 months.  Lastly, 

we choose the ten firms that have the highest pre event correlation coefficient with the 

event firm to form the reference portfolio.  Return of the portfolio over τ  months is 

calculated as: 
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where month t=0 is the event month, jtr  is the monthly return of firm j in month t.  We 

use the label ‘MC10’ to indicate that the benchmark consists of the most correlated ten 

firms.  The benchmark return is the return of investing equally in the ten most correlated 

firms over the τ  months beginning with the event month.  The benchmark is to be 

considered as a hybrid between the reference portfolio discussed above, and the matching 

firm approach shown below.  

The fourth benchmark is a single firm matched to the event firm in size and 

BE/ME.  Barber and Lyon (1997) report that using a size and BE/ME matched firm as 

benchmark gives measurements of long-term abnormal return that is free of the new 

listing bias, the rebalancing bias, and the skewness bias documented in Kothari and 

Warner (1997) and Barber and Lyon (1997).  To select the size and BE/ME matched firm, 

we first identify all firms that have a market equity value between 70% and 130% of that 

of the event firm, and then choose the firm with BE/ME closest to that of the event firm.  

The buy-and-hold return of the matched firm is computed as in equation (14.2).  We use 

the label ‘SZBM1’ to represent the single size and BE/ME matched firm.  
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The fifth and last benchmark is a single firm that has the highest pre-event 

correlation coefficient with the event firm.  Specifically, to select the firm, we first 

construct the 70 size and BE/ME reference portfolios and identify the one that matches 

the event firm.  Next, we pick firms within the matched size and BE/ME reference 

portfolio that have returns in CRSP monthly returns database for all 24 months prior to 

the event month, and compute their correlation coefficients with the event firm over the 

pre-event 24 months.  We choose the firm with the highest pre event correlation 

coefficient with the event firm as the benchmark.  The buy-and-hold return of the most 

correlated firm is computed as in equation (14.2).  We use the label ‘MC1’ to represent 

the most correlated single firm. 

We apply four test statistics to test the null hypothesis of no abnormal returns: (a) 

Student’s t -test, (b) Fisher’s sign test, (c) Johnson’s skewness-adjusted t -test, (d) 

bootstrapped Johnson’s t -test.  

(a) Student’s t -test 

Given the long-term buy-and-hold abnormal returns for a sample of n event firms, 

we compute Student’s t-statistic as follows: 
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where AR  is the sample mean and )(ARs  the sample standard deviation of the given 

sample of abnormal returns.  The Student’s t -statistic tests the null hypothesis that the 

population mean of long-term buy-and-hold abnormal returns is equal to zero.  The usual 

assumption for applying the Student’s t-statistic is that abnormal returns are mutually 

independent and follow the same normal distribution. 

(b) Fisher’s sign test 

To test the null hypothesis that the population median of long-term buy-and-hold 

abnormal returns is zero, we compute Fisher’s sign test statistic as follows: 
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where )0( >Ι iAR  equals 1 if the abnormal return on the i th firm is greater than zero, and 

0 otherwise.  At the chosen significance level of α , the null hypothesis is rejected in 
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favor of the alternative of non-zero median if )5.0,,( 2 nbB α≥  or )]5.0,,([ 2 nbnB α−< , or 

in favor of positive median if )5.0,,( nbB α≥ , or in favor of negative median if 

)]5.0,,([ nbnB α−< .  The constant )5.0,,( nb α  is the upper α  percentile point of the 

binomial distribution with sample size n and success probability of 0.5.  The usual 

assumption for applying the sign test is that abnormal returns are mutually independent 

and follow the same continuous distribution.  Note that application of the sign test does 

not require the population distribution to be symmetric.  When the population distribution 

is symmetric, the population mean equals the population median and the sign test then 

indicates the significance of the population mean (See Hollander and Wolfe (2000, 

Chapter 3)). 

(c) Johnson’s skewness-adjusted t -test 

Johnson (1978) developed the following skewness-adjusted t -test to correct the 

misspecification of Student’s t -test caused by the skewness of the population 

distribution.  Johnson’s test statistic is computed as follows: 
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where t  is Student’s t -statistic given in equation (14A.4) and γ  is an estimate of the 

coefficient of skewness given by 
nARs
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the null hypothesis of zero mean under the assumption that abnormal returns are mutually 

independent and follow the same continuous distribution.  At the chosen significance 

level of α , the null hypothesis is rejected in favor of the alternative of non-zero mean if 

),( 2 υαtJ >  or ),( 2 υαtJ −< , or in favor of positive mean if ),( υαtJ > , or in favor of 

negative mean if ),( υαtJ −< .  The constant ),( υαt  is the upper α  percentile point of 

the Student t  distribution with the degrees of freedom 1−= nυ .  

(d) Bootstrapped Johnson’s skewness-adjusted t -test 

Sutton (1992) proposes to apply Johnson’s t -test with a computer-intensive 

bootstrap resampling technique when the population skewness is severe and the sample 

size is small.  He demonstrates it by an extensive Monte Carlo study that the bootstrapped 

Johnson’s t -test reduces both type I and type II errors compared to Johnson’s t -test.  
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Lyon, Barber and Tsai (1999) advocate the bootstrapped Johnson’s t -test in that long-

term buy-and-hold abnormal returns are highly skewed when buy-and-hold reference 

portfolios are used as benchmarks.  They report that the bootstrapped Johnson’s t -test is 

well specified and has considerable power in testing abnormal returns at the one-year 

horizon.  In this paper, we document its power at three- and five-year horizons.  

We apply the bootstrapped Johnson’s t -test as follows.  From the given sample of 

n event firms, we draw m firms randomly with replacement counted as one resample until 

we have 250 resamples.  We calculate Johnson’s test statistic as in equation (14A.6) for 

each resample and end up with 250 J  values, labeled as 2501 ,, JJ  . Let 0J  denotes the 

J  value of the original sample.  To test the null hypothesis of zero mean at the 

significance level of α , we first determine two critical values, 1c  and 2c , such that the 

percentage of J values less than 1c  equals 2/α  and the percentage of J values greater 

than 2c  equals 2/α , and then reject the null hypothesis if 10 cJ <  or 20 cJ > .  We 

follow Lyon, Barber and Tsai (1999) to apply the bootstrapped Johnson’s t -test with 

=m 50.9  

                                                 
9 Noreen (1989, Chapter 4) cautions that bootstrap hypothesis tests can be unreliable and that extensive 
research is necessary to determine which one of many possible specifications can be trusted in a particular 
hypothesis testing situation. We also apply the bootstrapped Johnson’s t-test with =m 100, 200. We find 
no significant difference in the test’s performance. 
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Table 14.1  Summary of existing simulation studies 
  

Authors (Year) 

Procedures under Investigation Validation Settings 

Calendar-Time Portfolio 
Approach 

Buy-and-Hold Benchmark 
Approach 

Simulation Design 
Evidence on 

Specification at 
Horizon of 

Evidence on 
Power at 

Horizon of Pricing Model Estimation 
Method 

Matching 
Criteria Test Statistics 

Kothari and 
Warner (1997) 

This paper examines procedures that are based on cumulating 
monthly abnormal returns.  Such procedures are severely 
misspecified in most cases and are not recommended. 

250 simulated samples of 
200 firms each 

1 month, 1, 2, 
and 3 years 1 year 

Barber and Lyon 
(1997)   Size, BE/ME t-test, 

Wilcoxon test 
1,000 simulated samples 
of 200 firms each 1, 3, and 5 years 1 year 

Lyon, Barber, 
and Tsai (1999) 

Three-factor 
model OLS Size, BE/ME 

t-test, 
Johnson’s test,  
bootstrapped test 

1,000 simulated samples 
of 200 firms each 1, 3, and 5 years 

1 year, only for 
the buy-and-
hold approach 

Mitchell and 
Stafford (2000) 

Three-factor 
model OLS   1,000 simulated samples 

of 2,000 firms each 3 years 3 years 

Cowan and 
Sergeant (2001)   Size, BE/ME 

t-test, two-group 
test with 
winsorized data 

1,000 simulated samples 
with sample size of 50, 
200, and 1,000 

1, 3, and 5 years 3 year 

Ang and Zhang 
(2004) 

Three-factor 
model, 
Four-factor 
model 

OLS, 
WLS 

Size, BE/ME, 
Beta, and 
correlation 
coefficient 

t-test, 
Johnson’s test, 
bootstrapped test, 
sign test 

250 simulated samples 
with sample size of 200 
and 1,000 

1, 3, and 5 years 1, 3, and 5 years 

Jegadeesh and 
Karceski (2009)   Size, BE/ME 

t-test, t-test 
adjusted for 
heteroskedasticity 
and serial 
correlation  

1,000 simulated samples 
of 200 firms each 1, 3, and 5 years 1, 3, and 5 years 
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Table 14.2  Descriptive statistics of abnormal returns in samples of 1,000 firms 
 

Benchmark 

Descriptive Statistics 

Mean Median Standard 
Deviation 

Inter-
Quartile 
Range 

Skewness 
Coefficient 

Kurtosis 
Coefficient 

 
Panel A: One-Year Holding Period 
SZBM 0.009 -0.032 0.574 0.453 4.332 60.763 
SZBMBT -0.001 -0.043 0.586 0.462 4.074 58.462 
MC10 0.000 -0.040 0.591 0.463 3.853 56.733 
SZBM1 0.005 0.005 0.814 0.638 -0.203 53.034 
MC1 0.002 -0.003 0.780 0.584 0.229 53.202 
 
Panel B: Three-Year Holding Period 
SZBM 0.034 -0.112 1.240 0.963 4.561 57.644 
SZBMBT -0.001 -0.139 1.264 0.982 4.258 54.616 
MC10 0.000 -0.126 1.286 0.982 3.996 53.153 
SZBM1 0.023 0.022 1.746 1.305 -0.137 51.176 
MC1 0.016 -0.006 1.658 1.200 0.736 43.430 
 
Panel C: Five-Year Holding Period 
SZBM 0.068 -0.209 2.034 1.490 5.287 67.521 
SZBMBT 0.002 -0.248 2.073 1.514 4.982 64.364 
MC10 0.007 -0.223 2.106 1.516 4.652 61.091 
SZBM1 0.054 0.039 2.802 1.979 0.269 41.428 
MC1 0.036 0.000 2.745 1.834 0.500 50.365 
 
This table reports descriptive statistics that characterize the probability distribution of long-term 
abnormal returns, in samples of 1,000 firms.  Abnormal return is calculated as the difference in 
holding period return between the event firm and its benchmark.  We use five benchmarks: a 
reference portfolio matched by size and BE/ME (SZBM), a reference portfolio matched by size, 
BE/ME, and beta (SZBMBT), a reference portfolio consisting of ten firms, within the event 
firm’s size and BE/ME matched portfolio, whose returns are most correlated with the event firm’s 
(MC10), a single firm matched by size and BE/ME (SZBM1), and a single firm, from the event 
firm’s size and BE/ME matched portfolio, whose returns have the highest correlation with the 
event firm’s (MC1).  We compute mean, median, standard deviation, inter-quartile range, 
skewness coefficient, and kurtosis coefficient for abnormal returns in every sample.  Since there 
are 250 samples in the simulation, entries in the table are the average of these statistics over the 
250 samples.  
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Table 14.3  Specification of tests in samples of 1,000 firms 
 

Benchmark  Two-Tail Test  Lower-Tail Test  Upper-Tail Test 
 t Jt BJt sign  t Jt BJt sign  t Jt BJt sign 

 
Panel A: One-Year Holding Period 
SZBM  4.0 7.2 6.4 75.6*  2.8 2.0* 1.6* 85.6*  8.4* 15.2* 13.6* 0.0* 
SZBMBT  5.2 6.4 4.0 92.0*  9.6* 9.2* 7.6 96.0*  2.0* 4.8 4.0 0.0* 
MC10  5.6 6.4 6.4 85.6*  10.0* 8.0* 6.8 92.8*  2.4* 5.6 4.8 0.0* 
SZBM1  4.4 5.6 3.6 4.0  2.8 4.4 2.8 1.6*  6.0 8.0* 6.4 10.8* 
MC1  3.6 5.2 3.2 9.6*  6.0 8.0* 4.8 12.8*  6.8 7.6 6.4 2.4 
 
Panel B: Three-Year Holding Period 
SZBM  11.2* 14.4* 12.8* 99.6*  1.2* 1.2* 0.8* 100.0*  17.6* 22.8* 21.6* 0.0* 
SZBMBT  5.2 5.2 5.6 100.0*  7.6 7.6 5.6 100.0*  2.8 3.2 3.6 0.0* 
MC10  4.8 6.8 5.6 100.0*  6.8 5.6 4.4 100.0*  3.2 6.0 5.6 0.0* 
SZBM1  6.0 7.6 5.2 9.2*  2.0* 2.8 1.6* 0.4*  11.2* 13.6* 10.0* 15.6* 
MC1  6.8 8.4* 6.4 6.4  2.8 2.8 2.8 7.6  7.6 8.0* 6.8 1.2* 
 
Panel C: Five-Year Holding Period 
SZBM  17.6* 20.4* 19.6* 100.0*  0.4* 0.4* 0.4* 100.0*  22.8* 28.8* 28.0* 0.0* 
SZBMBT  3.6 4.4 2.8 100.0*  5.6 4.0 3.2 100.0*  2.8 5.6 3.6 0.0* 
MC10  2.0* 4.4 2.8 100.0*  3.6 3.2 2.4 100.0*  3.6 6.4 5.6 0.0* 
SZBM1  8.0* 10.4* 6.4 12.0*  1.2* 1.2* 1.2* 0.0*  13.6* 15.2* 11.2* 19.6* 
MC1  6.0 8.4* 5.2 2.4  1.6* 2.0* 2.0* 4.0  10.8* 12.4* 9.2* 3.2 
 
This table reports empirical size of testing the null hypothesis of zero abnormal return 
against two-tailed, lower-tailed, and upper-tailed alternative hypothesis, in samples of 
1,000 firms.  Empirical size is calculated as the proportion of 250 samples that reject the 
null hypothesis at 5% significance level.  Abnormal return is calculated as the difference 
in holding period return between the event firm and its benchmark.  We use five 
benchmarks: a reference portfolio matched by size and BE/ME (SZBM), a reference 
portfolio matched by size, BE/ME, and beta (SZBMBT), a reference portfolio consisting 
of ten firms, within the event firm’s size and BE/ME matched portfolio, whose returns 
are most correlated with the event firm’s (MC10), a single firm matched by size and 
BE/ME (SZBM1), and a single firm, from the event firm’s size and BE/ME matched 
portfolio, whose returns have the highest correlation with the event firm’s (MC1); and 
four test statistics: the conventional t-test (t), Fisher's sign test (sign), Johnson's 
skewness-adjusted t-test (Jt), and the bootstrapped Johnson's skewness-adjusted t-test 
(BJt).  It is indicated by * that the empirical size is significantly different from the 5% 
significance level.  The significance is judged against the critical values 

250/)05.01(05.096.105.0 −± , where 0.05 is the theoretical size, 1.96 is the 97.5th 
percentile of the standard normal distribution, and 250 is the sample size. 
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Table 14.4  Power of tests in samples of 1,000 firms 
 

Test Benchmark Induced abnormal return over the holding period (%) 
-20 -15 -10 -5 0 5 10 15 20 

 
Panel A: One-Year Holding Period 
 SZBM 100.0 99.6 98.4 62.0 4.0 92.8 100.0 100.0 100.0 
 SZBMBT 100.0 99.6 98.8 76.8 5.2 79.2 100.0 100.0 100.0 
t MC10 100.0 99.6 98.4 73.6 5.6 77.6 100.0 100.0 100.0 
 SZBM1 100.0 99.6 93.6 46.8 4.4 58.4 97.6 99.2 100.0 
 MC1 100.0 99.6 97.2 50.8 3.6 58.0 96.8 99.6 100.0 
 
 SZBM 89.2 94.4 93.2 55.2 7.2 94.4 100.0 100.0 100.0 
 SZBMBT 89.6 94.4 95.2 69.6 6.4 83.2 100.0 100.0 100.0 

Jt MC10 91.2 95.6 95.2 66.4 6.4 80.0 100.0 100.0 100.0 
 SZBM1 98.4 97.6 92.0 47.6 5.6 58.8 94.8 98.0 98.0 
 MC1 98.0 98.4 95.6 50.0 5.2 59.2 95.6 98.0 98.0 
 
 SZBM 80.8 86.0 85.2 47.6 6.4 93.2 100.0 100.0 100.0 
 SZBMBT 79.2 85.2 86.0 57.2 4.0 81.2 100.0 100.0 100.0 

BJt MC10 81.6 86.4 87.2 56.4 6.4 78.8 100.0 100.0 100.0 
 SZBM1 96.0 96.0 87.2 40.4 3.6 51.6 90.0 95.2 94.0 
 MC1 95.6 95.6 88.8 44.4 3.2 51.6 91.6 95.6 95.6 
 
 SZBM 100.0 100.0 100.0 100.0 75.6 28.4 100.0 100.0 100.0 
 SZBMBT 100.0 100.0 100.0 100.0 92.0 10.4 99.2 100.0 100.0 
sign MC10 100.0 100.0 100.0 100.0 85.6 17.2 100.0 100.0 100.0 
 SZBM1 100.0 100.0 100.0 72.0 4.0 92.0 100.0 100.0 100.0 
 MC1 100.0 100.0 100.0 93.6 9.6 90.4 100.0 100.0 100.0 
 
This table reports empirical power of testing the null hypothesis of zero abnormal return against 
the two-sided alternative hypothesis, in samples of 1,000 firms.  Empirical power is calculated as 
the proportion of 250 samples that reject the null hypothesis at 5% significance level.  Abnormal 
return is calculated as the difference in holding period return between the event firm and its 
benchmark.  We use five benchmarks: a reference portfolio matched by size and BE/ME (SZBM), 
a reference portfolio matched by size, BE/ME, and beta (SZBMBT), a reference portfolio 
consisting of ten firms, within the event firm’s size and BE/ME matched portfolio, whose returns 
are most correlated with the event firm’s (MC10), a single firm matched by size and BE/ME 
(SZBM1), and a single firm, from the event firm’s size and BE/ME matched portfolio, whose 
returns have the highest correlation with the event firm’s (MC1); and four test statistics: the 
conventional t-test (t), Johnson's skewness-adjusted t-test (Jt), the bootstrapped Johnson's 
skewness-adjusted t-test (BJt) and Fisher's sign test (sign).  We study power at nine levels of 
induced abnormal return, ranging from -20% to 20% at an increment of 5%.   
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Table 14.4 (continued) 
 
 
 
 
 
 

Test Benchmark Induced abnormal return over the holding period (%) 
-20 -15 -10 -5 0 5 10 15 20 

 
Panel B: Three-Year Holding Period 
 SZBM 96.0 80.8 43.2 9.6 11.2 58.0 96.0 100.0 100.0 
 SZBMBT 98.4 93.2 70.8 30.8 5.2 19.2 73.2 98.4 100.0 
t MC10 98.4 92.4 70.0 26.8 4.8 19.2 72.4 98.8 100.0 
 SZBM1 88.4 63.6 30.8 10.0 6.0 27.6 64.4 85.6 96.4 
 MC1 92.4 74.0 36.4 10.4 6.8 22.4 64.0 91.2 97.6 
 
 SZBM 91.2 74.8 38.4 9.6 14.4 66.4 96.4 100.0 100.0 
 SZBMBT 94.8 88.0 65.6 26.0 5.2 24.4 78.4 98.8 100.0 

Jt MC10 94.0 87.6 62.8 24.4 6.8 23.2 76.8 99.2 100.0 
 SZBM1 86.4 63.2 32.4 12.4 7.6 29.2 64.0 84.8 94.4 
 MC1 90.4 72.4 36.0 12.0 8.4 24.4 64.8 90.4 97.6 
 
 SZBM 84.8 66.0 32.4 7.6 12.8 62.4 96.0 100.0 100.0 
 SZBMBT 88.8 82.0 58.4 21.6 5.6 21.6 74.8 98.4 100.0 

BJt MC10 90.4 79.6 54.8 19.6 5.6 21.6 73.6 98.0 100.0 
 SZBM1 81.6 56.4 27.6 8.0 5.2 24.4 56.4 79.6 88.8 
 MC1 86.0 65.6 29.6 8.8 6.4 20.4 55.2 86.8 94.4 
 
 SZBM 100.0 100.0 100.0 100.0 99.6 63.6 6.0 27.2 88.8 
 SZBMBT 100.0 100.0 100.0 100.0 100.0 89.6 27.6 6.8 64.4 
sign MC10 100.0 100.0 100.0 100.0 100.0 78.4 15.6 12.4 78.8 
 SZBM1 100.0 94.8 56.4 14.0 9.2 54.8 94.0 100.0 100.0 
 MC1 100.0 100.0 95.2 50.0 6.4 37.2 86.4 100.0 100.0 
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Table 14.4 (continued) 
 
 
 
 
 
 

Test Benchmark Induced abnormal return over the holding period (%) 
-20 -15 -10 -5 0 5 10 15 20 

 
Panel C: Five-Year Holding Period 
 SZBM 58.0 28.4 9.6 1.6 17.6 40.8 79.2 97.6 99.2 
 SZBMBT 84.8 63.2 37.6 14.8 3.6 8.4 32.8 66.0 92.0 
t MC10 80.4 61.2 32.8 11.6 2.0 10.4 32.4 69.6 92.0 
 SZBM1 38.0 18.4 7.2 4.0 8.0 21.6 41.6 64.8 82.4 
 MC1 50.4 23.6 10.4 4.0 6.0 17.2 38.0 61.2 81.2 
 
 SZBM 44.4 23.6 7.2 5.6 20.4 52.0 85.2 98.8 99.6 
 SZBMBT 72.0 51.6 27.6 11.2 4.4 14.8 40.0 73.2 94.8 

Jt MC10 71.6 51.2 27.6 7.6 4.4 15.6 38.0 73.6 96.4 
 SZBM1 38.0 20.0 8.8 6.0 10.4 23.6 42.4 65.2 82.0 
 MC1 48.8 24.4 11.2 6.0 8.4 18.8 38.4 60.4 79.6 
 
 SZBM 35.2 19.6 5.2 2.8 19.6 48.0 82.8 98.0 99.6 
 SZBMBT 62.8 43.2 21.6 8.4 2.8 12.8 36.8 70.0 94.0 

BJt MC10 60.0 42.4 20.0 6.4 2.8 14.4 36.0 72.0 94.8 
 SZBM1 30.0 16.0 5.6 4.0 6.4 16.4 33.6 54.4 70.4 
 MC1 38.4 17.6 9.6 3.2 5.2 15.2 30.8 50.4 70.8 
 
 SZBM 100.0 100.0 100.0 100.0 100.0 95.6 72.0 22.8 3.2 
 SZBMBT 100.0 100.0 100.0 100.0 100.0 99.6 93.2 61.6 19.2 
sign MC10 100.0 100.0 100.0 100.0 100.0 98.4 81.6 40.8 7.6 
 SZBM1 91.2 63.2 20.8 4.0 12.0 48.8 86.0 97.2 100.0 
 MC1 99.2 92.8 59.2 22.8 2.4 20.4 67.2 93.6 99.2 
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Table 14.5   
Rejection frequency of calendar-time portfolio approach in samples of 1,000 firms 
 

Panel A: One-Year Holding Period 

 Average effective induced holding period return (%) 
 -20.4 -15.7 -10.7 -5.5 0 5.7 11.7 17.9 24.4 

Three 
Factors 

OLS 100.0 100.0 99.2 53.2 2.4 78.8 100.0 100.0 100.0 
WLS 100.0 100.0 99.6 74.4 2.0* 82.8 100.0 100.0 100.0 

Four Factors OLS 100.0 99.2 90.8 18.0 28.0* 97.6 100.0 100.0 100.0 
WLS 100.0 99.6 93.2 20.8 25.2* 98.8 100.0 100.0 100.0 

Panel B: Three-Year Holding Period 

 Average effective induced holding period return (%) 
 -25.2 -19.3 -13.2 -6.8 0 7.1 14.5 22.3 30.4 

Three 
Factors 

OLS 98.0 86.8 38.0 3.6 2.4 32.0 84.8 99.6 99.6 
WLS 100.0 97.2 65.2 10.0 1.2* 36.0 91.6 100.0 100.0 

Four Factors OLS 69.2 22.0 1.6 6.4 55.2* 94.0 99.6 100.0 100.0 
WLS 92.0 38.0 4.0 10.4 75.6* 99.6 100.0 100.0 100.0 

Panel C: Five-Year Holding Period 

 Average effective induced holding period return (%) 
 -31.1 -23.9 -16.3 -8.3 0 8.7 17.9 27.4 37.5 

Three 
Factors 

OLS 64.8 31.2 10.0 0.8 4.0 27.6 62.4 90.8 99.6 
WLS 94.4 58.4 14.8 0.4 4.0 36.0 81.2 99.2 100.0 

Four Factors OLS 12.4 1.6 5.2 32.8 70.8* 89.2 98.8 100.0 100.0 
WLS 14.0 1.2 14.8 62.4 94.0* 100.0 100.0 100.0 100.0 

 
This table reports rejection frequency in testing the null hypothesis that the intercept in the regression of 
monthly calendar-time portfolio returns is zero, in samples of 1,000 firms.  Both the Fama-French three-
factor model and the four-factor model are used in the regression.  Model parameters are estimated with 
both OLS and WLS estimation technique.  Rejection frequency is equal to the proportion of 250 samples 
that reject the null hypothesis at 5% significance level.  We measure rejection frequency at nine levels of 
induced abnormal returns.  We induce abnormal returns by adding an extra amount to monthly returns of 
every event firm before forming the calendar-time portfolios.  The effective induced holding period return 
of an event firm is equal to the difference in the firm’s holding period return between before and after 
adding the monthly extra amount.  The average effective induced holding period return is computed over 
all event firms in the 250 samples.   
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Figure 14.1  Overview of the two approaches to choose a methodology for long-horizon event study.  
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