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Abstract—A wireless sensor network (WSN) consists of a large
number of wireless sensor nodes that collect information from
their sensing terrain. Wireless sensor nodes are, in general,
battery-powered devices with limited processing and transmission
power. Therefore, the lifetime of WSNs heavily depends on
their energy efficiency. Multiple-cluster 2-hop (MC2H) network
structure is commonly used in WSNs to reduce energy con-
sumption due to long-range communications. However, networks
with the MC2H network structure are commonly associated with
long data collection processes. The delay-aware data collection
network structure (DADCNS) is proposed to shorten the duration
of data collection processes without sacrificing network lifetime.
In this paper, a k-means-based formation algorithm for the DAD-
CNS, namely DADCNS-RK, is proposed. The proposed algorithm
can organize a network into the DADCNS, while minimizing
the total communication distance among connected sensor nodes
by performing k-means clustering recursively. Simulation results
show that, when comparing with other DADCNSs formed by
different algorithms, the proposed algorithm can reduce the total
communication distances of networks significantly.

Index Terms—wireless sensor networks, delay-aware, data
collection process, resources management, k-means algorithms

I. INTRODUCTION

A typical wireless sensor network (WSN) consists of wire-

less sensor nodes and a remote base station (BS). The BS can

be a fixed node or a mobile node, which connects the WSN

to an existing communication infrastructure. For prolonging

network lifetime, a network is usually divided into several

clusters by means of clustering [1]. In each cluster, one of

the sensor nodes is chosen as cluster head (CH) and the

rest in the same cluster are regarded as cluster members

(CM). The CH will receive all the data packets generated

from its CMs directly or in a multi-hop manner. In WSNs,

the amount of energy used in data transmission is directly

related to the communication distance between a sender and

a receiver. Longer the communication distance, more energy

being dissipated by the sensor nodes. Hence, sensor nodes

involved in long distance communications will die out quickly.

This leads to a structure change of the WSN. Means to

avoid having long communication links are illustrated in the

following examples.

Consider a network N as shown in Fig. 1 , which has

|N | = 7 nodes. Suppose the nodes are organized into the

DADCNS using the bottom-up approach proposed in [2].

In such approach, a node or a sub-cluster will try to pair

up with its nearest party of the same size. Such greedy

behaviors work well for small-scale networks. However, this

approach can easily be trapped in a local optimum and yield

a non-ideal network arrangement. As shown in Fig. 1(a), the

cluster on the left has to reach the base station (BS) via a

long communication link. The top-down approach in [2] first

considers the network as fully connected and tries to construct

the DADCNS by removing as many long links as possible.

This approach can avoid isolating those nodes at the two lower

corners (see Fig. 1(b)). However, some long communication

links may still exist.

By exploiting the location information of the sensor nodes, it

is possible to yield the DADCNS with shorter communication

links. Consider the same network as discussed in Fig. 1, one

can easily divide the network into two parts by means of

clustering. As geographical separations among nodes within a

cluster are relatively shorter, forming DADCNSs inside those
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(a) A network organized into the DADCNS using the
bottom-up approach in [2].

1! 2!

2! 3! 1!1!

BS!1!

(b) A network organized into the DADCNS using the top-
down approach in [2] and [3].

Fig. 1. Networks with |N | = 7 nodes organized using the DADCNS.
Circles with numbers represent wireless sensor nodes while circles with labels
“BS” represent base stations. The numbers inside the circles indicate their
transmission schedules.
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Fig. 2. A network with |N | = 7 nodes organized using the DADCNS with
the help of a clustering technique. Circles with numbers represent wireless
sensor nodes while the circle with a “BS” label represents a base station. The
numbers inside the circles indicate their transmission schedules.

clusters separately are less likely to yield long communica-

tion links. Fig. 2 is showing a network organized using the

DADCNS with the help of a clustering technique, where the

network is first vertically divided at the middle into clusters

with sizes 4 and 3. The cluster on the right is further divided

into clusters with sizes 2 and 1.

In this paper, a k-means-based formation algorithm for the

DADCNS is proposed. It utilizes location information of the

sensor nodes, such that the DADCNS can be constructed while

its associated data links can be kept as short as possible.

Simulation results show that the proposed algorithm can

greatly shorten communication links without degrading the

data collection performance of the DADCNS. The rest of the

paper is arranged as follows. Related work is reviewed in

Section II. A network formation algorithm based on a k-means

algorithm is proposed in Section III. The proposed algorithm

is analyzed in Section IV. In Section V, performances of the

proposed algorithm are evaluated using computer simulations.

The results are further studied and discussed in Section VI.

Finally, concluding remarks are given in Section VII.

II. RELATED WORK

Intensive research [1], [4]–[6] has been conducted on reduc-

ing energy consumption by forming clusters with appropriate

network structures. Heinzelman et al. proposed a clustering

algorithm called LEACH [1]. Since then, network formation

algorithms based on clustering techniques are developed inten-

sively. Nguyen et al. proposed M-LEACH [7] by improving

LEACH. In [8], Jung et al. proposed a network formation algo-

rithm with considerations of both the residual energy of sensor

nodes and the number of neighbors around each node when se-

lecting CHs. In addition, Maraiya et al. developed ECHSSDA

in which efficient CH selection was proposed [9]. Ducrocq et

al. developed BLAC [10], the very first distributed clustering

algorithm providing non-overlapping multi-hop clusters with

energy concerns. In [3], Cheng and Ganganath are the first

who attempted to exploit the geographical locations of sensor

nodes in order to facilitate the formation of DADCNS. In their

first attempt, a network is divided into sub-clusters by a k-

means algorithm. Whenever a sub-cluster is having a cluster

size of 2k, k ∈ Z
+, such sub-cluster will not be divided

any further. Instead a top-down approach proposed in [2] will

be executed inside the sub-cluster and it will organize the

sub-cluster into the DADCNS. Nevertheless, the formation of

DADCNS needs to be further investigated to minimize the

communication distance among connected sensor nodes.

III. THE PROPOSED ALGORITHM

The essence of the proposed DADCNS-RK algorithm is

clustering nodes in a network, by using a k-means algorithm

recursively, such that their within-cluster geographical sepa-

rations are minimized. The DADCNS can be maintained by

imposing constraints on cluster sizes. Procedures are listed as

follows.

Step-1 Initialize the algorithm with a network N together

with a centroid CP of its parent network. If N is

the uppermost network, CP will be replaced by the

coordinates of the BS. Calculate the centroid of N

and denote it as C. Divide the network into two sub-

networks using k-means algorithm (i.e. setting k = 2),

such that N = N1 ∪ N2 and N1 ∩ N2 = ∅. Without

lost of generality, assume |N1| ≥ |N2|.
Step-2 Since an ordinary k-means algorithm has no constrain

on cluster sizes, N1 and N2 will go through a network

resizing sub-routine to ensure that

|N1| = 2⌈log2
(
|N|
2

)⌉ and |N2| = |N | − |N1|.

Divide a network N into N1 and N2 using k-

means algorithm, such that                       . 
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s.t. 
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Fig. 3. The flow chart of the proposed DADCNS-RK for constructing
networks with a multiple-tree structure.



Step-3 For i = 1, 2, if |Ni| > 2, set Ni → N and

C → CP. Return to Step-1 and further divide the

network recursively. Otherwise, connect the nodes (if

any) in Ni. Return the one closer to the centroid C as

a potential cluster head pCHi of the sub-cluster.

Step-4 If |N1| = |N2|, both sub-networks N1 and N2 can

form fully-filled DADCNS (i.e. |Ni| = 2k, k ∈ Z
+).

Each sub-network should have a single potential clus-

ter head pCH. Connect pCH1 with pCH2 and return the

one closer to the centroid C as the pCH of the merged

network. Otherwise, return all pCHs in N1 and N2 as

pCH = [pCH1, pCH2].

The procedures of the DADCNS-RK algorithm are sum-

marized in Fig. 3. In Step-2, the aim of the network resizing

sub-routine is to move nodes between N1 and N2 such that

|N1| = 2⌈log2
(
|N|
2

)⌉ and |N2| = |N | − |N1|. Pseudo-codes of

the sub-routine are given in Algorithm 1.

Data: N1 and N2, where |N1| 6= 2k, k =∈ Z
+

Result: |N1| = 2⌈log2
(
|N|
2

)⌉ and |N2| = |N | − |N1|.

while |N1| 6= 2⌈log2
(
|N|
2

)⌉ do

if |N1| < 2⌈log2
(
|N|
2

)⌉ then

Calculate C1;

Move a node from N2 to N1 that is closest to C1;

else

Calculate C2;

Move a node from N1 to N2 that is closest to C2;

end

end

Algorithm 1: The network resizing sub-routine

In Step-3, when |Ni| = 2, i = 1, 2, the DADCNS-RK

algorithm will always join the two nodes in Ni together. The

one that is closer to the centroid C will be selected as pCHi.

The main reason is to try selecting a pair of pCHi from N1

and N2 that are having a relatively shorter separation. Such

technique can help reducing the total communication distance

of the constructed network. However, if |Ni| = 1, i = 1, 2,

the only node in the network will be denoted as the pCHi.

In Step-4, the sizes of the two sub-clusters will only be equal

if their parent network has a network size of N = 2k, k ∈ Z
+.

Assuming N1 and N2 are both organized using DADCNS,

joining pCH1 with pCH2 will still maintain the DADCNS in

the merged outcome.

The DADCNS-RK algorithm will end with a single pCH if

|N | = 2k, k ∈ Z
+. Otherwise, it will deliver a number of

pCHs of sub-clusters with different sizes. All these pCHs will

be connected to the BS directly. If multiple-clusters are not

allowed, Step-4 should be modified as the shaded box shown

in Fig. 4. In the modified version, pCH1 should always be

connected with pCH2. Afterward, the pCH that is closer to

the centroid CP will be selected as the pCH of the merged

outcome.

IV. ANALYSES OF THE DADCNS-RK

The pCH of a network N with the DADCNS requires

log2 N time-slots to receive data from its CMs and take

an additional time-slot to return the fused data to its parent

node or the BS. Therefore, the duration of its data collection

process (DCP) is expressed as TDCP = log2 N + 1 [2].

In the proposed algorithm, a network of N is divided into

|N1| = 2⌈log2
(
|N|
2

)⌉ and |N2| = |N | − |N1|. Since both N1

and N2 are organized as DADCNS, the pCH of network N1

will take TDCP 1 = log2 N1 + 1 = TDCP − 1 to collect data

from all its CMs. As |N2| ≤ |N1|, pCH of N2 will have

TDCP 2 ≤ TDCP − 1.

If multiple-cluster is not allowed or if |N1| = |N2|, the

two pCHs will be connected and one of them will become the

chief pCH of the merged cluster. Suppose TDCP 1 = TDCP 2,

both pCHs will finish their DCP using the same number of

time-slots. One of the pCHs will take one time-slot to collect

the fused data from the other pCH and therefore, TDCP of the

merged network = log2 N + 1. If TDCP 1 > TDCP 2, pCH of

N2 can only return data to pCH of N1 after TDCP 1 time-slots.

Therefore, TDCP of the merged network remains unchanged.

If multiple-cluster is allowed and |N1| 6= |N2|, the merged

network is not a fully-filled DADCNS. Therefore, the two

pCHs should not be connected even though N1 and N2
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Fig. 4. The flow chart of the proposed DADCNS-RK for constructing
networks with a single-tree structure.



are with the DADCNS. Having under-filled clusters leads

to unnecessary idling in a data collection process, which

should be avoided. If both N1 and N2 are filly-filled and

|N1| > |N2|, the two clusters will have different TDCP values.

Their pCHs can, therefore, be connected to the BS without

introducing any conflict in the transmission schedule. If N2

is not fully-filled, according to the DADCNS-RK algorithm,

the cluster will be further broken down into sub-clusters

recursively until all its sub-clusters are fully-filled clusters of

different sizes. All the pCHs of these clusters will return data

to the BS using different time-slots. The TDCP of the whole

network is therefore governed by that of its largest cluster, i.e.

TDCP = ⌈log2
|N |
2 ⌉+1 = log2 N , which concurs with findings

in [2], [3].

V. SIMULATIONS

The performances of the proposed algorithm are evaluated

using computer simulations. In the simulations, the duration of

a DCP (TDCP) and the total squared communication distance

(Ψ) are used as performance indicators [3]. TDCP is expressed

as the total number of time-slots required by a BS to collect

data from all the nodes in the network.

The total squared Euclidean distance [2], [3], [11] is ex-

pressed as

Ψ =
N−1∑

i=1

N∑

j=i+1

cijd
2
ij +

N∑

k=1

c′kd
′2
k. (1)

Here, cij is an indicator showing the existence of a connection

between the ith and the jth nodes. If a connection exists,

cij = 1, else cij = 0. Variable dij is representing the

Euclidean distance between the ith and the jth nodes. Similarly,

c′k indicates the existence of a connection between the BS

and the kth node, while d′k represents the Euclidean distance

between the BS and the kth node. The total squared Euclidean

distance is a good estimation for the total energy consumption

of a WSN [2].

A. Simulation Settings

Simulations were conducted in Matlab. In each simulation,

a network with |N | wireless sensor nodes are distributed

randomly on a square sensing terrain with 50 × 50 m2,

which has its center and one of its corners located at (25,

25) m and (0, 0) m, respectively. The BS is located at the

center of the terrain, which tries to collect data from all the

nodes in the networks. In the simulations, performance of the

original DADCNS will be used as references. The DADCNS

will be constructed as a single cluster and multiple clusters

using the top-down network formation approaches proposed

in [2] and [3], respectively. In order to evaluate the effect of

|N | to the performances of networks with different network

structures, |N | is varied from 3 to 99 with a step-size of 3.

In the simulations, all the network formation algorithms are

implemented in a centralized manner. Results presented in this

paper are the averaged values of 50 simulations.
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Fig. 5. The averaged squared Euclidean distance of networks with the
DADCNS formed by different algorithms.
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B. Simulation Results

Simulation results are shown in Fig. 5 and Fig. 6. In gen-

eral, Ψ values of networks with different network formation

algorithms increase with |N |. Networks with the proposed

DADCNS-RK algorithm can achieve lower values of Ψ es-

pecially for scenarios with large |N |. TDCP of networks with

different network formation algorithms increase monotonically

with |N |.

VI. DISCUSSIONS

As expected in section IV, the averaged duration of DCP

in networks with the DADCNS formed by the proposed

DADCNS-RK algorithm is the same as that of DADCNS

formed by other algorithms. The reason is DADCNS-RK could

attain the same network structure as DADCNS for both single-



cluster and multiple-cluster cases. The time slots needed for

the BS to collect all data packets in the network could hence be

unaffected. In terms of minimizing Ψ, the DADCNS formed

by the proposed algorithm DADCNS-RK outperforms the

DADCNS formed by other algorithms significantly when the

network size N is larger than 30, which show that the proposed

network formation algorithm is highly suitable for large-scale

networks. For networks with N < 30, performances of all

algorithms under test were close to each other. DADCNS-

RK (Single Cluster) could achieve a better performance of

reducing Ψ than DADCNS-RK (Multiple Clusters) in general.

The main reason is that in a single-cluster structure, there

is only one CH; while in a multiple-cluster structure, there

are more than one CHs. The total communication distance

between the BS and the CHs is expected to be higher in the

later case.

VII. CONCLUSIONS

In this paper, a k-means-based formation algorithm for the

DADCNS, namely DADCNS-RK, is proposed. To cater for

different applications, two variations of DADCNS-RK are pro-

posed such that a network can be constructed in either single-

cluster or multiple-cluster styles. Performances of the proposed

algorithm are evaluated based on the averaged squared Eu-

clidean distance of the network and the averaged duration of

a data collection process in the network. Networks with the

proposed algorithm are compared with networks formed by the

conventional DADCNS formation algorithms with and without

splitting. Simulation results show that networks formed by

the proposed DADCNS-RK algorithm can greatly reduce the

averaged squared Euclidean distance of the network while

keeping the averaged duration of a data collection process in

the network the same as that of other DADCNSs.
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