
Size Estimation of Cloud Migration Projects with Cloud Migration Point (CMP)

Van T. K. Tran∗†, Kevin Lee∗†, Alan Fekete∗‡, Anna Liu∗† and Jacky Keung∗§
∗National ICT Australia Ltd., Australia

Email: {ThiKhanhVan.Tran,Kevin.Lee,Anna.Liu}@nicta.com.au
†School of Computer Science and Engineering, University of New South Wales, Australia

‡School of Information Technologies, The University of Sydney, Australia
Email: Alan.Fekete@sydney.edu.au

§The Hong Kong Polytechnic University, HKSAR
Email: Jacky.Keung@comp.polyu.edu.hk

Abstract—One of the major obstacles to enterprise adoption
of cloud technologies has been the lack of visibility into migra-
tion effort and cost. In this paper, we present a methodology,
called Cloud Migration Point (CMP), for estimating the size of
cloud migration projects, by recasting a well-known software
size estimation model called Function Point (FP) into the
context of cloud migration. We empirically evaluate our CMP
model by performing a cross-validation on six different small-
scale cloud migration projects and show that our size estimation
model can be used as a reliable predictor for effort estimation.
Furthermore, we prove that our CMP model satisfies the
fundamental properties of a software size measure.

Keywords-size measures; cloud computing; migration; theo-
retical validation; empirical validation; effort estimation;

I. INTRODUCTION

Since its emergence over the last decade, Cloud comput-
ing has been well recognized for its abilities to provide
virtualized resources and services, such as infrastructure,
platform, and software [1], [2]. Cloud computing provides
computing resources on demand; therefore, Cloud users are
neither required to plan far ahead for provisioning nor tied
to huge up-front commitment on hardware resources and
infrastructures. This elasticity of costs enables businesses to
start small and acquire more resources only when needed on
a short-term basis (e.g., hourly processors and daily storage),
and rewards conservation by releasing computing machines
and storage when they are no longer required. Cloud can
also serve as additional resource (alongside existing data
center) for established businesses to deal with bursts of load,
perhaps seasonal, or due to intermittent activities such as
stress testing. Here the cloud allows the client to delay the
large commitment of funds needed to scale-up the hardware.

Many organisations write their software from scratch
specifically for deployment into cloud, while others may
wish to keep using their existing application software and
have it run on a cloud platform. We consider the latter
as “migrating” from a traditional computing platform to
a cloud-based one such as Amazon EC21 or Microsoft

1http://aws.amazon.com/ec2/

Windows Azure 2. Although the migration process is a one-
off task, it is not automatic and the amount of effort required
could be significant. This effort is due to discrepancies
between the environment provided by a cloud platform, and
that in a traditional platform. There are often differences in
the version of various infrastructure, the programming mod-
els, the libraries available, even the semantics of data access
are different; for example, cloud platforms typically provide
eventual consistency rather than transactional guarantees.

As effort is required for migrating to cloud and the
amount of effort required is diverse, early effort estimation
for a migration project to a cloud platform is essential
for its project management, particularly project scheduling
and budget planning. Since cloud computing is new, there
are not sufficient data points publicly available in regard
to migration efforts to cloud. Therefore, to the best of
our knowledge, no effort estimations have been proposed
specifically designed for cloud application projects, while
existing traditional effort estimation approaches for software
development are not applicable in this context.

This strongly motivates us in our attempt to develop a
Function-Point-like and cloud-specific metric, called Cloud
Migration Point (CMP), to measure the size of a cloud
migration project, which then serves as a basis for cloud
migration effort estimation. In this paper, we introduce our
approach to develop CMP and its counting method, together
with theoretical and initial empirical validations.

Section II defines the scope of the paper as well as the
underlying assumptions of our effort estimation model. Sec-
tion III identifies cost factors of a migration project to cloud.
Section IV classifies cloud migration projects into different
types based on their characteristics. Section V describes our
CMP metric and its counting process. Section VI shows a
list of necessary properties for any size measures and proves
that CMP satisfies all of them. Section VII describes our
empirical validation to show the effectiveness of CMP as a
basis for measuring cloud application migration effort. We
also provide related work in Section VIII discussing existing

2http://www.microsoft.com/windowsazure/

This is the Pre-Published Version.

size measures and effort estimation approaches. Section IX
concludes the paper.

II. CLOUD MIGRATION PROJECT SCOPE

The scope of this paper is limited to a cost estimation
model for cloud migration projects that satisfy the following
assumptions:
• Migration between two data centers only (typically, one

in-house and one in-cloud) - We assume that migration
projects are directional (i.e. components are moved
from local to remote).

• Cloud offerings are of Infrastructure-as-a-Service
(IaaS) or Platform-as-a-Service (PaaS) types - CMP
considers only IaaS and PaaS, although some parts of
our cost model might still be applicable to other cloud
offerings. Software-as-a-Service (SaaS) is deliberately
removed from the scope since users of SaaS have no
control over the deployment process.

• Migrating application is object-oriented - CMP assesses
application code changes at ‘class’ level.

• Target cloud is selected - CMP estimates the complexity
of migrating to a specific cloud platform, excluding
the process of determining the most suitable cloud
technologies/providers, and the need to get familiar
with the specific cloud technology and offering.

• Design decision is made - CMP requires inputs from
the design phase and is most appropriate to apply before
the implementation phase of a migration.

• Migration tasks are outlined - CMP measures the size
and complexity of migration tasks, hence migration
tasks must be outlined in advance.

III. CLOUD MIGRATION COST FACTORS

Our approach to develop the CMP model starts with
identifying important cost factors of a cloud migration
project. The cost factors are defined as any aspects of the
project that influence the amount of effort required. We
differentiate two types of cost factors: internal and external.
The former indicates what migration tasks are required and
determines their complexity, the latter concerns with envi-
ronmental factors that are specific to each organization, such
as: development team’s skills and expertise, or knowledge on
cloud platforms and offerings. The internal cost factors are
commonly identified first to measure the size or complexity
of the project, which will then be adjusted by applying the
external cost factors. Our CMP model focuses only on the
internal cost factors and identify them as sole indicators of
the migration tasks’ complexity, regardless of who conduct
those tasks and under what environment.

The reported experiments and the taxonomy of cloud
migration tasks proposed in [3] enable us to understand and
identify different internal cost factors of migration projects
to cloud. A migration project to a cloud platform consists
of a set of migration tasks involved in different categories.

These categories are mutually exclusive since they cover
different aspects of a cloud migration project; but on the
other hand, they complement each other and altogether
provide a complete picture of migration to cloud.

1) Installation and Configuration - When migrating to an
IaaS cloud such as Amazon EC2, effort is required to
install the necessary system software, database servers,
or middlewares; environment variables and settings
also need to be configured. When migrating to a
PaaS cloud such as Microsoft Azure, installation and
configuration effort lies in the application layer, such
as libraries or plugins.

2) Database Changes - Migrating a database to cloud
can result in database schema changes and query
changes because of differences in versions, variants
(MySQL vs. MSSQL), or database types (Relational
vs. NoSQL).

3) Code Changes - In some migration cases, code mod-
ification is required to adapt to the new programming
model in cloud, or database access layer needs to be
changed to seamlessly work with different databases
in cloud.

4) Connection Changes - Within a system S before
migration, the connection between two components A
and B is a LAN connection. If only B is migrated
to cloud and A is kept in local data center, the
LAN connection between A and B becomes a WAN
connection. If both A and B are migrated to cloud,
the LAN connection between A and B becomes a
LAN connection in cloud (network conditions can be
different in cloud).

These factors influence the amount of effort required for
a cloud migration project. A metric for sizing migration
projects to cloud must adequately cover these aspects in
order to accommodate effort estimation for migrating to
cloud.

IV. CLOUD MIGRATION PROJECT CLASSIFICATION

The cost factors identified in Section III does not apply
to all components of the system, but only those compo-
nents that have been affected by the migration. We classify
components involved in a migration into four different cat-
egories: Migrated, Removed, Unchanged and Added. These
categories would help us better understand the dynamics of
the migration process, as well as its impact on the effort as
captured in our CMP model.

It is important to distinguish between a migrating system
and a migration project. A migrating system is the system to
be migrated to cloud, and is defined as a set of components
required for the system to function properly, such as: third-
party libraries or middlewares, system software, databases,
applications’ code, and network connection amongst its
modules. A migration project is defined as a set of migration

tasks to move a migrating system from a local data center
to cloud.

We classify a migration project by, first, denoting its
migrating system’ states in a local data center and in cloud
before and after the migration as summarized in Table I.

Table I
SYSTEM’S STATES BEFORE AND AFTER MIGRATION

Local Remote
Before Migration L R
After Migration L′ R′

Table I depicts the components that present at each of the
states, with the rows dividing the components temporally
and columns dividing the components spatially. The set of
components at each of the states are denoted by L 6= ∅,
R, L′ and R′. Note that, the same component may appear
in different rows but they cannot appear twice in the same
row (i.e. a component cannot appear both in-house and in-
cloud at the same time). Hence, L and R are disjoint sets,
and similarly, L′ and R′ are also disjoint. The allocation of
components to each state can be determined using the design
documents.

Definition 1: A migration project is defined as a full
migration if L ⊆ R′, otherwise it is a partial migration.

The set of components involved in a migration project can
be partitioned into three categories (or disjoint subsets):
• Migrated components (M = L ∩ R′) - Components

moved from in-house to the cloud. These components
are reused with or without modifications. For example,
third-party libraries, database servers, or system soft-
ware that are moved to cloud (i.e., effort involved for
installation, configuration, and integration with the rest
of the system); application’s code (i.e., effort needed
for moving and changing code); and database (i.e.,
efforts required for data transfer and any required
modifications in schema and queries).

• Removed components (R = L \ (L′ ∪ R′)) - Compo-
nents removed from in-house as a result of the migra-
tion. Removal of components is not always necessarily
because some components can exist without interfering
or disrupting the functionality of a system, in which
case no effort is required. However, sometimes this may
be necessary to ensure normal operation of the system,
then effort will be required.

• Unchanged components (U = L ∩ L′) - Components
that remain unchanged in-house. These components do
not participate in the migration process, they simply
continue to operate in-house as usual, hence no effort
is required.

In addition to the above, there is also the category of Added
components ((L′ ∪ R′) \ (L ∪ R)), which are components
added to the system as part of the migration, such as: new
libraries in cloud, newly added code for extra functionality,

or integrating new middlewares. For example, when a library
is not fitted for the cloud environment, a more suitable
library is used if it exists in cloud or is rewritten if it is
not available.

Proposition 2: If x is a component in the local data center
before migration (i.e., x ∈ L), then x is one of a migrated
component (i.e., x ∈ M), a removed component (i.e., x ∈
R) or an unchanged component (i.e., x ∈ U) after migration.

Proof: It suffices to show that (1)M∪R∪U = L, and
that (2) the collection {M,R,U} is pairwise disjoint. For
(1), M∪R∪U ≡ (L∩R′)∪ (L \ (L′ ∪R′))∪ (L∩L′) ≡
(L∩(L′∪R′))∪(L\(L′∪R′)) ≡ L. For (2), there are three
cases: (i)M∩R ≡ (L∩R′)∩ (L \ (L′ ∪R′)) ≡ (L∩R′)∩
(L∩ (¬L′∩¬R′)) ≡ ∅; (ii)M∩U ≡ (L∩R′)∩ (L∩L′) ≡
(L ∩ (L′ ∩ R′)) ≡ L ∩ ∅ ≡ ∅. Note that (L′ ∩ R′) ≡ ∅ as
defined above; (iii) R ∩ U ≡ (L \ (L′ ∪ R′)) ∩ (L ∩ L′) ≡
(L ∩ (¬L′ ∩ ¬R′)) ∩ (L ∩ L′) ≡ ∅.

The effort associated with each of the categories defined
above are carefully captured in our CMP model. Roughly
speaking, migrating components require the most effort,
followed by adding and removing components then com-
ponents with no changes.

V. CLOUD MIGRATION POINT

CMP is a metric that follows the Function Point (FP)
approach [4] for measuring the size of migration projects
to cloud. CMP extends FP not by adding more elements
into the existing FP method, but by adopting the three-step
approach of FP: (1) Classify the basic estimating units (a
function in the FP context, a class in the Class Point [5]
context, and a migration task in CMP context) into different
pre-defined categories; then for each unit, (2) Evaluate its
complexity level (Low, Average, or High); and finally (3)
Compute the final sizing value.

The classification of cloud migration projects discussed in
Section IV can be seen as a way to allocate components of
a migration project into different categories. In this section,
we delve further into the components of each category to
assess the complexity of each migration task.

A. CMPconn

CMPconn assesses all migration tasks related to network
connections and evaluate their complexity. It adopts the
three-step approach from FP.

First, all network connections that will be affected by the
migration process and require effort to optimize performance
are identified and classified into three types:
• LAN-to-LAN: A connection belongs to this type if both

ends A and B of the connection are migrated from
the local data center to cloud, i.e., {A, B} ⊆ L ∩ R′.
The LAN connection in the local site becomes a LAN
connection in cloud.

• LAN-to-WAN: A connection is classified into this type
if only one end A of the connection is migrated to cloud

while the other end B stays in-house (i.e., A ∈ L∩R′

and B ∈ L∩L′). The LAN connection in the local site
becomes a WAN connection spanning from in-house to
cloud over an internet connection.

• WAN-to-LAN: This type of connection happens if
before migration, a part of the system is already in
cloud, i.e., R 6= ∅. Before the migration, this is a WAN
connection with one end A in local data center (i.e.,
A ∈ L) and the other end B in cloud (i.e., B ∈ R).
After the migration, both ends A and B are in cloud
(i.e., A ∈ L ∩ R′ and B ∈ R ∩ R′). The connection
becomes a LAN connection in cloud environment.

Second, the complexity level (Low, Average, or High) of
all migration tasks involved in each connection is evaluated
based on its requirements for security and protocol opti-
mization using Table II. We identify these two dimensions:
Security and Protocol Optimization, as main cost factors for
connection-related tasks in the cloud context, based on our
cloud migration experience with cost breakdown analysis,
discussion with cloud engineers, analysis of the taxonomy
from [3], and close study into many cloud practitioners’
blogs and discussions.

Table II
COMPLEXITY EVALUATION FOR EACH CONNECTION

Protocol Optimization Security
Required Not Required

Required High Average
Not Required Average Low

Lastly, a weighted value is assigned for each connection,
based on its type identified from the first step and its
complexity level evaluated from the second step, using
Table VII. Values in Table II and VII are defined from
our discussion with a group of cloud engineers involved
in cloud migration projects. The value of CMPconn is de-
fined as the weighted sum of all identified connections:
CMPconn =

∑2
i=0

∑2
j=0xij×wij , where xij is the number

of connections type i with complexity level j, and wij is the
weighted value for connection type i and complexity level
j.

B. CMPcode

CMPcode assesses any migration tasks relating to code
changes. These tasks can vary from adding new function-
ality, removing unnecessary code, to modifying code to use
new databases or integrate with new libraries. CMPcode is in-
herited from Class Point [5] but with modifications to adapt
to code changes rather than just adding new functionality.
Similar to CMPconn, CMPcode also follows FP’s three-step
approach.

First, all classes in application code that require modifi-
cation efforts are identified and classified into four types as
defined in Class Point [5]:

• Problem Domain Type (PDT): classes that represent
real-world entities in the application domain of the
system.

• Human Interaction Type (HIT): classes designed for
information visualization and human-computer interac-
tion.

• Data Management Type (DMT): classes that accommo-
date data storage and retrieval.

• Task Management Type (TMT): classes that are respon-
sible for definition and control of tasks, communica-
tions between subsystems and with external systems.

Table III
ELEMENTS OF EACH CHANGED CLASS

Identify:
Before changing code After changing code
A - a set of attributes A′ - a set of attributes
M - a set of public methods M ′ - a set of public methods
S - a set of services requested
from other classes

S′ - a set of services requested
from other classes

Derive:
|A \A′| : number of attributes removed
|A′ \A| : number of attributes added
|M \M ′| : number of methods removed
|M ′ \M | : number of methods added
|S \ S′| : number of requested services removed
|S′ \ S| : number of requested services added
Define the changes:
CA = |A \A′| × 0.2 + |A′ \A| : changes in attributes
CM = |M \M ′| × 0.2 + |M ′ \M | : changes in methods
CS = |S \ S′| × 0.2 + |S′ \ S| : changes in services requested

Table IV
COMPLEXITY EVALUATION FOR EACH CLASS

Changes in
methods (CMCMCM)

Changes in Attributes (CACACA)
0− 5 6− 9 ≥ 10

0− 4 Low Low Average
5− 8 Low Average High
≥ 9 Average High High

(a) Changes in services requested (CS): 0− 2

Changes in
methods (CMCMCM)

Changes in Attributes (CACACA)
0− 4 5− 8 ≥ 9

0− 3 Low Low Average
4− 7 Low Average High
≥ 8 Average High High

(b) Changes in services requested (CS): 3− 4

Changes in
methods (CMCMCM)

Changes in Attributes (CACACA)
0− 3 4− 7 ≥ 8

0− 2 Low Low Average
3− 6 Low Average High
≥ 7 Average High High

(c) Changes in services requested (CS): ≥ 5

Second, each class’s changes in three dimensions: at-
tributes (CA), public methods (CM), and services requested
from other classes (CS), are evaluated. These changes are
made of the number of elements to be removed and added by
following three steps in Table III. The sets of three elements
(attributes, methods, services requested) of the system are
identified both before and after code change. The number

of elements to be removed and added is calculated (e.g.,
|A \ A′| and |A′ \ A| are the number of attributes to be
removed and added, respectively). The final values CA,
CM , and CS are determined by applying a factor of 0.2
and 1 on removing and adding tasks, respectively (e.g., ,
CA = |A\A′|×0.2+|A′\A|). These factors were suggested
by Niessink and Vliet [6] since a removing task also requires
effort although not as significant as an adding task.

CA, CM , and CS are defined to capture aspects of
changed classes. Special circumstances happen when a class
is newly added, i.e., there are no existing sets of elements
before the migration, or A = M = S = ∅. In this case,
CA = |A \ A′| × 0.2 + |A′ \ A| = 0 × 0.2 + |A′| = |A′|,
which is the number of attributes in the new class. Similarly
CM = |M ′| and CS = |S′|, which are the number of
methods and services requested in the new class. These three
values are similar to Class Point for sizing a new class for
development effort. In other words, CA, CM and CS are
also valid for capturing newly added code.

These three dimensions form the basis to evaluate each
changed class’s complexity level as in Table IV. The com-
plexity level indicators are inherited from Class Point.

Lastly, a weighted value is assigned for each changed
class based on its type identified from the first step and
its complexity level evaluated from the second step. These
weights are also adopted from Class Point (shown in Table
VII). The value of CMPcode is computed as a weighted sum
of all changed classes: CMPcode =

∑3
i=0

∑2
j=0xij × wij ,

where xij is the number of classes of type i with complexity
level j, and wij is the weighted value for class type i and
complexity level j.

CMPcode is analogous to Class Point in the sense that it
also assesses a class’ attributes, public methods, and services
requested from other classes. However, it extends Class Point
by evaluating the changes of elements in a class by taking
into account both adding and removing tasks. Nevertheless,
its validity still holds when it comes to adding an entirely
new class, in which case its counting approach is exactly
the same as Class Point, as shown above. As a result, all
complexity levels and weighted values can be sufficiently
inherited from Class Point.

C. CMPic

CMPic assesses all migration tasks related to Installation
and Configuration (IC), such as: installation of system
software, middleware, database server, third-party library;
or configuration of environment variable and basic network
information. CMPic is determined in a similar manner as the
previous two components of CMP.

First, all required installation and configuration tasks are
identified and classified into two types:

• Infrastructure level: software or servers required to set
up the environment belong to this type, for example,

setting up EC2 instance or image, installing operating
system and middleware, or installing database server.

• Application level: this type consists of any third-party
libraries that the application requires, for example,
JDBC drivers for databases. When an application relies
on an external library to function properly, and that li-
brary does not exist within the cloud environment, there
are two options: (1) Rewrite the library from scratch for
the cloud environment - This is seen by CMP as adding
new code into the system and is sufficiently captured
by CMPcode. Hence, the migration tasks related to this
option are excluded from CMPic. (2) Reuse a similar
library (if one exists) in the cloud environment, and
change code in the system to preserve functionality
and to connect with the new library seamlessly - The
migration tasks involved in this option are integrating
the new library into the system, which will be assessed
by CMPic, and changing code, which is assessed by
CMPcode and excluded from CMPic. If the libraries are
found available in the cloud environment exactly as
required, the migration tasks expected are to integrate
them with the system and are measured by CMPic.

Second, we evaluate the complexity of each IC task
based on the number of configuration steps required and
the installation methods (from binary files or source code)
as in Table V.

Table V
COMPLEXITY EVALUATION FOR EACH IC TASK

Configuration Installation
No installation Package Source Code

< 2 Low Low Average
2− 5 Low Average High
≥ 6 Average High High

Finally, each IC task is assigned with a weighted value
as in Table VII based on its type from the first step and
its complexity level from the second one. The final value
of CMPic is determined as: CMPic =

∑1
i=0

∑2
j=0xij ×

wij , where xij is the number of IC tasks of type i with
complexity level j, and wij is the weighted value for IC
task type i and complexity level j.

D. CMPdb

CMPdb assesses all migration tasks related to modifying
queries and populating data to new databases, excluding
database server installation tasks and any code changes
required which have been covered by CMPic and CMPcode,
respectively. Since the effort required for each query modifi-
cation task or data population task is quite uniform, CMPdb
is easier to calculate than other CMP components.

First, all database related tasks are identified and classified
into two types:
• Query modification task: when a database changes in

database type (e.g., MySQL to MSSQL), or database

version, or from relational to NoSQL database, queries
must be modified accordingly.

• Data population task: Data in each table must be
packaged and loaded into the new database.

Table VI
COMPLEXITY EVALUATION FOR EACH DATABASE TASK

Database changes Complexity level
Same relational database, same version Low

Same relational database, different version Average
Different relational databases Average

Relational to NoSQL databases High

Second, the complexity of each task is determined based
on the differences between the database of the local data
center and the database in cloud: same type of relational
database, same type of relational database but different
versions, different types of relational databases, or relational
to NoSQL database. Table VI summarizes these complexity
levels.

Finally, CMPdb is determined by the number of database
tasks and for each database task its associated weight as
in Table VII. The final value of CMPdb is calculated as:
CMPdb =

∑1
i=0

∑2
j=0xij × wij , where xij is the number

of database tasks of type i (i.e., the number of queries
to be modified or the number of tables to be populated)
with complexity level j, and wij is the weighted value for
database task type i and complexity level j.

E. CMP

The final value of CMP is determined as a weighted sum
of its four components CMPi with i ∈{conn, code, ic, db}:

CMP =
3∑

i=0

CMPi × wi

where CMPi is the value of CMP type i, and wi is the
weighted value for CMP type i (as shown in Table VII).

Table VII
EVALUATING CMP’S COMPONENTS

CMP Type Complexity Level WeightLow Average High

CMPconn

LAN-to-LAN 1 3 4
3LAN-to-WAN 1 6 9

WAN-to-LAN 1 6 9

CMPcode

PDT 3 6 10

5
HIT 4 7 12

DMT 5 8 13
TMT 4 6 9

CMPic
Application 1 2 7

2Infrastructure 1 3 9

CMPdb
Query Modification 1 3 8

1Data Population 3 4 10

VI. THEORETICAL VALIDATION

Validation is an essential process to justify whether a
software metric meets its specification and fulfils its intended

purpose [5], [7]. It is widely accepted that there are two types
of validation required for software metrics, namely theoreti-
cal validation and empirical validation. The objective of the
theoretical validation is to prove that a metric sufficiently
satisfies the necessary conditions of a measurement metric
that it claims to be (e.g., , sizing metrics, complexity met-
rics, cohesion metrics, coupling metrics, etc.), whereas the
empirical validation is to show that the metric is practically
useful within a given context.

Briand et al. [7] proposed a generic mathematical frame-
work that defines some software measurement concepts,
such as size and complexity. The framework provides differ-
ent sets of convenient and intuitive properties which are used
as necessary conditions for each measurement concept. In
this section, we mathematically validate CMP against three
properties of a size concept proposed in [7].

Based on [7], a system S can be represented as a pair
〈E,R〉, where E is the set of elements of S, and R is
a binary relation of E (R ⊆ E × E). In the context
of this paper, a migration project is defined as a set of
migration tasks as in Section IV, and each migration task
examines one component to be migrated. In light of this
analogy, a migration project can be represented as a system
S = 〈E,R〉, where E is the set of migrating components
of S, i.e., components to be migrated, removed, and added;
and R is the set of connections between elements of E,
i.e., method calls between classes and network connections
between non-code elements.

Three properties for a size metric proposed by [7] are:
Non-negativity, Null Value, and Module Additivity. These
properties are formalized as:
• Property Size 1: Non-negativity - The size of a system

S = 〈E,R〉 is non-negative: Size(S) ≥ 0
Proof: Size(S) is the CMP value of the migration

project S. CMP is obtained as a weighted sum of its
four components, which in turn are weighted sums of
non-negative numbers. Hence, CMP = Size(S) ≥ 0,
or the Non-Negativity Property is verified.

• Property Size 2: Null Value - The size of a system S =
〈E,R〉 is null if E is empty: E = ∅ ⇒ Size(S) = 0

Proof: CMP is determined by assessing each com-
ponent to be migrated, evaluating its migration task’s
complexity, and assigning an associated weight to it.
The final value of CMP is the sum of all the weights
of the migration task set. If E = ∅, i.e., there exist no
components to be migrated, there is no weight to be
assigned. Hence, CMP = Size(S) = 0, or the Null
Value Property holds.

• Property Size 3: Module Additivity - The size of a
system S = 〈E,R〉 is equal to the sum of the size
of two of its modules m1 = 〈Em1, Rm1〉 and m2 =
〈Em2, Rm2〉 such that any element of S is an element
of either m1 or m2: ∀m1, m2((m1 ⊆ S and m2 ⊆
S and E = Em1 ∪ Em2 and Em1 ∩ Em2 = ∅) ⇒

Size(S) = Size(m1) + Size(m2))
Proof: The CMP calculation examines each el-

ement ei (i.e., migrating component i) of E =
{e0, e1, ..., en−1} independently. Each element ei is
assessed by a migration task, which is assigned a weight
wi. CMP is then determined as the sum of all these
weights, i.e., CMP =

∑n−1
i=0 wi. If E is divided into

two disjoint subsets Em1 and Em2, with no loss of
generality, Em1 and Em2 can be represented as: Em1 =
{e0, e1, ..., ek−1} and Em2 = {ek, ek+1, ..., en−1},
where k ≤ n. Applying the same process of determin-
ing CMP, the values CMPm1 and CMPm2 of these
two subsets of migration tasks Em1 and Em2 are:
CMPm1 =

∑k−1
i=0 wi and CMP =

∑n−1
i=k wi. As a

result, CMPm1 + CMPm2 =
∑k−1

i=0 wi +
∑n−1

i=k wi =∑n−1
i=0 wi = CMP . Hence, the Module Additivity

Property is satisfied.
We have shown that CMP satisfies all three necessary

conditions of a size measurement proposed by [7], hence it
can sufficiently measure a migration project’s size.

VII. EMPIRICAL VALIDATION

Besides the theoretical validation, the empirical validation
is necessary to ensure that CMP is practically useful as
an indicator of effort estimation in terms of person-hours.
Because of the limited number of data points publicly
available, the data we use for this empirical validation is
extracted from a number of small-scale projects we have
conducted. Although the validity of these data points has not
been verified externally with other research projects, they are
suitable for empirical validation because: (1) We have access
to all necessary information required to determine CMP. (2)
These projects cover different migration project types. In an
actual migration project, not all aspects of CMP happens at
the same time in one project. Therefore, these data points
sufficiently reflect what is likely to happen in reality. (3) The
uniformity of these projects are ensured, because they were
carried out by the same team. Therefore, the external cost
factors as discussed in Section III have minimal impact on
these data points. This is suitable for validating the CMP
model since we focus on internal cost factors only.

Table VIII shows the data points extracted from our six
projects. For FSO, the majority of the effort was spent on
securing and optimizing WAN connection. While TPC-C,
TPC-W, and Cloudstone required most effort on installation
and population of data. The migration process of PetShop.
Net and PetStore Java involved installation, data population,
and code changes, especially migrating PetStore Java rela-
tional database to SimpleDB.

As part of our empirical validation, we followed a leave-
one-out cross-validation approach on the samples of our
dataset. This approach is the same as a k-fold cross-
validation, in which k is equal to the number of data points.
The k-fold cross-validation has been successfully used to

Table VIII
EMPIRICAL VALIDATION DATA POINTS

No Project Effort(hours) CMP
1 FSO 45 504
2 TPC-C 4 60
3 TPC-W 6 95
4 Cloudstone 9 149
5 PetShop .Net 32 337
6 PetStore Java 51 645

validate cost estimation models in the literature, and is
especially recommended for small data sets [5], [8]. In the
leave-one-out cross-validation, each single data point is used
as the validation data, whereas the remaining data are used
as training sets. This is repeated until each data point is used
as the validation data once.

In our context, we performed six rounds of validation.
Each round uses five projects as the training set, and one
project is left out as the validation set. Descriptive statistics
were computed for each training set, based on which the
boxplot and outliers of each set were analysed. Figure 1
shows that there are no outliers in the training sets of the six
validation rounds which may biasedly influence the derived
models from regression analysis.

Figure 1. The boxplots for the six training datasets of variable CMP

Figure 2. The scatter plots for OLS regression

The scatter plots in Figure 2 show a positive linear
relationship between CMP and Effort (in hours) of each
training set. As a result, an Ordinary Least-Squares (OLS)
regression analysis is then applied on each training set to

Table IX
OLS REGRESSION ANALYSIS RESULTS

Training Set Coefficient Intercept R2 Models: Effort = m × CMP + c
Value t-value p-value Value t-value p-value

1 0.0869 10.504 0.002 −1.4664 −0.4399 0.6898 0.9736 Effort = 0.0869× CMP− 1.4664
2 0.0858 10.958 0.002 −0.8785 −0.2789 0.7984 0.9756 Effort = 0.0858× CMP− 0.8785
3 0.0849 12.507 0.001 −0.2669 −0.0985 0.9277 0.9812 Effort = 0.0849× CMP− 0.2669
4 0.086 16.339 0.000 −1.9929 −1.0084 0.3876 0.9889 Effort = 0.086× CMP− 1.9929
5 0.0839 12.069 0.001 −1.1697 −0.501 0.6508 0.9798 Effort = 0.0839× CMP− 1.1697
6 0.0972 17.112 0.000 −3.0637 −1.9008 0.1535 0.9899 Effort = 0.0972× CMP− 3.0637

derive the equation of the trend line, which can be used as
a prediction model for effort required in hours.

The proficiency of each regression model is determined
by the Coefficient of Determination R2, representing the pro-
portion of the dependent variable effort (in hours) explained
by the independent variable CMP. Moreover, the statistical
significance of CMP as a predictor of effort is evaluated
with t-test and is determined by t-value and p-value of the
coefficient of the prediction model. If p-value < 0.05, the
null hypothesis can be rejected; in other words, it shows that
CMP is a significant predictor of effort. The t-value is then
applied to indicate the reliability of the predictor. If t-value
> 1.5, it shows that CMP is a reliable predictor of effort.
The results of R2, t-value, and p-value of the coefficients and
the intercepts of all six validation rounds are summarized
in Table IX. The result suggests that the coefficients of
the models are statistically significant and hence CMP is
indicated to be a significant predictor of effort. Although the
intercepts are statistically insignificant, each derived model
has a high value of R2 and all the coefficients pass the
significant test. In other words, the OLS regression analysis
results still shows a strong linear relationship between CMP
and effort (in hours). For example, in the first training set,
the derived model is: Effort = 0.0869× CMP −1.9929, with
high value of R2 = 0.9736 and the coefficient is significant
at level 0.05.

The cross-validation result were determined by using the
derived models to compute the predicted effort of the left-
out project in each validation round (reported in Table X).
The results were then evaluated using the following metrics:

• Magnitude Relative Error (MRE):
MRE = |AE−PE|/AE, where AE is Actual Effort,
and PE is Predicted Effort.

• Mean Magnitude Relative Error (MMRE):
MMRE =

∑
MRE/n, where n is the sample size,

and MMRE ≤ 0.25 is acceptable.
• Prediction at level l (or PRED(l) in short):

PRED(l) = k/n, where k is the number of observa-
tions such that MRE ≤ l. Note that, k ≤ n, hence
0 ≤ PRED(l) ≤ 1. The closer the PRED(l) value to
1 the better, and PRED(0.25) ≥ 0.75 is acceptable.

Table X shows that the MMRE value is 0.199 and the
prediction at level 0.25 is 0.833. This result suggests that
the CMP can produce an accurate cost estimate which

Table X
RESULTS EVALUATION

No Project CMP AE PE MRE
1 FSO 504 45 41.116 0.086
2 TPC-C 60 4 3.221 0.195
3 TPC-W 95 6 7.272 0.212
4 Cloudstone 149 9 12.383 0.376
5 PetShop .Net 337 32 26.989 0.157
6 PetStore Java 645 51 59.63 0.169

MMRE 0.199
PRED(0.25) 0.833

can be used as a predictor of effort estimation for cloud
migration projects. The metric is useful and thus allows cost
justification of a cloud migration project at early stage.

VIII. RELATED WORK

Software effort estimation is an important and challenging
issue in empirical software engineering. A more complicated
project typically requires more effort both in development
and maintenance. Software size measurement is a con-
ventional way to indicate a project’s complexity. In this
section, we review existing software size measures and effort
estimation approaches to evaluate their applicability in the
context of migration to cloud.

A. Software Size Measurement

Software size measurement is commonly derived in the
form of a metric to measure the complexity and character-
istics of a software project using either source lines of code
or function points or it extended variants.

Source Line of Code (SLOC) is a traditional size measure
that counts the number of lines in a software product’s
source code [9], [10]. However, counting SLOC is only
possible after the implementation phase when source code is
available, which makes SLOC not applicable for estimation
in early phase of the development cycle [4] [11].

Function Point (FP) is a metric developed by Albrecht
in 1983 [4] to measure a software system’s size in terms
of system functionality, independent of implementation lan-
guage. FP is used to estimate the amount of functions a
software provides, on the rationale of how much data it
uses and generates. FP of a system can be developed as
early as discussions with customers in the development cycle
proceeds, because it is directly related to user requirements.
Although FP is most applicable for only procedural business

systems, it has formed a firm foundation for a number of ex-
tensions suitable for other types of systems and development
paradigms [5], [12]–[17].

Karner [16] proposed Use Case Point (UCP) model in-
spired by FP. It measures a system functionality based on
use cases, actors, and transactions. Abran et al. [12] extended
the applicability of FP to real-time software by introducing
Full Function Point (FFP). FFP redefines FP’s function
types to capture specific real-time software characteristics
that FP fails to measure, such as: large number of single
occurrence groups of data, or fluctuating number of sub-
processes. At the same time, Antoniol et al. [14], on the other
hand, developed Object-Oriented Function Point (OOFP) for
sizing OO systems. OOFP relies on object models to map
FP’s function types into OO concepts. Reifer [17] extended
FP to Web Object (WO) for sizing Web projects, by adding
four new web-specific components: multimedia files, web
building blocks, scripts, and links.

Costagliola et al. [5], in 2005, proposed Class Point
(CP1 and CP2 for initial size estimation at the beginning
of the development process and further detailed estimation
when more data are available later in the development
process, respectively). Class Point does not apply one-to-
one mappings from FP’s function types to OO concepts like
other extensions, but rather focus on classes as the basic
units.

SLOC, FP and its extensions have been widely used to
measure size of different types of systems and development
paradigms. However, their applicability is limited to software
functionality development. The main purpose of migrating
a system to cloud is not to develop new functionalities,
but to reuse the existing ones, while, at the same time,
benefited the best performance from cloud offerings. In light
of this stance, none of the existing metrics are suitable for
estimating size and effort of a migration project to cloud.

B. Effort Estimation Approaches

There is a diverse range of effort estimation approaches in
the literature [18], [19]. They can be categorized into three
general types: analogy, expert judgement, and algorithmic
models [20]–[22].

Effort estimation using analogy is the process of iden-
tifying a problem as a new case, retrieving similar cases
from a repository and using the knowledge derived from
those previous cases to suggest a solution for the new
case [20]. This approach is not applicable for the cloud
context at this stage because cloud is still at its early
adoption phase and hence there is a lack of data points
for previously completed migration projects. Analogy-based
estimation typically requires tens of data points.

Expert judgement is another well-known approach for
estimation [21]. This approach captures knowledge, expe-
riences, and expertise of practitioners who are recognized
as experts within a domain of interest, and derives estimates

based on historical data that they are well aware of, or past
projects that they participated. Similar to the analogy-based
approach, because of the newly emergence of cloud, there is
a lack of experienced developers specialising in the task of
cloud migration. Nevertheless, this approach shows a great
potential when cloud gets more mature in the future.

The most dominating estimation approach is algorithmic
models [18]. This approach estimates efforts using mathe-
matical formulas to establish the relationship between de-
pendent and independent variables of the models, which are
the estimated effort and influential cost factors, respectively.
This approach also required historical data to develop the
algorithmic model; however, the model itself is more generic
than the other two approaches, which makes model-based
technique more suitable to apply for a broader range of
migration projects to cloud at this stage.

Size of a project is one of the key factors in algorithmic
models for the project’s effort estimation. This again con-
firms our motivation to build the CMP model for sizing a
migration project to cloud.

IX. CONCLUSION

Cloud Migration Point (CMP) approach has been devel-
oped in this paper as an important software size measure for
legacy-to-cloud migration projects. Our study shows CMP is
more suitable for cloud migration projects than other existing
size metrics in the literature since it captures special aspects
of the cloud migration context, as discussed in section III.
Moreover, CMP emphasises on distinguished features of
cloud migration, as distinct from migrating between two
local data centres, such as cloud users (or developers) do
not possess full control over the cloud environment as they
do in a local data centre. This results in the limited range
of actions for each migration task. Therefore, the CMP
model takes into consideration cloud-specific dependencies
for each migration task, for example, only security and pro-
tocol optimisation are assessed for each connection task, or
database tasks are concerned with migrating from relational
to NoSQL databases, and so on.

In a project development cycle, the CMP model fits well
into before the implementation phase and after the design
phase. One important assumption for CMP is all design
decisions have been made. These design decisions have
direct impact on how CMP is counted, since they define
all anticipated migration tasks. The CMP counting process
itself does not require much training and effort; however,
its accuracy relies on the sufficiency and granularity of the
migration task list. Therefore, it is important to carefully
analyse the list of expected migration tasks to ensure it
captures the cloud migration aspects adequately and with
as much details as possible.

The CMP model measures the size of a migration project
from a local data center to cloud with the condition L 6= ∅,
as discussed in Section IV. However, the CMP model was

developed without any constraint on L. In other words, the
CMP model is also applicable to migration projects with
L = ∅, which means the system can be migrated from cloud
back to the local data center. This symmetric characteristic of
CMP enables the measurement to expand beyond just two
data centers. When there are more than two data centers
(either from local to cloud, or vice versa) involved in the
migration process, the CMP model can be repeatedly applied
for each pair at a time.

The CMP model satisfies all necessary conditions of a
software size measurement and it has been empirically vali-
dated as a predictor of effort estimation for cloud migration
projects with the dataset extracted from our experiments and
industrial projects. We have identified more possible data
points from other industrial and public projects. Interviews
and surveys have been planned as our next step to collect
data from those projects for further validation of CMP.

REFERENCES

[1] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lind-
ner, “A break in the clouds: towards a cloud definition,”
SIGCOMM Computer Communication Review, vol. 39, no. 1,
pp. 50–55, 2009.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia, “Above the clouds: A berkeley view of cloud
computing,” Electrical Engineering and Computer Sciences,
University of California at Berkeley, Tech. Rep., 2009.

[3] V. Tran, J. Keung, A. Liu, and A. Fekete, “Application migra-
tion to cloud: A taxonomy of critical factors,” in Proceedings
of the ICSE Software Engineering For Cloud Computing
Workshop, SECLOUD. New York, NY, USA: ACM, 2011.

[4] A. Albrecht and J. Gaffney, “Software function, source lines
of code, and development effort prediction: A software sci-
ence validation,” IEEE Transactions on Software Engineering,
vol. 9, pp. 639–648, 1983.

[5] G. Costagliola, F. Ferrucci, G. Tortora, and G. Vitiello,
“Class point: An approach for the size estimation of object-
oriented systems,” IEEE Transactions on Software Engineer-
ing, vol. 31, pp. 52–74, 2005.

[6] F. Niessink and H. v. Vliet, “Predicting maintenance effort
with function points,” in Proceedings of the International
Conference on Software Maintenance. Washington, DC,
USA: IEEE Computer Society, 1997, pp. 32–39.

[7] L. Briand, S. Morasca, and V. Basili, “Property-based soft-
ware engineering measurement,” IEEE Transactions on Soft-
ware Engineering, vol. 22, no. 1, pp. 68 –86, Jan. 1996.

[8] L. Briand, K. El Emam, D. Surmann, I. Wieczorek, and
K. Maxwell, “An assessment and comparison of common
software cost estimation modeling techniques,” in Proceed-
ings of the International Conference on Software Engineering
ICSE, May 1999, pp. 313 –323.

[9] J. Verner and G. Tate, “A software size model,” IEEE Trans-
actions on Software Engineering, vol. 18, pp. 265–278, April
1992.

[10] J. J. Dolado, “A validation of the component-based method
for software size estimation,” IEEE Transactions on Software
Engineering, vol. 26, pp. 1006–1021, October 2000.

[11] R. Lai and S.-J. Huang, “A model for estimating the size
of a formal communication protocol specification and its im-
plementation,” IEEE Transactions on Software Engineering,
vol. 29, pp. 46–62, January 2003.

[12] A. Abran, “Functional size measurement for real time and
embedded software,” in Proceedings of the 4th IEEE In-
ternational Symposium and Forum on Software Engineering
Standards. Washington, DC, USA: IEEE Computer Society,
1999, pp. 259–.

[13] T. Dekkers, F. Vogelezang, and S. N. B. V, “Cosmic full func-
tion points: Additional to or replacing fpa,” in Proceedings
of the Ninth International Software Metrics Symposium, ser.
ACOSM, 2003.

[14] G. Antoniol, C. Lokan, G. Caldiera, and R. Fiutem, “A
function point-like measure for object-oriented software,” Em-
pirical Software Engineering, vol. 4, pp. 263–287, September
1999.

[15] P. Mohagheghi, B. Anda, and R. Conradi, “Effort estimation
of use cases for incremental large-scale software develop-
ment,” in Proceedings of the 27th international conference
on Software engineering, ser. ICSE. New York, NY, USA:
ACM, 2005, pp. 303–311.

[16] G. Karner, “Resource Estimation for Objectory Projects,”
Objectory Systems, 1993.

[17] D. Reifer, “Web development: estimating quick-to-market
software,” Software, IEEE, vol. 17, no. 6, pp. 57 –64, 2000.

[18] M. Jorgensen and M. Shepperd, “A systematic review of
software development cost estimation studies,” IEEE Trans-
actions on Software Engineering, vol. 33, no. 1, pp. 33–53,
January 2007.

[19] B. Boehm, C. Abts, and S. Chulani, “Software development
cost estimation approaches a survey,” Annals of Software
Engineering, vol. 10, pp. 177–205, January 2000.

[20] M. Shepperd and C. Schofield, “Estimating software project
effort using analogies,” IEEE Transactions on Software En-
gineering, vol. 23, no. 11, pp. 736 –743, Nov. 1997.

[21] M. Jorgensen, “A review of studies on expert estimation
of software development effort,” Journal of Systems and
Software, vol. 70, no. 1-2, pp. 37 – 60, 2004.

[22] G. R. Finnie, G. E. Wittig, and J.-M. Desharnais, “A compar-
ison of software effort estimation techniques: Using function
points with neural networks, case-based reasoning and regres-
sion models,” Journal of Systems and Software, vol. 39, no. 3,
pp. 281 – 289, 1997.

