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EÃects of the parabolic potential and confined phonons on the polaron in a quantum wire
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By using the Lee, Low, and Pines variational method, we have studied the electron-confined phonon

interaction within a rectangular quantum wire under an additional parabolic potential. Formulas for the

polaron self-energy, the electron effective mass along the wire, and the ground-state energy are derived.

Numerical calculations are performed for a typical GaAs quantum wire within the mesoscopic size using

the idea of Fourier decomposition of the wave function. In comparison with previous calculations, our

results show that the effect of phonon confinement always reduces the magnitude of the electron-phonon

interaction and the associated physical quantities, whereas the additional parabolic potential tends to
enhance not only this interaction but also the ground-state energy.

I. INTRODUCTION

With the recent advances in the epitaxial techniques
for the growth of compound semiconductor structures, it
is possible to grow wirelike structures' in the low-
nanometer scale. A great deal of research effort is
currently being devoted to the study of these quasi-one-
dimensional structures because of their potential applica-
tions and uncovering new phenomena. In particular, one
of the interesting problems in semiconductor physics con-
cerning those quantum-wire structures is the effect of
electron-phonon interactions on the energy levels and the
effective mass and their variations against the sizes of
wire of electrons at low temperature. It is normally ex-
pected that the results should be quite different from
those found in the quasi-two-dimensional semiconductor
structures. ' Although severa1 groups of researchers
have employed various models to investigate this quasi-
one-dimensional electron gas, the theoretical nature of
those models is still rather incomplete.

As a typical example, Degani and Hipolito"' have
calculated the energy shifts and the effective mass of an
electron and the exciton binding energies associated with
the eFects of the electron(hole) —optical-phonon interac-
tion in a quantum-well wire of GaAs surrounded by
Ga& „Al As. However, they have used the bulk-phonon
approximation for the phonon system instead of the
confined phonons which have been shown by Fasol
et al. ' to be existent with striking experimental evi-
dence. In principle, the polaronic states should be

affected by the changes in the form of the Frohlich Ham-
iltonian caused by phonon confinement. Stroscio' has
recently derived the modified Frohlich Hamiltonian for
the interaction between an electron and the confined LO-
phonon modes in a quasi-one-dimensional system. Zhu
and Gu have then employed this Hamiltonian to study
the system of a free polaron in a rectangular quanturn-
well wire' and subsequently a polaron bound to a fixed

hydrogenic impurity placed on the axis of the quantum
wire. ' However, in their former paper, the calculation
was restricted to the weak-coupling system and they did
not study the effective mass of the polaron due to the lim-

itation of the perturbative method that they used. In
their latter paper, they have shown that the effective po-
tential induced by the interaction of the electron with the
confined LO phonons depends not only on the electron
position but also on the sizes of the wire. However, in all

their work as well as most other work, the electron is as-

sumed to be confined within an infinite square well poten-
tial. This is obviously contrary to the realistic case in

which the potential experienced by the electrons (apart
from the Coulombic contribution from the impurities}
within the wire should not be zero or constant. Indeed,
Kash et al. ' have recently observed some good evidence
for the existence of a parabolic potential well in a quan-
tum wire produced by strain gradients using a patterned
carbon stressor. On the other hand, Yildirim and Ercele-
bi' ' have theoretically achieved the effective reduction
of dimensionality for free polarons located initially in a
three-dimensional system. However, a main problem
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U2 =exp
m l, m2, kz

where f ~ ~ (k, ) and f* (k, ) are the variational parameters which will subsequently be deterinined bymlPlm2P2 z 1~ I 2i 2

minimizing the electron energy. After a lengthy algebraic manipulation, we obtain the transformed Hamiltonian

a*=v v av v,
c

(p„+p +/z, )+ V (x,y)+ g k, lf. . . ,(k, )l
b ml, m2, kz
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where the perturbative term &f contains phonon opera-
tors which yield zero contribution to the ground-state en-
ergy in the first-order approximation. Since the total
momentum in the z direction

/t, :—p, + g A (k, )A p (k, )irik,
ml, m2, k

commutes with gf and so it can be reduced to a c num-
ber, Rq, (say) with eigenfunction exp(iA'q, z).

Following the above notations, the wave function of
our system can be written as

I%'(x,y, z, k) )=, e ' IP(x,y) ) INi, ),
(Lq)'

l

function in the quantum wire and INi, ) is the wave func-

tion of the phonon field in which there are N num-

bers of LO phonons with the wave vector
k=(m, ir/Li, m&n/Lz, k, ).. In the low-temperature lim-

it, very few phonons are excited and so we may assume
the vacuum state IO) as the phonon ground state which
satisfies

A „, „,(k, )I0) =o

Correspondingly, the expectation value of & in such a
state becomes

7= (p(x,y)I&,slp{x,y) ),
where P(x,y) ) is the xy component of the electron wave where

2
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For our quasi-one-dimensional quantum wire, it is quite feasible to introduce a parameter g such that

, (k, )I'=~q, .
ml, m2, k

(10)

Inserting this into {9)and requiring that

59'/5f (k, ) =0=57/5f ' (k, )

we have

2a'(Plcsn(minx�/L,

)csn(mziry/Li)lg)I(m, , mi, k, )

fm P m i2
(kz)=

[fico„o+A k,~/2mb —(1—i))(fi k, /m„)q, ]
(12)



EFFECTS OF THE PARABOLIC POTENTIAL AND CONFINED. . . 4633

and f'
~ ~ (k, ) is simply the conjugate formula ofm )pl m2pp

(12).
As we are interested only in the slow electrons which

are always observed in experiments, so we may simply set

q, =0. By substituting formula (12) and its conjugate into
(10) and expanding them to the first power of q„ the pa-
rameter g is then given by

tangular quantum wire. Using formulas (10)—(13), we

finally obtain

F=Min(9)
ff
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Now we may take the variation minimum- of P as the
ground-state energy of the polaron confined in our rec-

I

Physically, E, [p] simply represents the self-energy of the

polaron due to the electron-confined LO-phonon interac-
tion when the particular P~;„ is chosen to minimize

F[);„]=E,which corresponds to the ground-state en-

ergy. From (15), we note that the polaron effective mass

m, ff along the wire (z direction} is given by

m ff ( 1 +aD)m& ~

III. CALCULATIONS AND RESULTS

For our subsequent numerical calculations, it is more
convenient to use the polaron units in which kLO = 1 and

A'curio=

l. Then (15}is reduced to

B2 B2
2

(18)

where

and

DIQI= X (p ccc
1 2 ml, m2

m, mx
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m27Tf i z
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L2 (k ~ +1)

8~~ (Plcsn(m, nx/L, )csn(m2ny/L2)lg)
E.[4]=

L1L2 m m
k (1+k }

To find the P;„which minimizes the F[P] in (18), we
shall adopt the following variational approach.

First, we express the xy components of the electron
wave function as

4(x,v)= g gIA(x v»
I

where g& are the variational parameters such that
g&g& =1 and the basis functions g, (x,y) are the eigen-

I

functions of the effective Hamiltonian &,ff embedded in
the expectation term of (18) and are arranged in ascend-
ing order in terms of their energies. Such an arrange-
ment will permit us to make a good approximation by
taking a finite and small number of f& for our ininimiza-
tion as expected from the usual perturbation theory.
Second, P& can further be reexpressed as a linear com-
bination of the basi.s for the infinite square potential well,
to wit,
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wire and the results have then been compared with previ-
ous calculations. It is concluded that the phonon
confinement and the parabolic potential have

'
nificant

but different effect on the values of th h
'

1e p ysica quanti-
ties. The phonon confinement has a reduction effect
whereas the parabolic potential tends to enhance
electron-phonon interaction.
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