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We study the form factors of heavy-to-heavy and heavy-to-light weak decays using the light-front
relativistic quark model. For the heavy-to-heavy B ~ D ' semileptonic decays we calculate the
corresponding Isgur-Wise function for the whole kinematic region. For the heavy-to-light B —+ P and
B ~ V semileptonic decays we calculate the form factors at q = 0; in particular, we have derived the
dependence of the form factors on the 6-quark mass in the m& ~ oo limit. This dependence cannot
be produced by extrapolating the scaling behavior of the form factors at q „using the single-pole
assumption. This shows that the q dependence of the form factors in regions far away from the
zero recoil could be much more complicated than that predicted by the single-pole assumption.

PACS number(s): 13.20.He, 12.39.Hg, 12.39.Ki

I. INTRODUCTION

In the last few years, great progress has been made in
understanding weak decays of hadrons containing heavy-
quarks. The heavy-quark symmetry, which appears in
the heavy-quark limit, can simplify many aspects of the
weak decays of heavy hadrons [1]. Because of the heavy-
quark symmetry all form factors in the heavy-to-heavy-
type decays such as B ~ D(') ev, (D(') = D or D') can
be related, in the heavy-quark limit, to a single univer-
sal function called the Isgur-Wise function. The Isgur-
Wise function is of nonperturbative origin and has been
of great interest to both theoretical and experimental
studies. In particular, the Isgur-Wise function of the
B ~ D(*) semileptonic decays has been widely studied
[2-6].

The heavy-quark symmetry can also shed some light
on the heavy-to-light-type weak decays. For example,
one can derive the dependence of form factors (there is
more than one form factor in this case) on the heavy-
quark mass in the zero-recoil region, i.e. , near q2 „[7].
However, away &om the zero-recoil region, one still needs
a model-dependent method to understand the form fac-
tors.

In this paper we study the form factors of heavy-to-
heavy and heavy-to-light weak decays using the light-
&ont relativistic quark model. The light-&ont relativis-
tic quark model was developed quite a long time ago,
and there have been many successful applications [8—11].
Here we use this model to calculate the Isgur-Wise func-
tion for the heavy-to-heavy B ~ D(*) semileptonic de-
cays. It is known that the light-&ont model usually can
only work at q & 0. However, it is possible to use the
results at q = 0 to get the Isgur-Wise function for the
whole kinematic region [12].

We also study the form factors in the heavy-to-light
decays such as B ~ m and B ~ p semileptonic decays in
the heavy b-quark limit. In particular, we are interested
in the dependence of these form factors on the b-quark

mass mg, since the pole-dominance assumption for the
form factors is usually used to move away &om the zero-
recoil region. Heavy-to-light weak decays are especially
sensitive to the q dependence of the form factors with
such an assumption. The scaling behavior of these form
factors at q = 0 allows us to compare it with the pole-
dominance assumption and to understand the behavior
of the form factors away &om q

The paper is organized as follows. In Sec. II we present
a brief introduction to the light-&ont relativistic quark
model; in Sec. III, we calculate the Isgur-Wise function
for B ~ D(*) decays; in Sec. IV we study the heavy-to-
light form factors in the heavy-quark limit, and we give
our conclusions in Sec. V.

II. THE LIGHT-FRONT RELATIVISTIC
QUARK MODEL

The light-front relativistic model [8] has been applied
recently to many aspects of heavy-meson weak decays
[9—11] where more details can be found. In particular, a
nice introduction can be found in [9]. Here we only give
a brief description of the model.

It is known that the dynaxnics of a relativistic sys-
tem is determined by the ten generators of the Poincare
group. In the Poincare group there is always a kine-
matic subgroup of which the generators are independent
of the interaction [14]. In the usual "instant" form, the
instant time x = t is invariant under the corresponding
kinematic subgroup, which has six generators. Corre-
spondingly, in the light-&ont form, x+ = t + x is left
invariant by the light-&ont kinematic subgroup. One of
the advantages of the light-&ont form is that its kine-
matic subgroup has the maximum number of generators
seven .

In the light-front quark model [15] a ground-state me-
son V(Qq) with spin J can be described by the state
vector
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~V(Pv, & &)) = f d p d pz&(Pv —P)

x ) @ '(pi, p2, Ai, A2)
e;=

e1+ k e2 —k,
, x2=1 —x=

e1+ e2 e1+ e2

(~=1,2) . (4)

x~q(Ai, pi)q(A2, p2)) . (1) Then we have

The quark coordinates are given by

@1+ ——x1P+, p1g ——x1Pg + kg,
p2+ = x2&+, p2~ = x2P~ —k~,
x1 + x2 1 ) 0 & x1 2 & 1

y
P = p1 + p2 ~

In the light-&out convention, for P (and similarly for
other vectors), P = (P+, P~) where P+ ——Pp + P, and
P~ ——(P, P„). We denote quark Q by subscript 1 and
antiquark q by 2.

It can be shown that the quantities x1 2 and k~ are
invariant under the light-&out kinematic subgroup [9].
In the light-kont quark model, the individual quarks are
on mass shell (pi = mi and p2 = m2) and pi + p2 ——P,
but Pip + P2p g P. The sum of the four-momenta of the
quarks is

MP —e1+ e2 .

(ei+e2+Vi2) 4 ' '=mv 4 ' ', (6)

where V12 is the potential and m~ is the meson mass.
Rotational invariance of the wave function fmr states

with spin J and zero orbital angular momentum requires
the wave function to have the form [8, 9] (with z = zi)

Obviously, k is invariant under the light-&ont kinematic
subgroup because of the invariance of x1 2 and k~.

To be invariant under the kinematic subgroup, the
wave function can only be the function of x1 2 and k~ or
equivalently k. Thus the wave function is independent
of the motion of the hadron. A relativistic description
of the meson can then be achieved by solving the wave
function from the relativistic eigenvalue equation [9]

M —
(

mi+ k~ m2+ k~2 2 2 2

p
—71 +P2 +

X1 X2
(3) 4 ' '(pi, p2, Ai, A2) = B ' '(x, k&, A»A2)$(z, k&),

One can introduce a more intuitive quantity, the internal
momentum k = (k„k~), where k, is defined through where P(z, k~) is even in k~ and

8 '(z, kg, Ai, A2) = ) (Ai~B~ ( zkig, qm)~A)(A ~R2~ (z2, —kg, m-)~A')C ' '(i, A;-', A'). (8)

In Eq. (8), C ' '(2, A; —,A') is the Clebsch —Gordan coefficient and the rotation RM (k~, m, ) on the quark spins is the
Melosh rotation [13]:

m,. + x;Mp —io"(n x kz)
g(m;+ x;Mp)'+ k2~

(9)

where n = (0, 0, 1), cr are the Pauli-spin matrices, and Mp is defined in Eq. (3). The spin-wave function
B ' '(x, k~, Ai, A2) in (8) can also be written as

(z kJ Ai A2) Xp +M(xi kJ mQ) ~ +Jg (x2 ki mq)XA

U' (x, k )y, ,
J Js (10)

where 8 'J' is de6ned by

For the pseudoscalar and vector mesons, the nonrelativistic spin matrix is

pp ZO2 1~1 1 +CT3

2
g1)P

Without the Melosh rotation, the spin of the wave function will be just S~ '. The explicit expressions of U ' '(x, k~)
in Eq. (10) can be found in Ref. [10].

The matrix element of the B(bq) meson decaying to a meson V(Qq) is
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- @v' '(p'i p'. »i»2) ug(p'i &i)«b(x i, &i) a'(pi, p. , &i, ~2)
V(pv, Z, QISB pa = dzd l~

A1,A2, A,'

U""( k') V V"(
x

where Up is de6ned by

&v(pi &i) «b(» &i) =xp Ur x~, (14)

pl 2+ —&li2 +B+ ) plJ = &1 PBJ + kJ ) p2J = &2 PBJ kJ
I I 1 /

p1 2q = &1,2 PV+ ) p1J = &1 PVJ + kJ ) pgJ = &2 PVJ kJ ~

Since we use the spectator quark model, p& ——p~, and kJ and k& have the relation

k J —kJ ——(1 —z) (P/ —Pv }J ——(1 —z)qJ

(15)

(16)

For Eq. (13) we need to choose q~ ——(pa —pv)~ ——0. Thus q = —q& ( 0. Also, Eq. (13) is in fact expected to be
valid only for good currents such as 1 = p+, p+p5, . . . . There are contributions other than the one given in Eq. (13)
if q+ g 0 and the current is not a good current I9]. For I' = p~ and p~ps, Ur in (14) is

U~ =2XPBp, U~ ~, =2XPBgO.3.
We define the form factors of the B(bq) ~ P(Qq) transition between two pseudo —scalar mesons by

9'(p )I Q~ ~ IB(p ))=-F (q')
I pa+pJ , —q

I
++o(q')

where q = pa —pa, and one has Fo(0) = Ei(0). For the B meson transition to a vector meson V(Qq) we de6ne

(V(pv, &)IQ&~~~q"~&IB(pa)) = Ji(q )'s~ & epapv + (ma mv)e& (e' q)(pa + pv)~ &2(q )

~( )
q (pa+pv)p

y ( )+ q q„

and

( (pv )I Q~~(1 —»)t IB(»)) = '~~-w e'"pvpa —2mv, q" o(q )
2V(q ) . ,„p (~* pa)

fAB + VAN

(ma + mv)e'"Ai(q ) — (pa + pv) "A2(q )—2mv q"As(q ) .
(e* Ja) (e*.»)

mB +mP
(20)

Note that the form factor fs(q ) does not contribute to the decay B ~ K*p. In Eqs. (19) and (20) e is the polarization
vector of the vector meson, and

(21)

Using the good current I' = p~ and Eq. (13), we can obtain the following expression for the form factor I'i (0):

+, (O) = f ~ ~'& 4~(*&i)4a(*&i), ,
(AgAb+ kz~)

(A2~ y k2~) (Ab2 ~k2~)

where

Ag = z m~ ~ (1 —z)mg, Ab = z m~ ~ (1 —z)mb . (23)

The form factor Fi(0) can be rewritten using the internal inomentum k = (k„k~) defined through Eq. (4) instead
of the variables (z, k~) as

ebe2MO (~2 ~k2 ) (~2~k2~)
(24)
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where the momentum k in the B meson and k' in the P meson have the relation

eb + Ad eg + Q=x=
eb+ e2 eg+ e2

'

and for each meson, respectively,

(25)

P(z, k~) = dkz
(k)

dk
dx ' dx xgx2Mp

(26)

In (24) Mp and M~~ represent, respectively, the quantity Mp of (3) for mesons B and P. The formulas for the other
form factors can be obtained similarly using good currents I' = p+ps, p+, . . . and Eq. (13):

A (0) = f d k 0' (k')0 (k)

f~(0) = f d k 0v(k)0z(k)

1'(0) = f d k v(0) k(0z)k

ege2Mpb

ebe2MpQ

ege2Mp

ebe2MpQ

ege2Mpb

ebe2MpQ

1)k2 2(mk+mg)( —z)kd
wv

(Aq+ k~~ ) (As2+ k~2)

+ (mk+mq)(1 zl)kd
Z ~v

(A2q+k2~) (A2s+k2~)

(naz+mv)(1 —v) (Av+ ~ + (1 —v)(rn, —m0)k~~av)

(A2~+k2~) (As2+k~)

(27)

(28)

(29)

A~(0) = —f d k 0v(k')0z(k) ege2Mp (m~+ mv) (1—z)
ebe2Mp

(30)

(1—2z) As+ z2 [mg+ (1—2z) ms+ 2zm2] Ov k&+2 2[(BgAk+kd )(1+OVkd )+ &kd ]

)

(A2q+ k2~) (As2+ k2~)

where

Wv: Mp + mg + m2 8g: z m2 (1 z)mgQ

f dPvlOv= k, /4v, 4v=
(dk2~ )

4v

A~2 + k2~
(31)

III. THE W'AVE FUNCTIONS

The meson wave function (t)(z, k~) is model dependent
and difBcult to obtain; often simple forms are assumed
for them. One reasonable assumption is a Gaussian-type
wave function

dk,
(t (z, k~) = )7(k)

Note that one can get Aq(0) &om Ap(0) and Aq(0) using
Eq. (21) and fq(0) = 2f2(0). In [9], similar formulas have
also been given.

P(z, k~) = g(k) ', g(k) = N exp ~—dk, ~ M

(33)

Here N is the normalization constant. Equation (33),
in fact, difFers from Eq. (32) only when the two quarks
of the meson have di8'erent masses. If they have equal
mass, i.e., mq ——m2 ——m, as is the case for the ~ and

p, Mp ——(eq+e2) =4e~ =4e2 =4 (m +k). The
two wave functions are equivalent, since they difFer only
by a constant factor. The wave function (33) has been
also applied for heavy mesons for which the two quarks
certainly have difFerent masses [16, 17].

Another possibility is the wave function adopted in
[IS]:

(t (z, k~) = Ngz(1 —z)

x exp x-
2m2 2 2M2

(
g(k) = exp ~—

')l & ) ( 2& )
exp

X (34)

The parameter cu is a scale parameter and should be of
the order of AqcD. This wave function has been used
in many previous applications of the light-front quark
model [8, 9]. The results are generally quite successful.

A similar wave function is
1= dxd ki x, kg —— d

krak

(35)

where M is the mass of the meson. We normalize the
wave function to 1:
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fM = 2 3 dzd k~ p(z) kg)
27! . Q2 +I 2

Q J

=) f d (k) ))(k)
xgx2Mp

CyC2 Q2+ k~

The wave function P(z, k&) should also satisfy [9]

(36)

the wave functions (32) and (34) satisfy the scaling law

(37), but (33) does not. The wave function (34) is ob-
tained assuming factorization with respect to the spin
and orbital motion [12, 19], which is not the case in the
light-&ont relativistic quark model. Thus we will only
use the wave function (32).in the following sections.

IV. THE ISGUR-WISE FUNCTION
OF a ~ a~'& DECAY S

where fM is the meson decay constant. When the decay
constant is known, this condition is usually one of sev-
eral ways to determine the values of parameters in the
wave function. For heavy mesons such as the B meson
it imposes a constraint on the wave function because the
decay constant has the scaling behavior [1]

1
) mbMoo

mb
(37)

We have not included perturbative corrections in (37).
We now consider the general behavior of the heavy-

meson wave function P(z, k~) in the heavy-quark limit
mb + oo. Here we take the B meson as an example.
The distribution amplitude f d k~P(z, k~) of a heavy
meson is known to have a peak near x 1. If we denote
the z coordinate of the peak in P(z, k~) by zo and the
width of the peak in x by 4, then xp ~ 1 and 4 ~ 0
as mb —+ oo. Thus the wave function behaves as a b
function in z. On the other hand, P(z, k~) vanishes if
k2& )) A2&cD. To see this in some detail, consider Eq. (4).
If we use (k„k~) as the coordinates, then we expect that
~k~ should, in general, be of the order of A@en. Thus from
Eq. (4), it is easy to see that the z coordinate of the peak
of P(z, k~) behaves as

k,' = — r(k, — m22+ k2~ + k2 )2

(a, + gm2+ k2 + q ) l ( 1 l
rr (ms)

(39)

(Note that k& ——k~. ) In terms of the variable z the
integrand in these integrals peaks at

Qm22+ k2~+ k2 —k,
mb

(40)

With the formalism and the wave function given in the
preceding sections, it is now straightforward to calculate
the form factors of the B + D~*~ semileptonic decays.
We study the behavior of these form factors in the limit
mb —+ oo and m M oo.

We use the wave function (32) and define r
Also, we take mB = mi), mD = m„and set the sca/e
parameters for the heavy mesons equal, uH = ~~ ——~D.
(The same ~D holds for both D and D* mesons. ) In the
integrals (24) and (27)—(30), ~k~ for the B ineson is of the
order of the scale parameter ~H, and k' for the D~*~ is
given by

+ ~ ~ 4

) (38)

and Mp and Mp in these integrals become

Mp —+mb Mp +m =r mb,b C

cb Wmb, c Wm = p mb. (41)
where A is a function of k&, but it is of order of AgcD.

All three wave functions listed before have the above
general feature. However, as we show in the Appendix,

In (27)—(30) all terms proportional to ~ can be ne-
V

glected in the heavy-quark limit. Thus,

I +k2'
PBD(0) gBD' (0) fBD'

(0) dsg~4 (k&)q (k)
e2 Q(Q2+k2 )(~2+k2 )

( ~BD
( ) d3 k 4

(ki ) (k )
e2 (m B™D.) (1—z ) (A & + m & (1 —r ) (1 —z )k~i 8D.)

D Q(A'+k2 )(A'+k' )
(43)

We are left with two sets of form factors. Now we need to show that these two sets of form factors are equal, as
required by the heavy-quark symmetry. For the special mass ratio r = 1, we can show analytically that all the above
form factors equal 1. However, it is not easy to show that the form factors in (42) and (43) are equal for an arbitrary
ratio r Nevertheless .we can use numerical calculation to show that these form factors are indeed equal [20]. Thus
there is only one independent form factor in the model, as required by the heavy-quark symmetry. This form factor
does not depend on the heavy-quark masses mb and m but their ratio r:

h = h(r, m2, ~B)
=+1 (o) = &0 (0) = &1 *(0) = &2 (0) = & (0) = fl (0)

I ~A A +k2i
d'kgD (k') gB (k)

e2 g(~2+k2 )(~2+k2 )
(44)
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In [12, 19] it is argued that the knowledge of the form
factor 6 at q = 0 suKces to determine the Isgur-Wise
function in the whole kinematic region. The basic idea is
as follows. The Isgur-Wise function depends only on the
velocity product v v':

0.9-

( mg + mD2 2 2
'O'V

2m+m@

We define

r +12

y=v v(q =0) =
2r

(45)

(46)

0.8-

0.7-

Keeping q = 0 fixed, y changes as the mass ratio r
changes in the interval [1,oo], which can cover the whole
kinematic region in weak decay. Writing h in terms of y,

0.5--

1 1.2 1.4 1.5 1.6

h = h(y, m2, or~), (47)

shows the Isgur-Wise function to be

((y) = 2

g+ 1
h(y, m2, (u~) . (48)

Hence we obtain the Isgur-Wise function ((y) in the
whole kinematic region, even though in the light-&ont
quark model we can only calculate the form factors at
q2 =0.

It is easy to see that the Isgur-Wise function obtained
this way satisfies ((I) = 1, since when r = 1 then
h = 1 and y = 1. Also, the Isgur-Wise function satis-
fies Bjorken's constraint on the derivative p = —('(1) =
1/4 —h'(1, m2, tuIr) & 1/4 because the overlap of nor-
malized wave functions cannot be larger than one, i.e.,
h'(1, m2, ~It) ( 0 [12, 19].

The final Isgur-Wise function is calculated numerically.
We use the light quark masses obtained by fitting f and
f~ [9]: mq ——0.25 GeV. For the heavy-quark masses,
fD 200 MeV for m = 1.6 GeV and uD = 0.45 GeV.
Similarly, f~ 190 MeV for ms = 4.8 GeV and ~~ =
0.55 GeV. These values of f~ and f~ lie in the ranges of
recent lattice results [21, 22]. We use the above masses
for 6 and c quarks and calculate the Isgur-Wise function

2

in the range 1 & y & "2„1.67, where r
0.33. Since we work in the heavy-quark limit, we need
to set ~~ ——aD ——su~. To see the dependence of the
Isgur-Wise function on the parameter uH, we use two
values for u~. uH ——0.55 and 0.50 GeV. We also give
the result corresponding to m2 ——0.30 GeV. In Fig. 1
we show the Isgur-Wise function ((y) for the B -+ D('&

semileptonic decays. For comparison we also show the
functions [2/(y+ 1)] (m = 1, 2), which correspond to
the single- and double-pole-like form factors in the heavy-
quark limit. Our result for the slope of the Isgur-Wise
function is

uJr = 0.55 GeV, p = —('(I) = 1.23, m2 ——0.25 GeV,

p = —('(I) = 1.27, mz ——0.30 GeV,
w~ = 0.50 GeV, p = —('(I) = 1.25, mz ——0.25 GeV,

p = —('(I) = 1.29, mz ——0.30GeV.

(49)
One can see that for the same ~H a larger spectator quark

PIG. 1. The Isgur-Wise function $(y) for the B ~ D *

semileptonic decays. The upper dashed curve corresponds to
cuH ——0.55 GeV and mq ——0.250 GeV; the lower dashed curve
corresponds to u~ ——0.55 GeV and mq ——0.300 GeV. The
upper solid curve corresponds to u~ = 0.50 GeV and mq ——

0.250 GeV. The lower solid curve corresponds to co~ ——0.50
GeV and m2 ——0.300 GeV.

TABLE I. The slope p of the Isgur-tA'ise function for
B —+ D~*~ev decaying at zero recoil.

This work

for
1.23
1.27

for
1.25
1.29

p
u)H ——0.55 GeV
(mz ——0.25 GeV)
(m, z

——0.30 GeV)
cuH = 0.50 GeV
(m2 = 0.25 GeV)
(mz = 0.30 GeV)

Ahmady et al [2].
Bernard et aL [3]

Blok and Shifman [4]
Close and Wambach [2]

El-Hady et al. [2]
Holdom and Sutherland [2]

Huang and Luo [4]
Isgur et al. [5]

Ivanov and Mizutani [2]
Din et al. [2]
Kiselev [2]

Kugo et al [2]37.
Mannel et al. [6]

0.54—1.5
1.41 + 0.19 + 0.41

0.5-0.8
1.19 + 0.02

1.28
1.24-1.36

1.01 + 0.02
0.64

0.42—0.82
0.97
1 ~ 25

1.8-2.0
1.77 + 0.74

mass (mz) gives a larger slope. The slope, in general,
however, is not very sensitive to either wH or m2.

For comparison, we list in Table I a number of recent
calculations of p . The lattice calculations [3] and most of
the relativistic quark models [2] tend to give larger values

(p + 1). The values from the QCD sum-rule calculations
[4] are generally somewhat smaller. The nonrelativistic
quark model [5] gives p2 0.67 (with the large recoil
effect used to fit the ~ electromagnetic charge radius)
but a relativistic modification of this model carried out
by Close and Wambach gives p2 1.19 [2].
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V. FORM FACTORS OF HEAVY-TO-LIGHT
DECAYS IN THE HEAVY-QUARK LIMIT

i' l 1z= 1 —Oi „ i, n&0,
4mb )

(50)

where n depends on the specific form of the wave func-

In this section we study the form factors of heavy-to-
light transitions B i P(Qq) and B -+ V(Qq), where
mb + oo as before, and the quark Q has a smaller finite
mass but Q is a light quark. Consider the form factors of
Eqs. (24) and (27)—(30). Since the wave function of the B
meson peaks near x 1, i.e., x ~ 1 when mb ~ oo, the
integrands usually also have a peak. The x coordinate of
this peak takes, in general, the form

tions. (With the wave function we used the integrand for
the heavy —to—heavy decays has n = 1.) Because of Eq.
(50) the quantity,

MQ~~z ~~

Therefore, regardless of the specific form of the wave
functions, terms in the expressions for the form factors
proportional to ~ can be ignored when mg ~ oo. Thiswv
is similar to what we saw in the last section for the heavy-
to-heavy transitions. For heavy-to-light transitions the
form factors in (27)—(30) now reduce to

&i(0) = f 'k0~(k')0~(k)
ebe2Mp (A2 +k2 ) (A2+k2 )

(52)

A (0) = f, (0) = f d k0' (k')0 (k)
ebe2Mp (A2 +k2 )(A2+k2 )

(53)

A, (0) = V(0) = f d'k 0v (k')0a(k)
eqe2Mpb (mgy+m~)(l —z) [Ab+ (1 —z)(mb —mq)k&Ov]
eye 2MO (A~2+k2~) (A2+k2 )

in the limit mb ~ oo. Thus in the light-kont quark model we obtain two independent form factors for B ~ V
transitions regardless of the specific form of the wave function. Because of Eq. (53) we found [23, 10, 24] that the ratio
y, which relates the decay rate of B + K*p and that of B ~ pev, at q = 0 is 1 in the SU(3) flavor symmetry limit.

n general there should be four independent form factors for the heavy-to-light B ~ V transition and, in particular,
the four form factors &i(q2), &2(q2), V(q2) and fi(q2) are independent of each other [25]. Here, in the light-front
relativistic quark model we obtain only two independent form factors due to the vanishing of terms proportional to

This can be traced back to the treatment of the quark spins (7)—(10), which corresponds to a weak-binding»mitWv
[26]. This is a known approximation in the light-front quark model [27]. In the matrix element for the heavy-to-light
transition B ~ V the integrand has contributions only from zi ——z ~ 1 as mb ~ oo. Thus the Melosh rotation (9)
for the transition quarks 6 and Q becomes

RM(ki, mb) m 1, RM(k~, mg) m 1, (55)

even though the quark Q is light. Thus the Melosh rotation affects only the spectator quarks.
We now use the wave function (32) to obtain the form factors, the details of which are given in the Appendix. The

Anal expression for the form factors in the mg ~ oo limit is

(0) = V(0) = Xp(0) = X,(0)(= X,(0))
2/3

4 x 2"&" „i2 (m, l '
r~ exp

3 (mb

—3 (2rg) ~ m2 mb + (3+ 4 rv) m~z + 2 m~&

16 ~v
(56)

where rv = ed&2/w& with wv and w~ being the meson
scale parameters in wave function (32). The replace-
ment of u& by &uJ and rv by rI = urI, /u& gives Fi(0)
(= Ep(0)). It is interesting to note that though there
are, in general, two sets of form factors for B ~ V tran-
sition, these two sets of form factors become equal when
we use the wave function (32). We attribute this equality
to the specific form of the wave function (32). We see no
reason that this is generally true for arbitrary wave func-

exp( —mb a)2/3

m" (57)

where a = 3(2rl, )i~smz /16&v&2 (I = V or P).
The dependence of the heavy-to-light form factors on

mg is interesting because it allows us to compare it with

tions. Obviously, all the form factors have the following
dependence on mg.
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the prediction &om the pole-dominance assumption for
the heavy-to-light form factors. For example, Burdman
and Donoghue [28] have pointed out the inconsistency
between the scaling behavior of the heavy-to-light form
factor at q „and the single-pole-like form factors used in
the Bauer-Stech-Wirbel (BSW) model [18]. One knows

E, (q „) oc mb~, V(q „) oc mb~',

A2(q „) oc mb~, (58)

Fi (0) = 0.26, fi (0) = 0.28, V (0) = 0.32,

Ao (0) = 0.30, Ai (0) = 0.21, A2 ~(0) = 0.18;

but all form factors in the BSW model behave as (x m&
at q2 = 0 when mg ~ oo. Thus in BSW model the
single-pole-like q dependence certainly cannot produce
the scaling law (58).

The light-&ont quark model is a relativistic quark
model, which contains many important ingredients not
included in the BSW model. Obviously, a single-pole-
like q dependence combined with (58) cannot produce
our results. In our opinion, this is an indication that
a single-pole-like q dependence may not be correct, at
least in region far away from the zero-recoil point q
such as q2 = 0. In fact, the pole-dominance assumption is
generally expected to be correct only near the zero-recoil
region. The actual q dependence of the form factors
far away &om q „could be much more complicated.
When compared with (58), our result indicates that the
set Ei(q ), V(q ), and A2(q ) may have a similar type of
q2 dependence, while the set Eq(q2) and Ai(q2) also has
a similar q dependence but one that is di8'erent &om the
first set. For example, Fi(q2) may increase as q2 faster
than Eg(q ). Similarly, V(q ) and A2(q ) may increase
faster than Ai(q ).

The form factors in the heavy-to-light B —+ P and
B ~ V semileptonic decays and their dependence on the
6 quark mass in the m~ —+ oo limit have been studied
by many other people [22, 29—34]. In particular, in [31,
32] the light-cone @CD sum rule gives Ei(0) cc mb
which is not in agreement with a single-pole extrapola-
tion. However, in [30] a @CD sum-rule calculation gives

I"i(0) oc mb, consistent with a single-pole assumption
for the whole kinematic region. Though there are diKer-
ences in all these studies, it seems that most people do
agree that form factors V(q ) and A2(q2) may increase
faster than the form factor Ai(q2) [30, 33, 34] as q in-
creases.

Finally, we give the numerical results of the form fac-
tors at q = 0 for the transitions B ~ vr, B —+ p, B -+ K,
and BmE*:

For the B meson we have used mg ——4.8 GeV, u~ ——0.55
GeV; for m, p, K, and K*, the parameters are taken
from [9]: m„= mg = 0.25 GeV, ur = u~ = 0.32 GeV,
m, = 0.37 GeV, ~K ——su~« ——0.39 GeV. The heavy-
to-light form factors are most sensitive to the transition
quark mass ratio of mg to mb. Obviously, if mg/mb ~ 0,
these form factors vanish. Even so, changing the mass
of mg &om 0.37 to 0.50 GeV gives the following small
changes for the B ~ K and B ~ K* form factors:

(0) = 0 38, fi (0) = 0.40,
V~-~ (o) = o.45,
Ag ~

(o) = o.43,
Ai (0) = 0.33, A2 (0) = 0.28 . (6o)

VI. CONCLUSION

ACKNOWLEDGMENT

This work was in part supported by the Natural Sci-
ences and Engineering Council of Canada.

AP PENDIX.

1. Wave functions and the scaling law (3'7)

In this paper we have studied the form factors of the
heavy-to-heavy and heavy-to-light weak transitions in
the light-&ont relativistic quark model. For the heavy-
to-heavy B ~ D~'~ transitions we have shown that the
form factors satisfy the heavy-quark symmetry relations.
We have calculated the corresponding Isgur-Wise func-
tion. The slope of the Isgur-Wise function agrees with
most other calculations. We have also studied the heavy-
to-light B —+ P and B ~ V transitions. For the transi-
tion B + V the model produces at most two indepen-
dent form factors. In general there are four independent
form factors; this reduction comes &om using the weak-
binding limit and is independent of the choice of wave
function. With a specific wave function, we have derived
the dependence of the form factors (at q2 = 0) on the 5
quark mass in the mp —+ oo limit. This dependence can-
not be produced by extrapolating the scaling behavior of
the form factors at q „using the single-pole assumption.
This shows that the q dependence of the form factors in
a regions far away &om the zero-recoil could be much
more complicated than that predicted by the single-pole
assumption. When compared with the scaling behavior
of the form factors at q „our result suggests, for exam-
ple, that Ei(q ) increases as q faster than Eo(q ) and
similarly, V(q ) and A2(q2) increase faster than Ai(q2).

K(o) =o.34, y,
~ (o) =o.37,

V (0) = 0.42,

Ao (0) = 0.40,
A (0) = 0.29 A (0) = 0.24 . (59)

Here we examine the wave functions (32)—(34) to see if
they satisfy the scaling law (37). We first look at the wave
function (32). For the B meson the wave function g~(k)
in the integral (36) does not lead to any mbdependenc, e.
Since, in the heavy quark limit,
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MpB ~ mb ~x —+ mb (Al) and the wave function (A3) becomes

and

0 0x2 —1 —x oc mb, e2 oc m» ~b oc m» (A2)

we can easily obtain the scaling law (37). Note that here
oc mb means independent of mb.

Next, we look at the wave function (33). In fact we
can show that wave functions of the following type for
the B meson do not satisfy the scaling law (37):

P~(z, t) = N~ g(x, t) exp[ —f(x, t)], t = k~, (A3)

P~(z, t) = g(x, t)exp[ —f(x, t)]

m ms g(b, A) exp- (mg + mb)'
2QJB

m2
~ (b' + A) ,

2(dB
(A10)

where g(b, A) has no dependence on mb, and j is some
number depending on the specific form of g(x, t). For
the wave function (33), which is an example of (A3),

where

f(z, t) = 2'B
(A4)

and g(z, t) is some polynomial, rational, or irrational
function. We assume the function Pg(z, t) peaks when

f (x, t) has a minimum. Suppose f (z, t) is at its minimum
when x = xp and t = tp, then

dk,
P~ (x, t) = X~ '

exp[ —f (z, t)]
cLx

(mz + ms)'
WEB mb exP

2(d B

Note

m2
', (b'~A) .

2(d B
(A11)

m2
xp —1 tp ——0.

mb+ m2
(A5)

m2x-+1, x2~, M ~mb,
mb

ebMmb e2Mm2. (A12)
We expand f (x, t) around x = xp and t = tp..

f(*,t) = f(*. tp) + —d, f(*o t )(*—* )2 dx2
d+ f(zp, tp—) t+
dt

where

(ms + mg)'
2')B

d' (m, + ms)'
dx m2mb~B

d (mz + mg)
dt 2m2mbuB

(A6)

(A7)

We can show that higher-order terms in x can be ne-
glected. (Obviously there is no higher-order term in
t.) The derivatives (d /dx )f (xp, tp) and (d/dt)f (xp, tp)
determine the width of the wave function P(z, t) at
(zp, tp). The wave function can be considered as zero

—3/2when (x —xp) is of order larger than m& and t —tp

of order larger than mb . This means the width of the
wave function (33) becomes zero in both x and t when
mb M Oo.

Now we can determine N~ of (A3) from the normal-
ization condition (35). We introduce b and A to remove
the dependence of the integration variables on mb..

With the new variables (b', A) the normalization condition
(35) becomes

1= dx d kg B x)kg

2 m2—~ m2
mb

5/2

fu d) ~y~(z, k~) ~' (A13)

and (36) becomes

fgy =2 dx d k~P~(z, k~)3, /'m, 'I"
=2 vc m,* I f dS t22 (i~(z, k~) .

22I (mQ)
(A14)

-5/4f~ oc ms (A15)

for the wave function of type (A3). We can show that
the wave function (34) satisfies the scaling law (37).

Note the factor As/QA&z + kz& -+ 1 in the ms -+ oo limit.
In both (A13) and (A14) the factor vr mzz(P )

~z comes
&om the integration-variable transformation. Prom Eqs.
(A10) and (A13) and (A14) we get

z=xo+
/ /

~, t=to+
I

(m. l "' im, l
i, ms) ' (mg)

(A8)
2. Heavy-to-light form factors

in the heavy-quark limit

f ( t) ( s) 2 ($2 p)
2(d B 2(dB

(A9)

With the new variables (h, A), the exponent f (x, t) is now

f(k„t) = f~(k„t) + fl.(k. , t), (A16)

Now we use the wave function (32) to study the
dependence of the heavy-to-light form factors on mb.
The integrands in (52)—(54) are all of the form
g(k„t)exp[—f(k„t)) with
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where

fgy(k, t) = =, fL, (k„t) =
2~B 2vL 2@PL

f(k, t) are (k,p, tp). One can then expand f(k, t) near
(k,p, tp):

1 df(k„t) = f(k p, tp)+ — f(k, o, to)(k, —k,o)'
k2 = k2+t g/2 k/2 + t t=kL, LrL —

2

(A17)

d-
+—f(k„,t, ) (t —t, )+ " .

dt
(A18)

(L = P for the B + P transition and L = V for the
B ~ V transition, and g(k„t) can be determined &om
(24) and (27)—(30). The internal momentum k,' can be
expressed in terms of k, and t through (25).

The minimum point of f(k„t) is where the integrand
peaks. Suppose the coordinates of the minimum point of

—4/3 —1/3 2/3 1/3
to ——0, k 0

———2 r~ m2 mb

The coefficients in the expansion (A18) are

(A19)

One can show that higher-order terms in (A18) can be
neglected. We 6nd

f (k o to) =
I I

—(2rL, ) m2 mb
3 ]/3 4/3 2/3

(2(dL ) 8
(3+4r, &

8 4
m2 mQ ) (A20)

2/3

./s ./s '

dk,
' ~z ' dt ' '

2s/s 4/s~ / ~m2)
(A21)

Thus the width at the peak is independent of mb in k but is of order mb (~ 0) in t. Hence, in the mb + oo

limit, the exponential function exp[ —f(k„ t)) behaves as a h function in t, and the contribution to the integrands in
(52)—(54) comes only from to ——0. In terms of the coordinate x the peak is at

2/3 2/3
&p=1 —(2&L,) ,

I I
+ ' &20=1 —&o=(2rL) '

I I
+, , (m, ) ~/s /m2)

(mba (mb)
(A22)

It is interesting to notice that though xo -+ 1 as in the heavy-to-heavy decays, x20 ——1—xo has a difFerent dependence
on mb. It is not of order mb but mb . Again, in terms of x, one can show that the contribution to the integrand
comes only from x = xo.

Because of (A19) and (A22), the integrands in (52)—(54) become much simpler. To obtain an analytical expressions
for integrals in (52)—(54) we again introduce a couple of new variables ((, A) to get rid of the mb dependence in (k„t):

2/3
k = kso+ m2 (, t = to+

I

/'m2'i 2

(mb)
(A23)

In terms of the new variables, f(k„t) now becomes

~L) 4 8 ~r) (A24)

We substitute (A23) into the integrals (52)—(54) and keep the leading terms in the expansion in mb. The integrals
(52)—(54) then become

2uvb —2 /r~ m A

2

t3.v m2, )', (2.v)'/' m', l
2 ~v2) ~

8 ~v)

x 1 3 )

8r& ~
(A25)

where
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3/4 1/4 11/3
TL m2

2~~m, ~,2/3 (I, = P or V) . (A26)

The Anal expression for the form factors in the m, b
—+ oo limit is

2/3
4 x 2"i"

~.(0) = exp
3 (mb)

—3 (2rI )'i'm2i'm, 'i'+ (3+ 4rI ) m', + 2 m~
16 ~~

Ap(0) = fi(0) = A2(0) = V(0)
4 X 211/ im2i —3 (2rv) i m2 ms + (3+ 4rv. ) m2+ 2 m&

rv i
exp

16mb 16 (d~

(A27)

The difference between Ei(0) and the form factors of
B —+ V transition comes &om the scale parameter.

Finally, we give a brief explanation about why the two
groups of form factors Ap(0) = fi(0) and A2(0) = V(0)
are equal in our calculation. Since in terms of the coor-
dinates x and t the contribution to the integrand comes
only from zp and tp given by (A19) and (A22), we have

d- lI'd
Ov =

d
fv—(k t) + i

—Gv(k t)
~

Gv(k, t) .
ddt

(A32)

One can show that the leading contribution to 0 comes
from q fv(—k„t) at (k,o, to): i.e.,

Ab gamb x2p Ag —+m2 k~ mo

Thus in the integrals (52)—(54),

(A28) Ov = fv(—k —o to) .
dt

(A33)

(AgAg+ k2~)

(A~~+k~~) (As2+ k~~)

The coefficient
&~ f(k,p, tp) in (A21) is the sum of

&, f~(k, p, to) and &, fv(k o to)

d — d — d—f (k p, to) = —fgy(k p, tp) + —fv(k p, tp), (A34)
dt ' dt

' ' dt

(m~+mv) (1—z) (As+ (1 —z) (ms —mq)k~&8v)

(A~~+k~~) (As2+k~~)

[ms z2p + m2 + ms z2p t Ovj A29
m2

but since

d-
dt fv(k o—, to) =

2/3
~m. )

2sys «s 2&2 m2 )CdL

d— 1» —fa(k.o, to) =
dt 2u&2

(A35)

In the square brackets of (A29) we keep the m2 term
because the other two terms, though of higher order in
mb, cancel each other, as we begin to show now. The
definition of 8v is given in (31):

fdy l
(dki )

& f(k,p, tp) is equal to
&~ fv (k,p, to),

f(k~o, to—) m —fv(k o, tp)
dt ' dt

t'm, l 'i'
2sis~ i i (m )2

(A36)

as given in (A21). Thus in the expressian (54), when
being integrated over t, terms proportional to mbx2p and
mi, z20tOv of (A29) become

where

2 ++2
= Gv (k„t)exp fv (k„t), —(A30) ( d-

dt mb z20 + mb z20 t fvk 0 tp
)

d-
xexp

i

— fv(kzo, tp)t
~

—= 0 . (A37)
dt

Gv(k, t) =

Thus

(vnu2) i @2~ + k
(A31) Hence the terms mi, z20 and mgz2pt8v in (A29) cancel,

and (A30) becomes 1, equal to (A28). This is why the
two sets af farm factors fi(0) = Ap(0) and V(0) = A2(0)
are equal.
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