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This paper investigates the synchronization of complex systems with delay that are impulsively

coupled at discrete instants only. Based on the comparison theorem of impulsive differential

system, a distributed impulsive control scheme is proposed to achieve the synchronization for

systems with delay. In the control strategy, the influence of all nodes to network synchronization

relies on its weight. The proposed control scheme is applied to the chaotic delayed Hopfield neural

networks and numerical simulations are presented to demonstrate the effectiveness of the proposed

scheme. VC 2011 American Institute of Physics. [doi:10.1063/1.3633081]

Synchronization and control of complex systems are an

important topic that has drawn a great deal of attentions

in different forms both in nature and in man-made sys-

tems. Owe to its effectiveness, robustness and low cost,

impulsive control strategy has been used to synchronize

linearly or nonlinearly coupled systems, but these studies

in the literature were based on continuous coupling. In

this paper, we proposed a new and different coupled sys-

tems model, which are coupled only at discrete instants

through impulsive connections and showed that systems

with delay can reach synchronization by exchanging in-

formation at instants. Numerical simulations of the cha-

otic delayed Hopfield neural networks are presented to

demonstrate the effectiveness of the proposed scheme.

I. INTRODUCTION

Complex systems have been shown to exist in nature1,2

and synchronizing them is both interesting and important

because there are many real-world applications.3 Some neu-

rons, for example, have been observed to oscillate in syn-

chrony in mammalian brains and a similar phenomenon has

also been reported to occur in other areas such as mathemat-

ics, sociology, and biology.3–9

One important consideration in practical networks is the

existence of time delays because obstructions to the trans-

mission of signals are inevitable in a biological neural net-

work, in an epidemiological model, in a communications

network, or in an electrical power grid. Even though it is

well known about the delays at the couplings (i.e.,

edges),10–14 delays at the dynamical nodes have almost sel-

dom been explored. Delayed nodes occur frequently in na-

ture and famous examples include the chaotic delayed

Hopfield neural network and the delayed logistic differential

equation.15 Systems with delay nodes are therefore important

systems that warrant further investigations.

Apart from time delays, complex systems are suscepti-

ble to sudden surges in their flows called impulses. Impulses

have been observed, for example, in space programs, in con-

trol systems as well as in communications security equip-

ment and they are usually modeled by impulsive differential

equations. Interest in impulsive complex systems has grown

in recent years and many effective, robust and inexpensive

impulsive control strategies have been invented.16–35 Zhou

et al.,16 for instance, investigated the synchronization of

delayed dynamical networks with impulsive effects, and

Yang and Chua19 studied the impulsive stabilization problem

for chaotic synchronization and control. Liu et al.20 consid-

ered robust impulsive synchronization of uncertain dynami-

cal network. The authors introduced impulsive control

protocols for multi-agent linear continuous dynamic sys-

tems.29,30 In the existing control schemes, some of the con-

trol strategies are based on the weighted average of the states

of all nodes. This may lead to the difficulty, since it is not

easy for a node to obtain information of all other nodes in a

large scale network. The other control schemes are based on

a special solution of an isolated node, which may be difficult

to obtain in some practical applications. In order to avoid the

implementation difficulty of the controller, by utilizing the

information from neighboring nodes, Guan et al.33 intro-

duced the concept of control topology and investigated the

problem of distributed impulsive synchronization of complex

dynamical networks with system delay and multiple cou-

pling delays. Zhang et al.34 proposed an impulsive control

scheme, in which each local controller shares information

from partial nodes by taking the weights of great majority

nodes as zero. Recently, Han et al.35 proposed a model for

impulsively coupled systems, i.e., systems that are coupled

at discrete instants only via impulsive connections, and

obtained sufficient conditions for their synchronization.

However, in the existing works, in particularly, networked

nonlinear dynamical systems coupled at certain discrete

instants,29,30,35 delays are not considered. Research shows
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that ignoring delays may lead to design flaws and incorrect

analysis conclusions.

The question naturally arises as to whether it is possible

to achieve synchronization for systems that have both delay

and impulsive connections. The aim of this paper is to carry

out an exploration of this aspect. In this paper, the synchroni-

zation of impulsively coupled systems with delay is investi-

gated. Based on the theorem of impulsive differential

equations, we designed a more feasible distributed impulsive

control scheme and showed that systems with delay can

reach synchronization by exchanging information at instants.

Numerical simulations of the chaotic delayed Hopfield neu-

ral networks are presented to demonstrate the effectiveness

of the proposed scheme.

The rest of the paper is organized as follows: in Sec. II,

description of the model is given; in Sec. III, sufficient con-

dition of global synchronization of impulsively coupled sys-

tems with delay are obtained; numerical simulations for

verifying the theoretical result are presented in Sec. IV; the

paper is concluded in Sec. V.

II. MODEL DESCRIPTION

Consider a complex systems consisting of N identical

nodes, which is described by

dxiðtÞ
dt
¼ �CxiðtÞ þ Af ðxiðtÞÞ þ Bf ðxiðt� sÞÞ þ uiðtÞ;

i ¼ 1; 2;…;N

(1)

where xiðtÞ ¼ xi1; xi2;…; xinð ÞT is the state vector of the thi
node, C ¼ diag c1; c2;…; cnf g 2 Rn�n is a diagonal matrix

with positive diagonal entries ci> 0, i ¼ 1; 2;…; n,

A¼ (aij)n�n, B¼ (bij)n�n are weight and delayed weight mat-

rices, respectively. f xi tð Þð Þ ¼ f1 xi1 tð Þð Þ;…; fn xin tð Þð Þð ÞT
2 Rn 2 Rn is a continuous map satisfying

H1 : jfkðximÞ � fkðxjmÞj � lijxim � xjmj; 8xim; yjm 2 R:

s� 0 is the delay, ui tð Þ i ¼ 1; 2;…;Nð Þ is a distributed impul-

sive control input, which utilizes the information from neigh-

boring nodes

uiðtÞ ¼
X1
k¼1

Bk½xiðtkÞ �
XN

j¼1

hijxjðtkÞ�dðt� tkÞ; (2)

or equivalently

uiðtÞ ¼
X1
k¼1

Bk

XN

j¼1

�hijxjðtkÞdðt� tkÞ;

where

�h ¼ ð�hijÞN�N ¼

1� h11 �h12 � � � �h1N

�h21 1� h22 � � � �h2N

..

. ..
. . .

. ..
.

�hN1 �hN2 � � � 1� hNN

2
6664

3
7775;

The discrete set ftkg satisfies

0 � t0 < t1 < … < tk < … < tk !1ðt!1Þ;

Bk is the control gains, d(�) is the Dirac impulsive function.

hij� 0 denotes the influence weight of the state of the thj node

on that of the thi node, and for any i ¼ 1;…;N,
PN

j¼1 hij ¼ 1.

hij is designed as follow: if the thj node can obtain the infor-

mation of thi node, then hij> 0; otherwise, hij¼ 0. The

weighted directed graph �h is assumed to be irreducible, which

means there is no isolated node in network, namely, every

node can receives information from other nodes or sends out

information to other nodes at discrete instants tk.
Remark 1: The distributed impulsive control scheme (2)

provides us a flexible method for utilizing the local informa-

tion from neighboring nodes of the network. For any

hi1 ¼ 1 i ¼ 1;…;Nð Þ, hij ¼ 0 j ¼ 2; 3;…;Nð Þ, which means

that all nodes receive the information of the first node, or

hij > 0 j ¼ 1; 2;…;Nð Þ, which suggests that each node

receives the local information from its neighboring nodes,

can also be considered as a special case in this paper. It is

worth noting that we can take the weights of nodes as one

desires or even the weights of great majority nodes as zero

and achieve network synchronization by only a few nodes.

This is very significant in practical applications.

Remark 2: It is worth pointing out that in some cases

when the networked systems cannot endure continuous con-

trol or it is impossible to give continuous control, the impul-

sive control is an effective and low-cost method.

The impulsively coupled networks with N identical

nodes can then be described by

dxiðtÞ
dt
¼ �CxiðtÞ þ Af ðxiðtÞÞ þ Bf ðxiðt� sÞÞ;

i ¼ 1; 2;…;N; t 6¼ tk;

Dxi ¼ Bk

XN

j¼1

�hijxjðtÞ; t ¼ tk; k ¼ 1; 2;…

xiðtÞ ¼ /iðtÞ; t 2 ½t0 � s; t0�; i ¼ 1; 2;…;N;

(3)

where xiðtþk Þ ¼ limt!tþ
k

xiðtÞ and xiðt�k Þ ¼ limt!t�
k

xiðtÞ.
Moreover, any solution of (3) is left continuous at each

t¼ tk, i.e., xiðt�k Þ ¼ xiðtkÞ.
Remark 3: The model is of great importance because it

can be used to describe many non-continuously coupled sys-

tems such as the species-food model in the biology, the

transfer and exchange of information between ants, and the

integrated circuit models.

The impulsively coupled network (3) is said to be glob-

ally synchronized if for all i; j ¼ 1; 2;…;N

lim
t!1
kxiðtÞ � xjðtÞk ¼ 0;

where k � k denotes the Euclidean norm in Rn.

Let C([�s, 0], Rn) be the Banach space of all the contin-

uous functions that map the interval [�s, 0] into Rn that is

equipped with the norm

k/k ¼ sup�s�h�0k/ðhÞk:

The initial conditions for Eq. (3) are xi tð Þ ¼ /i tð Þ
2 C �s; 0½ �;Rnð Þ and it is assumed that (3) has a unique solu-

tion with respect to these initial conditions.
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Suppose T �ð Þ denotes the set of matrices such that the

sum of the element in each row is equal to the real number �.
The set M1 is defined as follow: if M ¼ Mij

� �
N�1ð Þ�N

2 M1,

each row of M contains exactly one element 1 and one ele-

ment �1, and all other elements are zeros. ji1(ji2) denotes the

column indexes of the first (second) nonzero element in the

thi row. The set H is defined by H ¼ j11; j12f g; j21; j22f g;f
…; jP1; jP2f gg. The set M2 is defined as follow: M2 � M1

and if M ¼ Mij

� �
N�1ð Þ�N

2 M2, for any pair of the column

indexes js and jt, there exist indexes j1; j2;…; jl with j1¼ js
and jt¼ jl such that jm; jmþ1 2 H for m ¼ 1; 2;…; l� 1.

Lemma 1: (Ref. [33]) Let M ¼ Mij 2 M2 be a (N – 1)�N
matrix and A 2 T �ð Þ be a N�N matrix, there exists a N� (N
– 1) matrix GM such that MA ¼ ÂM, where Â ¼ MAGM,

MGM¼ IN–1. Moreover, let C be a n� n constant matrix and

AC ¼ A	 C, then MA ¼ bAM, where bA ¼ Â	 C and

M ¼ M 	 In.

Denote the function that maps A to Â by SM, i.e., the

function is defined as

Â ¼ SMðAÞ ¼ MAGM:

Lemma 2: (Ref. [36]) Given any vectors x, y of appropriate

dimensions and a positive definite matrix P> 0 with compat-

ible dimensions, then the following inequality holds:

2xTy � xTPxþ yTP�1y:

III. MAIN RESULTS

In this section, new criteria are presented for the global

synchronization of impulsively coupled systems based on

the comparison theorem of impulsive differential system.

Rewrite the network (3) by Kronecker product

_xðtÞ ¼ � �CxðtÞ þ �AFðxðtÞÞ þ �BFðxðt� sÞÞ; t 6¼ tk;

Dx ¼ BN
k

�HxðtkÞ;
(4)

where x tð Þ ¼ xT
1 ; x

T
2 ;…; xT

N

� �T
, �C ¼ IN 	 C, �A ¼ IN 	 A,

�B ¼ IN 	 B, BN
k ¼ IN 	 Bk

�H ¼ �h	 In, and F x tð Þð Þ
¼ f T x1 tð Þð Þ;…; f T xN tð Þð Þð ÞT .

For M 2 M2, let M ¼ M 	 In, then y tð Þ ¼ Mx tð Þ
¼ yT

1 tð Þ; yT
2 tð Þ;…; yT

N�1 tð Þ
� �T

, yi tð Þ ¼ yi1; yi2;…; yinð ÞT ; i ¼ 1;
…;N � 1. Note that ji1(ji2) denotes the column indexes of

the first (second) nonzero element in the i th row, obviously,

yi(t)¼ xji1(t) – xji2(t). Because of the assumptions on

M 2 M2, the crucial property of xTMTMx is that xTMTMx!
0 if and only if k xi � xj k! 0, for all i; j ¼ 1; 2;…;N.

Then we establish the following theorem.

Theorem 1: Suppose H1 holds, c¼�2k(C)þ k(AAT)

þ k(LLT)þ k(BL2BT)þ 1, bk¼ k(DTD), where D ¼ IðN�1Þn
þðĥ	 BkÞ, kðPÞ is the largest eigenvalue of the matrix P,

L ¼ diag l1; l2;…; lnf g, the impulsively coupled systems with

delay (3) is globally asymptotically synchronized if there

exists a constant n> 1 such that

lnðnbkÞ þ cDk � 0; k ¼ 1; 2;…: (5)

Proof: Choose

VðtÞ ¼ xTðtÞMTMxðtÞ þ
ðt

t�s
xTðsÞMTMxðsÞds

to be a Lyapunov function. Then, we have

k0xTðtÞxðtÞ � VðtÞ � k0xTðtÞxðtÞ þ sk0 xk k2;

where kxk¼ supt�s�s�t kx sð Þk, k0 is the largest eigenvalue of

MTM. Differentiating V(t) along the trajectories of (4), we

have

dVðtÞ
dt
¼ 2xTðtÞMTM½� �CxðtÞ þ �AFðxðtÞÞ þ �BFðxðt� sÞÞ�

þ ½xTðtÞMTMxðtÞ � xTðt� sÞMTMxðt� sÞ�;

From H1 and Lemma 2, one obtains

2xTðtÞMTMð� �CÞxðtÞ

� 2
XN�1

i¼1

ðxji1ðtÞ � xji2ðtÞÞ
Tð�CÞðxji1ðtÞ � xji2ðtÞÞ

� �2kðCÞ
XN�1

i¼1

ðxji1ðtÞ � xji2ðtÞÞ
Tðxji1ðtÞ � xji2ðtÞÞ

� �2kðCÞxTðtÞMTMxðtÞ;

2xTðtÞMTM �AFðxðtÞÞ

� 2
XN�1

i¼1

ðxji1ðtÞ � xji2ðtÞÞ
TA½f ðxji1ðtÞÞ � f ðxji2ðtÞÞ�

�
XN�1

i¼1

½ðxji1ðtÞ � xji2ðtÞÞ
TAATðxji1ðtÞ � xji2ðtÞÞ

þ ðf ðxji1ðtÞÞ � f ðxji2ðtÞÞÞ
Tðf ðxji1ðtÞÞ � f ðxji2ðtÞÞÞ�

� ½kðAATÞ þ kðLLTÞ�xTðtÞMTMxðtÞ;

2xTðtÞMTM �BFðxðt� sÞÞ

� 2
XN�1

i¼1

ðxji1ðtÞ � xji2ðtÞÞ
TB½f ðxji1ðt� sÞÞ

� f ðxji2ðt� sÞÞ�

�
XN�1

i¼1

½ðxji1ðtÞ � xji2ðtÞÞ
TBL2BTðxji1ðtÞ � xji2ðtÞÞ

þ ðf ðxji1ðt� sÞÞ � f ðxji2ðt� sÞÞÞTðL2Þ�1

� ðf ðxji1ðt� sÞÞ � f ðxji2ðt� sÞÞÞ�
� kðBL2BTÞxTðtÞMTMxðtÞ þ xTðt� sÞMTMxðt� sÞ;

Therefore,

dVðtÞ
dt
� ½�2kðCÞ þ kðAATÞ þ kðLLTÞ þ kðBL2BTÞ

þ 1�xTðtÞMTMxðtÞ � c½xTðtÞMTMxðtÞ

þ
ðt

t�s
xTðsÞMTMxðsÞds� ¼ cVðtÞ

for all t 2 tk�1; tkð Þ, where L ¼ diag l1; l2;…; lnf g,
c¼�2k(C)þ k(AAT)þ k(LLT)þ k(BL2BT)þ 1. This implies
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VðtÞ � Vðtþk�1Þecðt�tk�1Þ; t 2 ðtk�1; tk� (6)

On the other hand, when t¼ tk, from Lemma 1, we have

Vðtþk Þ ¼ xTðtkÞðINn þ BN
k

�HÞTMTMðINn þ BN
k

�HÞxðtkÞ

þ
ðtk

tk�s
xTðsÞðINn þ BN

k
�HÞTMTMðINn þ BN

k
�HÞxðsÞds

¼ xTðtkÞMTðIðN�1Þn þ ðĥ	 BkÞÞT

� ðIðN�1Þn þ ðĥ	 BkÞÞMxðtkÞ

þ
ðtk

tk�s
xTðsÞMTðIðN�1Þn þ ðĥ	 BkÞÞT

� ðIðN�1Þn þ ðĥ	 BkÞÞMxðsÞds

� kðDTDÞ½xTðtkÞMTMxðtkÞ

þ
ðtk

tk�s
xTðsÞMTMxðsÞds� � bkVðtkÞ; (7)

where D ¼ IðN�1Þn þ ðĥ	 BkÞ. When k¼ 1 in inequality (6),

we have

VðtÞ � Vðtþ0 Þecðt�t0Þ

for all t 2 t0; t1ð �, which leads to Vðt1Þ � Vðtþ0 Þecðt1�t0Þ. Simi-

larly, from (7), we have

Vðtþ1 Þ � b1Vðt1Þ � b1Vðtþ0 Þecðt1�t0Þ

and so we have, in general,

VðtÞ � Vðtþ0 Þb1b2…bk�1ecðt�t0Þ

for all t 2 tk�1; tkð �, k ¼ 1; 2;…. From inequality (5), we

obtain that there exists a constant n> 1 such that

ln(nbk)þ cDk� 0 for all k ¼ 1; 2;… and all t 2 tk�1; tkð �,
then

VðtÞ � b1b2…bk�1Vðtþ0 Þecðtk�t0Þ

� Vðtþ0 Þ½b1ecðt1�t0Þ�…½bk�1ecðtk�1�tk�2Þ�
� ecðtk�tk�1Þ

� 1

nk�1
Vðeðtþ0 ÞÞecðtk�tk�1Þ

Thus, the network (4) achieves synchronization.

In practice, the gain matrices Bk and impulsive distances

Dk are usually chosen to be constants for convenience and

we have the following corollary.

Corollary 1: Suppose H1 holds, c, bk are defined as

shown above, let the impulses be equidistant and separated

by interval Dk¼D, the control gains Bk¼B0, k ¼ 1; 2;…, the

impulsively coupled networks with delay (3) is globally

asymptotically synchronized if there exists a constant n> 1

such that ln(nb)þ cD� 0.

The proof similar to that of Theorem 1, it is omitted

here.

IV. NUMERICAL SIMULATIONS

In this section, the chaotic delayed Hopfield neural net-

work is used as nodes of network (1) to show the effective-

ness of above-mentioned scheme. The chaotic delayed

Hopfield neural network is given by

dxðtÞ
dt
¼ �CxðtÞ þ Af ðxðtÞÞ þ Bf ðxðt� sÞÞ; (8)

with x tð Þ ¼ x1 tð Þ; x2 tð Þð ÞT2 R2, f x tð Þð Þ ¼ tanh x1 tð Þð Þ;ð
tanh x2 tð Þð ÞÞT 2 R2 and

C¼ 1 0

0 1

� �
; A¼ 2:0 �0:1

�5:0 3:0

� �
; B¼ �1:5 �0:1

�0:2 �2:5

� �
:

The chaotic delayed Hopfield neural network (8) has a

very rich complex dynamical behavior and contains, for

example, a double-scroll chaotic attractor (depicted in Fig.

1) for time delay s¼ 1.

In this simulation, we consider 11 impulsively coupled

delayed Hopfield neural networks

dxiðtÞ
dt
¼ �CxiðtÞ þ Af ðxiðtÞÞ þ Bf ðxiðt� sÞÞ;

i ¼ 1; 2;…; 11; t 6¼ tk;

Dxi ¼ BkðxiðtkÞ �
P11

j¼1

hijxjðtkÞÞ; k ¼ 1; 2;…

xiðtÞ ¼ /iðtÞ; t 2 ½t0 � s; t0�; i ¼ 1; 2;…; 11;

8>>>>>><
>>>>>>:

(9)

The total synchronization error is calculated by

ErrorðtÞ ¼
XN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2

k¼1

ðxikðtÞ �
XN

j¼1

hijxjkðtÞÞ2
vuut :

For the chaotic delayed Hopfield neural network (9),

calculations show that jfk(xim) – fk(xjm)j � jxim – xjmj, and so

the Lipschitz constant is li¼ 1,(i¼ 1,2).

Fig. 2 shows the evolution process of the total error and

the states of the network (9) with ui(t)¼ 0. It is easy to see

that the network (9) is not synchronized without impulsive

control.

FIG. 1. A fully developed double-scroll-like chaotic attractor of delayed

Hopfield neural network.
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Let the impulses be equidistant and separated by interval

D¼ 0.02 and the control gains B0 ¼ diagf�0.3, �0.3, �0.3g.
The initial values of these systems are chosen randomly in

the real number interval [0,3], respectively. For simplicity’s

sake, we firstly assume that all nodes share the same state in-

formation from common nodes, i.e., hij ¼h j.

In Fig. 3, let hj¼ 1=11, j ¼ 1; 2;…; 11, one can see all of

the states tend to coherence asymptotically as time evolves,

which implies impulsively coupled delayed Hopfield neural

networks (9) achieves synchronization.

When h1¼ h2¼ h3¼ 1=3, hi¼ 0, i ¼ 4; 5;…; 11,

B0 ¼ diagf�0.6, �0.6, �0.6g, network (9) can also achieve

synchronization, which is shown in Fig. 4.

In Fig. 5, let h1¼ 1, hj¼ 0, j ¼ 2;…,11, and B0

¼ diagf�0.18, �0.18, �0.18g, one can see all of the states

tend to coherence asymptotically as time evolves, which

implies impulsively coupled delayed Hopfield neural net-

works (9) achieves synchronization.

Let hj¼ 1=11, j ¼ 1; 2;…; 11, and D¼ 2.2, Fig. 6 shows

the evolution process of the total error and the states in net-

work (9), one can see that impulsively coupled delayed Hop-

field neural networks (9) cannot achieves synchronization

with large impulses interval.

Secondly, we assume that every node shares only the

local information from its neighboring nodes, i.e., the

weighted directed graph is chosen as

FIG. 2. (Color online) Evolution of (a) the states xi1, (b) the states xi2, and

(c) the total Error (t) of network (9) without impulsively coupling.

FIG. 3. (Color online) Evolution of (a) the states xi1, (b) the states xi2 and

(c) the total Error (t) of impulsively coupled systems (9) with D¼ 0.02,

t0¼ 0 and hi¼ 1=11, i ¼ 1; 2;…; 11.

FIG. 4. (Color online) Evolution of (a) the states xi1, (b) the states xi2 and,

(c) the total Error(t) of impulsively coupled systems (9) with D¼ 0.02,

t0¼ 0 and h1¼ h2¼ h3¼ 1=3, hi¼ 0, i ¼ 4; 5;…; 11.

FIG. 5. (Color online) Evolution of (a) the states xi1, (b) the states xi2, and

(c) the total Error(t) of impulsively coupled systems (9) with D¼ 0.02,

t0¼ 0 and h1¼ 1,hi¼ 0, i ¼ 2; 3;…; 11.
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� �ha ¼

0 0 0 0 0 0 0 0 0 0 0

1 �1 0 0 0 0 0 0 0 0 0

1 0 �1 0 0 0 0 0 0 0 0

1 0 0 �1 0 0 0 0 0 0 0

1 0 0 0 �1 0 0 0 0 0 0

0 1 0 0 0 �1 0 0 0 0 0

0 1 0 0 0 0 �1 0 0 0 0

0 1 0 0 0 0 0 �1 0 0 0

0 0 1 0 0 0 0 0 �1 0 0

0 0 1 0 0 0 0 0 0 �1 0

0 0 1 0 0 0 0 0 0 0 �1

2
6666666666666666666664

3
7777777777777777777775

;

or

�hb ¼

1 �1 0 � � � 0

0 1 �1 � � � 0

..

. ..
. ..

. . .
. ..

.

�1 0 0 � � � 1

2
664

3
775

11�11

:

Let B0 ¼ diagf�0.3, �0.3, �0.3g, D¼ 0.02, Figs. 7 and

8 show the evolution process of the states and the total error

in network (9) with the weighted directed graph �ha and �hb,

respectively, one can see all of the states tend to coherence

asymptotically as time evolves, which implies that distrib-

uted impulsively coupled delayed Hopfield neural networks

(9) can achieves synchronization but at a slower speed com-

pared with the numerical results in Fig. 3.

V. CONCLUSIONS

This paper has studied the synchronization of complex

dynamical systems that are connected impulsively at only dis-

crete instants and whose isolated node experience time

delays. Based on the comparison theorem of impulsive differ-

ential systems, a new and effective distributed impulsive con-

troller has been designed and analyzed, which ensures the

dynamical networks achieve synchronization. The proposed

distributed impulsive control scheme is applied to the chaotic

delayed Hopfield neural network and numerical simulations

are performed to test the effectiveness of the method.

Different from existing control schemes in the literature,

complex dynamical systems considered in the paper are

coupled only at discrete instants through impulsive connec-

tions. The designed distributed impulsive control scheme pro-

vides us a flexible and very huge freedom degree for utilizing

the local information from neighboring nodes of the network

according to different practical situations. The implementa-

tion difficulty of the controller is avoided. Our work is a sig-

nificant extension of the current studies–continuously coupled

FIG. 6. (Color online) Evolution of (a) the states xi1, (b) the states xi2 and

(c) the total Error(t) of impulsively coupled systems (9) with D¼ 2.2, t0¼ 0

and hi¼ 1=11, i ¼ 1; 2;…; 11.

FIG. 7. (Color online) Evolution of (a) the states xi1, (b) the states xi2, and

(c) the total Error(t) of impulsively coupled systems (9) with the weighted

directed graph �ha.

FIG. 8. (Color online) Evolution of (a) the states xi1, (b) the states xi2 and

(c) the total Error(t) of impulsively coupled systems (9) with the weighted

directed graph �hb:
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systems to a much more general and realistic situation–non-

continuously coupled systems. Therefore, this method is very

meaningful in practicability.
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