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Effects of the parabolic potential and confined phonons on the polaron in a quantum wire
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By using the Lee, Low, and Pines variational method, we have studied the electron-confined phonon
interaction within a rectangular quantum wire under an additional parabolic potential. Formulas for the
polaron self-energy, the electron effective mass along the wire, and the ground-state energy are derived.
Numerical calculations are performed for a typical GaAs quantum wire within the mesoscopic size using
the idea of Fourier decomposition of the wave function. In comparison with previous calculations, our
results show that the effect of phonon confinement always reduces the magnitude of the electron-phonon
interaction and the associated physical quantities, whereas the additional parabolic potential tends to
enhance not only this interaction but also the ground-state energy.

I. INTRODUCTION

With the recent advances in the epitaxial techniques
for the growth of compound semiconductor structures, it
is possible to grow wirelike structures' ® in the low-
nanometer scale. A great deal of research effort is
currently being devoted to the study of these quasi-one-
dimensional structures because of their potential applica-
tions and uncovering new phenomena. In particular, one
of the interesting problems in semiconductor physics con-
cerning those quantum-wire structures is the effect of
electron-phonon interactions on the energy levels and the
effective mass and their variations against the sizes of
wire of electrons at low temperature. It is normally ex-
pected that the results should be quite different from
those found in the quasi-two-dimensional semiconductor
structures.”!® Although several groups of researchers
have employed various models to investigate this quasi-
one-dimensional electron gas, the theoretical nature of
those models is still rather incomplete.

As a typical example, Degani and Hipolito!""!?> have
calculated the energy shifts and the effective mass of an
electron and the exciton binding energies associated with
the effects of the electron(hole)—optical-phonon interac-
tion in a quantum-well wire of GaAs surrounded by
Ga,_ Al As. However, they have used the bulk-phonon
approximation for the phonon system instead of the
confined phonons which have been shown by Fasol
et al.’® to be existent with striking experimental evi-
dence. In principle, the polaronic states should be
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affected by the changes in the form of the Frohlich Ham-
iltonian caused by phonon confinement. Stroscio'* has
recently derived the modified Frohlich Hamiltonian for
the interaction between an electron and the confined LO-
phonon modes in a quasi-one-dimensional system. Zhu
and Gu have then employed this Hamiltonian to study
the system of a free polaron in a rectangular quantum-
well wire'® and subsequently a polaron bound to a fixed
hydrogenic impurity placed on the axis of the quantum
wire.!® However, in their former paper, the calculation
was restricted to the weak-coupling system and they did
not study the effective mass of the polaron due to the lim-
itation of the perturbative method that they used. In
their latter paper, they have shown that the effective po-
tential induced by the interaction of the electron with the
confined LO phonons depends not only on the electron
position but also on the sizes of the wire. However, in all
their work as well as most other work, the electron is as-
sumed to be confined within an infinite square well poten-
tial. This is obviously contrary to the realistic case in
which the potential experienced by the electrons (apart
from the Coulombic contribution from the impurities)
within the wire should not be zero or constant. Indeed,
Kash et al.'” have recently observed some good evidence
for the existence of a parabolic potential well in a quan-
tum wire produced by strain gradients using a patterned
carbon stressor. On the other hand, Yildirim and Ercele-
bi'®1® have theoretically achieved the effective reduction
of dimensionality for free polarons located initially in a
three-dimensional system. However, a main problem
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FIG. 1. Coordinates frame for the quantum wire.

concerning their approach is that their parabolic poten-
tial is so strong that it will unfortunately cause the band
nonparabolicity and the loss of validity of the effective
mass approximation. Besides, they have assumed the
bulk-phonon approximation without noting the effect of
phonon confinement. Therefore it is now very
worthwhile to study the effect of a weak parabolic poten-
tial on an electron interacting with the spatially confined
LO phonons.

In this paper, we shall adopt the same confined pho-
nons assumptions as used in Refs. 15 and 16 to investi-
gate the physical properties of a polaron under a parabol-
ic potential in a rectangular quantum wire by means of
the Lee-Low-Pines variational method recently modified
by us.2 In Sec. II, the theory of our treatments is estab-
lished and then the explicit formulas for calculating the
important energies and the effective mass of the electron
induced by the confined LO phonons and their variations
against the quantum-wire sizes and the strength of the
parabolic potential are derived. In Sec. III, the numerical
calculations are carried out and the results are shown in
the form of several diagrams. The discussion of the re-
sults and a brief conclusion are given in Sec. IV.

II. THEORY

For our present theoretical modeling, the quantum
wire are assumed to have rectangular cross sections and
are made of polar semiconductor materials surrounded
by a vacuum (see Fig. 1). It is also assumed that the

effective mass approximation is valid so as to simplify our
|
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consideration. In the present work, the electrons are
confined in infinitely hard potential wells and are affected
by the parabolic potentials in the x and y directions. The
total Hamiltonian of the system can be partitioned as

H=H ,=FHrotH.10 - (1)

The first term #, in (1) consists of the electron kinetic
energy and the parabolic potentials experienced by the
electron,

Ho= = (p2+pi+p2)+V,(x,9) ,
2mb

V,(x,p)=1tm,eix*+1im,olp?, @)
|x|<L,/2 and |y|<L,/2,

where m, is the electron band mass, and w; and w, are
the harmonic oscillator frequencies. It is noted that the
confined longitudinal-optical phonons in our rectangular
quantum wire are characterized by traveling waves in the
z direction and standing waves in the x and y directions.
Thus the confined LO-phonon Hamiltonian reads'®

- At ~ v

‘7{1-40— 2 ﬁwLOA mlplmzpz(kz)A'"ll’]msz(kz) , (3)
my,my,k,

where 4 jnlpx'"zpz(kz) and Emlplmzpz(kz) are, respective-

ly, some combinations of the creation and annihilation
operators for LO phonons with frequency w; g and wave
vector k. It should be noted that the confined LO-
phonon wave vector k=(m 7m/L,m,m/L,,k,) is con-
strained by the Brillouin zone boundary, to wit,
my=L,/2a and m, <L, /2a where a is the lattice con-
stant. Consequently, m, and m, can be any natural num-
bers lying in the range 1=m,<N,/2 (L,=Na) and
1=m,=N,/2 (L,=N,a). Furthermore, p, and p, are
positive (+) and negative (—) according to whether m,
and m, are odd or even.

The last term in Eq. (1) is the interaction Hamiltonian
of an electron with the confined LO phonons and its form
is modified from Stroscio’s'* one-dimensional Fréhlich
Hamiltonian as follows:

—n —ik,z m,mx m,ymy ~ ~t
Ho10=2a" J e > csn I3 esn |— I(ml,mz,kz)[Amlplmzpz(kz)—A mipymyp, k)]s (4)
k, my,m, 1 2
[
where Vis the wire volume (V=L L,L;, L; is the length of the
| I 172 quantum wire), and €, and €, are the static and the opti-
a'=i|2me Zﬁww _——— / | 4 , cal dielectric constants, respectively.
€x €0 Now, we adopt the variational treatment of Lee, Low,
and Pines?! in a slightly modified way? to cope with the
cos mmx for m odd Hamlltpman in (1). In essence, we need t‘o perform two
m successive unitary transformations to # with
csn ;Tx =
. _ . ~t A
sin for m even , Ul =€&xp |~z 2 sz mlplmzpz(kz)Amlplmzpz(kz)
my,m,,k,
2 ~1/2
mym m,m (5a)
I(ml’mZ’kz)= L L2 +k22 ’
1 2 and
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U, =exp 2 [4 1L"ll’x’"zl’z(kz)f”'ll”l'"zl’z(kz)_A
ml,mz,kz
*
where f’"ll’l’"sz(kz) and f'"lpl'"sz i

mipymapy K2 ) fm o myp, (K2 )]
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) (5b)

(k,) are the variational parameters which will subsequently be determined by

minimizing the electron energy. After a lengthy algebraic manipulation, we obtain the transformed Hamiltonian

H*=U;'UT ' #U,U,

1 2
=———(pItpltA)+V,(x,y)+ L
2m, my,my,k

2
2 kz|f"'11’1’"21’2(k2)|2]

2my ,
2 *k? #
+m1‘§2‘kz fm p,mop, kI (oot s —;b—k,/zzl
+2a" 3 csn m;mx csn m,my I(myymyk N fom pomop. k)= f (—k,)]+HE, 6)
my,my,k, L, L, 1P1MyPy 1P MPy 2

where the perturbative term %7 contains phonon opera-
tors which yield zero contribution to the ground-state en-

function in the quantum wire and |N, ) is the wave func-
tion of the phonon field in which there are N num-

ergy in the first-order approximation. Since the total
momentum in the z direction

bers of LO phonons with the wave vector
k=(m;w/L,,m,mw/L,,k,). In the low-temperature lim-

~ A~ it, very few phonons are excited and so we may assume
fe=p:t 2 . 4 L1P1mzpz(k1)Am1P1msz(kz ik the vacuum Is?tate |0) as the phonon ground state which
Tt satisfies
commutes with # and so it can be reduced to a ¢ num-
ber, ig, (say) with eigenfunction exp(ifig,z). Amlp.mzpz(kz 10)=0.

Following the above notations, the wave function of ) .
our system can be written as Correspondingly, the expectation value of # in such a

1 state becomes

ifig_z
g , N, 7
(L12° (xy)) N @ F=( $lx,9) | Hogldx,)) (8)

|W(x,,2,k)) =

where |¢(x,y)) is the xy component of the electron wave  where

1 2

7‘[ei’fz 2mb

2
z kz|f'"11’1'"21’2(kz)|

my,my,k

ﬁ2
2 2 2,2
(24P} AN+ V, (5 )+ 5 - [

z

+ 2 ifmlplmzpz(kz”z

ml,mz,k

fiwp o+

A2 Bk,
Zmb my 1

z

m T m,my

L,

csn csn

v 3 (o |¢)I<m,,mz,kz>[f,,.,,,lm2,,2(kz)—f:,l,,lmm(—kzn . ©)
k

my,m,, 1

z
For our quasi-one-dimensional quantum wire, it is quite feasible to introduce a parameter 7 such that

S klfmpp mpp, k)P =0, (10)

my,my,k,

Inserting this into (9) and requiring that

8F/5f,, (k,)=0=8F/8f%

1PymyPy 2

(k;) (11

\Pymaypy
we have

_ 2a’(@lesn(m wx /L )esn(mymy /L)) I(m,my,k,)
B (fiwpo+72k2/2m, —(1—n)(# %k, /my)q, ]

f’"11’1'"21’2( Z)
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and f,

(12).

As we are interested only in the slow electrons which
are always observed in experiments, so we may simply set
g, =0. By substituting formula (12) and its conjugate into
(10) and expanding them to the first power of g,, the pa-
rameter 7 is then given by

1P:mzP2(kz) is simply the conjugate formula of

_ ab
T~ 1+aD ’ (13)
where
1/2
g [2meo |71 1
zﬁ(l)Lo ﬁ €, 60
and
2
41 ( m,mx mymy
D= ¢ |csn csn ¢>
L,\L, '"1%"2 L, L, H
k,,,l,,,2—+-3kLO
(14)

(kmlmzj\"kLO)3 ’

where the reciprocal of the polaron radius is

172
ZmbwLo
ko= | —2t0
and
2 21172
k nll‘IT2 mymT
m1m2 I‘l LZ M

Now we may take the variation minimum- of ¥ as the
ground-state energy of the polaron confined in our rec-
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tangular quantum wire. Using formulas (10)-(13), we
finally obtain

F=Min(¥)
r*

aZ 62

= ___+_

<¢ ax?  9y?

s ‘)

filqg?
z +E._, (15)
2mb 1+aD $

+V,(x,)

where
8
E = —aﬁa)LoL—lL:
(@lcsn(m mx /L,)csn(mymy /Ly)|¢)?
kmlmz(kL0+kmlm2) '

P>

ml,mz
(16)

Physically, E,[#] simply represents the self-energy of the
polaron due to the electron-confined LO-phonon interac-
tion when the particular @, is chosen to minimize
F[#min|=E,, which corresponds to the ground-state en-
ergy. From (15), we note that the polaron effective mass

m ¢ along the wire (z direction) is given by
meg=(1+aD)m, . a7n

III. CALCULATIONS AND RESULTS

For our subsequent numerical calculations, it is more
convenient to use the polaron units in which ko =1 and
fiwy o=1. Then (15) is reduced to

3 | @ q;
F[¢]=<¢(x,y) - E‘—Z“F'ay—z ]+}w%x2+%w%x2 ¢(x,y)>+m+Es[¢], (18)
where
k +3
47 mmx m,my mymy
D[¢]= < csn csn >2
L,.L, ’"1%"2 ¢ L, L, (k'"l'"z+1)3
and
87a (plesn(mmx /L )csn(m,my /L,)|¢)?
Ell=-71, = k, , (1+k, ,. ) '
142 my,m, mym, mym,

To find the ¢_;, which minimizes the F[¢] in (18), we
shall adopt the following variational approach.?

First, we express the xy components of the electron
wave function as

d(x,y)=3 gi(x,y), (19)
1

where g, are the variational parameters such that
3.,87=1 and the basis functions ¥,(x,y) are the eigen-

[

functions of the effective Hamiltonian A% embedded in
the expectation term of (18) and are arranged in ascend-
ing order in terms of their energies. Such an arrange-
ment will permit us to make a good approximation by
taking a finite and small number of ¢, for our minimiza-
tion as expected from the usual perturbation theory.
Second, ¥, can further be reexpressed as a linear com-
bination of the basis for the infinite square potential well,
to wit,
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2 nmx  nymy
(L,L) 2 L, P @0

and this idea is warranted by the Fourier decomposition
of wave function. Again, the basis functions are arranged
in ascending order according to n? +n3 where n, and n,
are natural numbers. In practical calculations for a typi-
cal GaAs quantum wire, it is found that basis functions
with n; and n, up to 10 only are needed to yield quite ac-
curate eigenfunctions ¢, for a fairly strong parabolic po-
tential w,, w,~10w;o. The experimental value of 7w,
and #iw, given by Kash et al.'” is 2.4 meV which is less
than one-tenth of #w;,=36.7 meV. Overall, the
ground-state energy E, is given by

Eg=r’r§ix;(<¢{g1l| YN} +E (gD . @D

For the typical GaAs quantum wire with electron-
phonon coupling constant @=0.39 and lattice constant
a =0.565 nm, we have calculated the polaron self-energy,
the effective mass of electron in the z direction, and the
ground-state energy for various values of the parabolic

N, TZO w=6

-

osf (a)
055}
w=4

0.5

0.45+

E./(-aho,)

0.8} (c)

0.5+

E'/(__ ahwlﬂ)
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0.3+

0'2 1 1 4 n . 1 n ]
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potential strength ©;=w, (=) and quantum-wire cross
sections. The results are presented in Figs. 2—-4.

IV. DISCUSSIONS AND CONCLUSIONS

In Fig. 2, our calculated E /( —afiw o) is found to be
always less than 1 when there is no parabolic potential
applied, i.e., =0. This result contrasts sharply with the
unity value in the macroscopic system’' and with the
even greater value for the case of a confined electron in-
teracting with bulk LO phonons.?>!? The reason is due
to the fact that phonon confinement has significantly re-
duced the number of phonons interacting with the elec-
tron in a quantum wire. In other words, the summation
in (16) for E, is taken over a very limited number of
confined phonon modes labeled by m, and m, whereas
all the previous work has taken the summation over all
phonon modes in the whole crystal without any
confinement. Besides, it is noted that there is a peak for
small N, ~N, but this peak is gradually smearing out as
N, and N, become larger. The dip in E for smaller N,
is obviously due to the reduction in the number of
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o
o
T
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osl (@)

o7}

0.5
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FIG. 2. Variations of the polaron self-energy E, with one size N, of the quantum wire and with the parabolic potential strength ©
(in polaron units) for the other wire size N, fixed at (a) 20, (b) 30, (c) 40, and (d) 50.
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FIG. 3. Variations of the effective mass m g (relative to the band mass) of an electron along the wire with one size N, of the quan-
tum wire and with the parabolic potential strength o (in polaron units) for the other wire size N, fixed at (a) 20, (b) 30, (c) 40, and (d)

50.

confined phonons whereas the gradual decline for larger
N, is most likely ascribed to the reducing matching be-
tween the electron and the phonon distributions. When
the parabolic potential is added, the magnitude of the
self-energy E; is increased with increasing parabolic po-
tential strength » and with increasing wire sizes N, and
N,. The peak disappears for a sufficiently large » in
which the parabolic potential should dominate over the
spatial confinement of the electron as N, and N, become
larger.

In Fig. 3, our calculated effective electron mass m g
along the wire is not much greater than the three-
dimensional (3D) value of (1+a/6)m, given in Ref. 21
and is always smaller than the corresponding previous
calculations®®!2 under the bulk-phonon approximation.
The reason is similar to that for E; and so it is necessary
to consider the phonon confinement in all calculations to
avoid the overestimation of phonon effect. Again, there
is a peak for small N;=~N, but this peak is gradually
smearing out as N, and N, become larger. The effective
mass m.; is increased when the parabolic potential is
added. Above a certain value of the parabolic potential

strength w or values of N, and N,, the peak disappears
because the parabolic potential effect has dominated over
that of the electron spatial confinement.

In Fig. 4, the calculated ground-state energy E, is
found to be decreasing monotonically with the wire sizes
N, and N, in the mesoscopic region because the main
contribution to it is the electron spatial confinement ener-
gy. Besides, the E, is found to be an increasing function
of the parabolic potential strength o but it will rapidly
converge to a steady value when the wire size N, or N,
increases. No peak is observed here because the contri-
bution from electron spatial confinement is much greater
than that of the electron-phonon interactions E;, even
without the parabolic potential contribution.

In summary, we have modified the variational method
of Lee, Low, and Pines?' to establish a method to study
the interaction between an electron and the confined pho-
nons within a quantum wire under an additional parabol-
ic potential. Some formulas have also been derived for
the electron self-energy, the effective mass along the wire,
and the electron ground-state energy. Numerical calcula-
tions have been carried out for a typical GaAs quantum
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FIG. 4. Variations of the ground-state energy E, of a confined polaron with one size N, of the quantum wire and with the parabol-
ic potential strength w for the other wire size NV, fixed at (a) 20, (b) 30, (c) 40, and (d) 50. E, and w are given in polaron units.

wire and the results have then been compared with previ-
ous calculations. It is concluded that the phonon
confinement and the parabolic potential have a significant
but different effect on the values of the physical quanti-
ties. The phonon confinement has a reduction effect
whereas the parabolic potential tends to enhance
electron-phonon interaction.
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