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Abstract 

Frequent or contextually predictable words are often phonetically reduced, i.e. shortened and 

produced with articulatory undershoot. Explanations for phonetic reduction of predictable 

forms tend to take one of two approaches: Intelligibility-based accounts hold that talkers 

maximize intelligibility of words that might otherwise be difficult to recognize; production-

based accounts hold that variation reflects the speed of lexical access and retrieval in the 

language production system. Here we examine phonetic variation as a function of 

phonological neighborhood density, capitalizing on the fact that words from dense 

phonological neighborhoods tend to be relatively difficult to recognize, yet easy to produce. 

We show that words with many phonological neighbors tend to be phonetically reduced 

(shortened in duration and produced with more centralized vowels) in connected speech, 

when other predictors of phonetic variation are brought under statistical control. We argue 

that our findings are consistent with the predictions of production-based accounts of 

pronunciation variation.  

 

Keywords: Phonological neighborhood density; Word production; Lexical access; Audience 
design; Pronunciation variation; Phonetic reduction; Word duration; Vowel dispersion; 
Vowel centralization; Spontaneous speech; Corpora. 
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Introduction 

Many studies have noted a relationship between pronunciation and predictability 

of utterances. For example, Liebermann (1963) observed that tokens of the word “nine” 

were shorter and less intelligible when excised from the context “A stitch in time saves 

___” than from “The next word will be ___”. Similar observations have been made for 

words that are frequent, repeated within a discourse, or contextually predictable based on 

semantic, syntactic, or phonological criteria, creating wide-spread consensus that highly 

predictable items tend to be phonetically reduced. Phonetic reduction is usually 

understood to mean not only durational shortening, but also articulatory undershoot 

resulting in consonant lenition, increased coarticulation, and vowel centralization (Aylett 

& Turk, 2006; Bell, Brenier, Gregory, Girand, & Jurafsky, 2009; Bybee, 2001; Fowler & 

Housum, 1987; Gahl, 2008, 2009; Gahl & Garnsey, 2004; Hunnicutt, 1985; Jurafsky, 

2003; Quené, 2008; Tily, et al., 2009).  

Despite this broad consensus, it remains unclear why highly-predictable items 

reduce – or why, conversely, items of low predictability tend to be lengthened and 

hyperarticulated. Broadly speaking, explanations of phonetic variation – and variation at 

other levels of linguistic structure - tend to take one of two approaches, which may be 

termed “intelligibility-based” and “production-based”, respectively. Intelligibility-based 

accounts (sometimes termed “listener-oriented” or stated with reference to Audience 

Design (Clark, Brennan, Resnick, Levine, & Teasley, 1991; Galati & Brennan, 2010)) 

note that speakers may adjust their speech so as to ensure intelligibility of words that 

might otherwise be difficult to understand (Aylett & Turk, 2004; Flemming, 2010; Fox 

Tree & Clark, 1997; Lindblom, 1990; van Son & Pols, 2003 for pronunciation variation; 



Neighborhood density and phonetic reduction   3 

and Lockridge & Brennan, 2002, Levy & Jaeger, 2007, Galati & Brennan, 2010, and 

Jaeger, 2010 for variation at other levels of linguistic structure).1 Production-based (or 

“speaker-internal”) accounts, by contrast, attribute variation to production-internal 

mechanisms, such as variation in the speed of lexical access, retrieval, and encoding in 

language production. Reduced forms, on this view, occur because articulation reflects the 

time course of lexical access and retrieval (see for example Bell et al. 2009, Ferreira, 

2008; Gahl, 2008 for pronunciation variation; Ferreira & Dell, 2000, Ferreira, 2008 for 

variation in syntactic realization and word choice) . Both of these two approaches, then, 

attribute variation to speed and ease of retrieval. They differ in that the relevant retrieval 

processes underlie either word recognition (in intelligibility-based accounts) or production 

(in production-based accounts).  

                                                
1 Several of these proposals (Van Son & Pols,. 2003, Aylett & Turk, 2004, Levy & Jaeger, 

2007, Jaeger 2010) are based on information theory and relate the reduction of highly-

predictable forms to the pacing of information density throughout utterances. Since estimates 

of information density are based on the probability of recognition, i.e. from the listener’s 

perspective, these approaches have typically aligned themselves with intelligibility-based 

approaches to variation. Depending on how information density is modeled, information-

theoretic approaches can in principle arrive at the same predictions as production-based 

approaches, a possibility that is explicitly mentioned in Jaeger (2010): “[w]hether speakers 

consider their interlocutors’ perspective when estimating information density is an empirical 

question that remains for future research.” (Jaeger, 2010: 51). 
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Comparing the merits of production-based and intelligibility-based approaches is 

complicated by the fact that these approaches often yield identical predictions: High 

frequency and high predictability generally makes words good candidates for shortening 

on the basis of ease of retrieval for production, and it also enables listeners to cope well 

with poor intelligibility. At the core of this ambiguity is the fact that, “[f]or the most part, 

the same things that make a word easy to understand make that word easy to say.” (Dell & 

Gordon, 2003, p. 9).  

To understand the relationship between pronunciation and predictability of 

utterances, then, one must ask which retrieval speed matters for the articulation of more 

vs. less predictable items: production retrieval speed or recognition retrieval speed?  The 

goal of the present paper is to address this question.  

With that goal in mind, we focus here on a property of words that affects 

production and recognition processes differently. As Dell and Gordon (2003) point out, a 

lexical variable that has this property is phonological neighborhood density. Phonological 

neighborhood density is a measure of the number of words in the lexicon that are 

phonologically similar to a given target word. By the most common metric (Luce, Pisoni, 

& Goldinger, 1990; Nusbaum, Pisoni, & Davis, 1984; Pisoni, Nusbaum, Luce, & 

Slowiaczek, 1985), two words are considered neighbors if they differ by deletion, 

insertion, or substitution of one segment (but see Goldrick, Folk, & Rapp, 2010 for an 

evaluation of different neighborhood metrics as predictors of speech errors). Importantly 

for the current discussion, words with many neighbors are recognized more slowly and 

less accurately than words with few neighbors (Luce & Pisoni, 1998; McClelland & 

Elman, 1986; Vitevitch & Luce, 1998). The relationship between neighborhood density 
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and confusability conforms to many people’s intuitions: It is easy to imagine a listener 

mishearing, for example, cat as hat or cap or some other similar-sounding word. In 

recognition, then, high phonological neighborhood density creates competition between 

the target and its neighbors. Interestingly, the effects of phonological neighborhood 

density on production are quite different: Having many neighbors facilitates word 

production, as evidenced in speech error rates (Stemberger, 2004; Vitevitch, 1997, 2002; 

Vitevitch & Sommers, 2003) and naming latencies (Vitevitch, 2002; Vitevitch & 

Sommers, 2003) in neuro-typical speakers, and in speakers with acquired language 

disorders (Goldrick, et al., 2010; Gordon, 2002). Phonological neighborhood density thus 

appears to have inhibitory effects on recognition, but facilitative effects on production.  

The inhibitory effect of high phonological neighborhood density has been modeled 

in several models of word recognition, such as the TRACE model (McClelland & Elman, 

1986), the Shortlist model (Norris, 1994), and the Neighborhood Activation Model 

(NAM) (Luce & Pisoni, 1998). The basic mechanism for modeling the competition 

between a target and its neighbors in all of these models is that presentation of a target 

word activates the target along with its neighbors. The activation of other words besides 

the target word causes a delay or possibly failure in recognizing the target.2   

                                                
2 It should be noted that the notion of activation in the current discussion 

represents a construct in models of lexical access and retrieval, and in the memory 

literature more broadly (Anderson, 1983). “Activation”, in that literature, refers to a 

gradient property of nodes in a network that is used to predict interactions among nodes in 

the network and maps onto processing times for retrieving items from long-term memory. 

The modeling constructs of “activation”, and of “accessibility”, differs from the use of 
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The facilitative effect of high phonological neighborhood density on language 

production has been modeled more recently (Dell & Gordon, 2003) in the two-step 

interactive model of lexical access (Dell, 1986; Dell, Schwartz, Martin, Saffran, & 

Gagnon, 1997). The two-step interactive model of lexical access is a spreading-activation 

model containing a conceptual semantic level, a “lemma” level, which represents words as 

semantic/syntactic units, and a level of phonological segments. Importantly, the model 

assumes that activation may flow in both directions: from lemmas to phonological 

segments, and from phonological segments to lemmas. As a consequence, once activation 

has spread from a target lemma to the desired phonological segments, it spreads from 

those segments to the lemma representations of the target’s phonological neighbors, each 

of which is linked to all but one of the target’s phonological segments. The target’s 

neighbors, once activated, send activation to their phonological segments – and the 

segments, in turn, send activation back to all lemmas linked to them, including the target 

lemma.  

Dell and Gordon’s account anchors the seemingly paradoxical effects of 

phonological neighborhood density in one of the most fundamental properties of talking 

and listening: For the most part, speakers start out with an intention to convey some 

meaning, and they select suitable forms. Listeners, by contrast, start out being confronted 

with some form whose meaning they must work out. In production, a target word’s main 

                                                                                                                                                  
those terms in discussions of salience in discourse, for example, where the words 

“activate” and “activation” are sometimes used in the sense of “make/be salient” or “bring 

to someone’s attention”.  
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competitors and the main source of speech output errors are semantically related words, 

not phonologically related words (Dell et al., 1997). High neighborhood density facilitates 

production because feedback from the neighbors’ segments to the target lemma increases 

activation of the target lemma, without increasing the activation of the target’s semantic 

competitors (unless the semantic competitors also happen to be phonologically similar to 

the target). Word recognition, by contrast, is driven by form. A recognition target’s main 

competitors are phonologically related words: Listeners are far more likely to mistake cat 

for hat than for dog. Therefore, “production and comprehension differ in their response to 

neighborhood density in the model because production and comprehension tasks create 

different competitive environments. When the task dictates that phonological neighbors 

are serious competitors, a densely populated phonological neighborhood is detrimental to 

fast and accurate retrieval. When the task dictates that other words are the main 

competitors, neighborhood density promotes accurate retrieval of the target” (Dell & 

Gordon, 2003: 28).  

The fact that high neighborhood density facilitates production, yet inhibits 

recognition, means that this variable allows us to tease apart the role of production-based 

vs. intelligibility-based factors in pronunciation variation. Intelligibility-based accounts 

would lead one to expect that words with many neighbors should be lengthened and 

strengthened, to compensate for their low intelligibility. Production-based accounts, on the 

other hand, would lead one to expect that words that are retrieved quickly tend to be 

phonetically reduced – provided that fast retrieval speed translates into fast production 

speed. Whether that is the case may depend on a number of other factors, which we 

discuss below. 



Neighborhood density and phonetic reduction   8 

 

Previous studies of neighborhood density effects on pronunciation variation 

 

A number of studies have examined effects of neighborhood density on 

pronunciation. Most of these studies have focused on vowel dispersion as a measure of 

phonetic realization. Vowel dispersion (and its opposite, vowel centralization) refers to the 

distribution of vowel tokens in vowel formant space. It is commonly quantified by 

measuring vowel formants (F1 and F2) in word tokens produced by a talker and 

calculating the Euclidean distance of individual tokens from the center of the space. The 

more central vowels are in F1/F2 space, the more schwa-like and “reduced” they are. 

Figure 1 illustrates the F1/F2 space for a talker in the Buckeye corpus of conversational 

speech (Pitt, et al., 2007).  

------------Insert Figure 1 about here------------------------------------------ 

Increased vowel dispersion is known to be associated with greater intelligibility 

(Bradlow, Torretta, & Pisoni, 1996). Furthermore, increased vowel dispersion is a feature 

of “clear speech”, i.e. a speaking style speakers adopt, for example, when talking to, or 

when asked to imagine themselves talking to, a person with a hearing loss (Moon & 

Lindblom, 1994; Picheny & Durlach, 1985). This makes vowel dispersion a natural 

variable to focus on for determining whether speakers modify vowel dispersion in such a 

way as to counteract neighborhood density effects on intelligibility.  

The first study to investigate whether neighborhood density affected vowel 

dispersion (1997, 2004) examined two groups of monosyllabic (CVC) words read in 



Neighborhood density and phonetic reduction   9 

isolation, selected from a database of recordings from 10 speakers (Torretta, 1995). The 

two groups of words differed in neighborhood density and word frequency. The first 

group of words, termed the “easy” words, were from sparse neighborhoods and had 

relatively high frequencies compared to their neighbors. The second group (the “hard” 

words) were words from dense neighborhoods and had relatively low frequencies, relative 

to their neighbors. It was found that vowels were significantly more centralized in the 

high-frequency, low-density words than in the low-frequency, high-density words. This 

overall effect was carried by the “point” vowels /i,u,a/, i.e. those vowels maximally distant 

from the (articulatory and acoustic) center of vowel space. Since word frequency and 

neighborhood density covaried in the stimulus set, the results do not indicate which of 

these variables was responsible for the observed effect.  

A subsequent study (Munson & Solomon, 2004) probed the effects of word 

frequency and neighborhood density by factorially manipulating these two variables in a 

single-word naming task: It was found that low frequency and high density were each 

associated with increased vowel dispersion relative to high frequency and low density. 

There was also a significant interaction between the two variables, such that words that 

were of low frequency and high density exhibited the greatest degree of dispersion. It 

should be noted that the two sets of high-frequency words did not differ in the number of 

neighbors, but rather in frequency-weighted neighborhood density, a measure combining 

neighbor count and neighbor frequency. If pronunciation reflects neighborhood size, i.e. 

the number of neighbors, rather than frequency-weighted density, then the observed 

interaction could have arisen due to the fact that neighborhood size was not manipulated 

in the high-frequency group.  
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Increased vowel duration is usually associated with increased vowel dispersion 

(Moon & Lindblom, 1994), raising the possibility that variation in vowel dispersion could 

reflect variation in vowel duration. The correlation between vowel dispersion and vowel 

duration in Munson and Solomon’s study was weak, suggesting that the observed pattern 

of dispersion did not result from variation in duration. Watson and Munson (2007) 

confirmed the association of high neighborhood density and increased vowel dispersion in 

young adult and elderly adult speakers. A further follow-up study (Munson, 2007) 

likewise reported greater vowel dispersion for words with high neighborhood density than 

words with low neighborhood density, again using a single-word naming task. Frequency 

and density were manipulated factorially in that study and had different effects: While 

high frequency was associated with reduced vowel dispersion and shorter vowel 

durations, there was no effect of density on duration. The effects of high density were also 

found in a delayed naming task, where participants were asked to respond after a 1000 ms 

delay. No effects of frequency on vowel duration or dispersion were found in the delayed 

naming condition. Similar patterns of greater vowel dispersion for words in dense 

neighborhoods were reported in Scarborough (2010), in which participants produced a set 

of short sentences with the target word in final position (though as pointed out in  

Flemming, 2010, neighborhood density appears to have been confounded with segmental 

context in that study), and in Kilanski (2009), in which participants produced target words 

in a short carrier phrase (“Say __ again.”).  

Scarborough (2009) investigated the degree of nasal coarticulation (nasality in 

vowels adjacent to nasal stops) in monosyllabic words with nasals in syllable onsets (e.g. 

snack, next) or rimes (e.g. dunk, home), along with vowel duration and vowel dispersion. 
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Scarborough found greater degrees of nasality on the vowels in words from dense 

neighborhoods than in words from sparse neighborhoods. Scarborough further found 

greater vowel dispersion in words from dense neighborhoods than in words from sparse 

neighborhoods, consistent with the patterns reported in Wright (1997, 2004) and Munson 

and Solomon (2004). Vowel duration did not differ across conditions. It should be noted 

that neighborhood density in that study was estimated as the sum of the target word 

frequency and the neighbors’ frequency. It is not entirely clear, then, whether the observed 

pattern was due to target word frequency or phonological neighborhood density, or both. 

Coarticulation was also investigated in an earlier, more extensive study (Scarborough, 

2005). Here, the independent variable was the target word frequency relative to the 

summed frequency of the target and the frequency of its phonological neighbors, as a 

measure of confusability of the target with its neighbors. It was found that high 

confusability, based on target frequency relative to summed neighbor frequency, was 

associated with increased degrees of nasal coarticulation and vowel-to-vowel 

coarticulation. 

A further acoustic measure in studies of neighborhood effects is voice onset time 

(VOT), i.e. the time between the release of a stop closure and the onset of subsequent 

vocal fold vibration. Goldinger and Summers (1989, cited in Wright, 1997) found that, 

when talkers read pairs of CVC words that differed only in the voicing of the initial 

consonant (like bat and pat), VOT differed more in pairs from sparse neighborhoods than 

in pairs from dense neighborhoods. A more recent study (Baese-Berk & Goldrick, 2009) 

found that VOT in monosyllabic (CVC or CVCC) words with minimal-pair neighbors 

differing only in voicing of an initial stop consonant, such as pox (vs. box), was longer 
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than in words that did not have such neighbors, e.g. posh (vs. *bosh). It was found that 

this effect was stronger when both words were presented simultaneously on a computer 

screen than when only the target word was presented, without its neighbor. A subsequent 

study (Peramunage, Blumstein, Myers, Goldrick, & Baese-Berk, 2010) confirmed that the 

effect was present even when the minimal pair neighbor was not presented in the stimulus 

set. It should be noted that the variation in VOT in these studies was not a function of 

neighborhood density generally, but specifically of the existence of a minimal pair 

differing in the initial stop consonant.  

Few studies of neighborhood density so far have focused on durational measures, 

other than the duration of the target vowel in studies of vowel dispersion. To date, the 

most extensive study of effects of neighborhood density on word or segment duration is 

Kilanski (2009). As mentioned above, high neighborhood density was found in that study 

to be associated with greater vowel dispersion. The findings for the duration measures, 

however, indicated that high-frequency words had shorter durations than low-frequency 

words, consistent with many previous studies. Interestingly for the current context, high 

neighborhood density was also associated with significantly shorter word and segment 

durations. This pattern of shortening in words from dense neighborhoods appears to have 

been carried by the vowel and the word-final consonants (the words in the stimulus set 

were CVC words). 

The studies mentioned so far used a variety of different measures of neighborhood 

density. As mentioned above, the stimuli examined in Wright (1997, 2004), were 

contained in a database (Torretta, 1995) classifying words as “hard” or “easy” based on a 

criterion taking into account target frequency relative to neighbor frequency along with 
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neighborhood size. Another measure of neighborhood density is weighted by the 

frequency of the neighbors (this measure is used e.g. in Munson, 2007). Another criterion 

that has been used is the sum of the target frequency and the neighbor frequencies 

(Scarborough, 2009), or the log frequency of the target divided by the (log) sum of the 

target frequency and the log frequencies of the neighbors (Scarborough, 2005), as an 

index of the frequency of a target word relative to its neighbors.  

Importantly, previous studies of effects of neighborhood density on pronunciation 

variation have without exception focused on words produced in isolation or in short 

carrier phrases, such as “Say __ to me again” or “The first word is  __. The word after __ 

is ___ ” (Scarborough, 2005). This fact is relevant because the relationship between 

lexical retrieval and phonetic realization may very well be task-dependent. Speakers tend 

to read word lists at a regular pace (Kello & Plaut, 2000, 2003), in effect setting 

themselves a deadline for each item. If speakers hold speaking rate constant, then fast 

lexical retrieval leaves extra time for pronunciation. By contrast, claims about the effects 

of word frequency have for the most part been based on word duration in conversational 

speech. This difference is striking, given that word frequency is not reliably associated 

with shortening when words are produced in isolation or in short carrier phrases. For 

example, one study (Geffen & Luszcz, 1983) found that, while lists of high-frequency 

words were read aloud more quickly than lists of low-frequency words when words were 

blocked by frequency, the difference in speaking tempo was due to differences in pause 

duration, not articulation time (see also Damian, 2003; Guion, 1995; Whalen, 1991). 

Nevertheless, there is broad consensus that high word frequency is associated with 

reduction, based on connected speech data. Analogous evidence on effects of 
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neighborhood density on pronunciation variation in connected speech has not been 

available so far. The current study fills that gap.  

To preview our results: We find that words with many neighbors are shorter in 

duration and contain more centralized vowels than words with few neighbors, when other 

factors influencing word duration and vowel dispersion are controlled for.  

 

Methods 

We examined the effect of phonological neighborhood density on two aspects of 

phonetic realization: word duration and vowel dispersion. Mixed-effects regression 

models were used to bring other known or suspected determinants of word duration and 

vowel dispersion under statistical control. We constructed two sets of models with token 

duration (in the first set of models) and vowel dispersion (in the second set) as the 

outcome variable, Word type and Talker as random effects, and the variables described 

below as fixed effects. All analyses were carried out using the lme4 (Bates & Maechler, 

2010; Bates, Maechler, & Dai, 2008) and languageR (Baayen, 2008b) packages in R (R 

Development Core Team, 2008).  

All data came from the Buckeye Corpus of conversational speech (Pitt, et al., 

2007; Pitt, Johnson, Hume, Kiesling, & Raymond, 2005), which consists of ca. one hour 

of spontaneous speech from each of 40 talkers from Columbus, Ohio, segmented into 

utterances, words, and phonological segments. One half of the talkers were male. One half 

of the talkers were under 40 years of age, and half over 40 years of age.  
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The current study focused on CVC monomorphemic content words in the corpus. 

Information about several of the control variables, described below, was obtained from the 

MRC Psycholinguistics database (Wilson, 1988), the CELEX database (Baayen, 

Piepenbrock, & van Rijn, 1993). Words which did not appear in these databases were 

excluded from the analysis. A total of 175 word types were excluded because they were 

frequently used as function words or as discourse markers (e.g. right or like), their 

orthographic forms corresponded to multiple phonological forms (e.g. read, lead, live and 

route), or represented personal names (e.g. Wayne). The corpus contained 594 word types 

that met the inclusion criteria. The word types that were included in the analyses did not 

differ significantly in neighborhood density from the word types that were excluded 

(mean neighborhood density 21.6 vs. 21.1, t = -0.57). We divided each talker’s interview 

into stretches of speech delimited by changes of turns, non-linguistic sounds such as 

laughter, and pauses longer than 0.5 seconds. Stretch-initial and stretch-final word tokens, 

as well as word tokens immediately following or immediately preceding a filled pauses 

such as um and uh were excluded from analysis, in order to control variation due to 

utterance-initial and utterance-final prosody. In addition, we excluded word types with 

bigram probabilities of 1. Since such words generally represent parts of fixed expressions 

and/or hapax legomena, their properties may not generalize. The final data set contained 

534 word types, represented by 12,414 tokens. A detailed description of the treatment of 

the data can be found in Yao (2011).  

The Buckeye corpus is not currently annotated for syntactic or prosodic structure, 

both of which affect word duration and possibly other aspects of pronunciation (Warren, 

1996; D. Watson & Gibson, 2004). Our decision to limit our investigation to CVC content 
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words, which are all stressable, and to exclude utterance-initial and utterance-final words, 

was in large part driven by the desire to control for effects of prosody. Also in an attempt 

to control for effects of prosody, we included syntactic and semantic lexical properties in 

the model. As we have argued elsewhere (Gahl, 2008, 2009), measures such as 

familiarity, imageability, and syntactic category capture differences between words 

belonging to different syntactic categories, information that in turn affects the likely 

position of a word within prosodic constituents, and hence, its duration. 

The analysis of vowel dispersion further excluded words with central (schwa-like) 

vowels and the diphthongs. Central vowels such as schwa and /ɚ/ are by their nature close 

to the center of vowel space. Studies of vowel dispersion therefore ordinarily exclude 

these vowels, along with the diphthongs /aɪ, oy, aʊ/, whose degree of dispersion cannot 

straightforwardly be measured in the same way as for monophthongs. These exclusion 

criteria are the same as in previous studies of phonological neighborhood density and 

vowel dispersion (Munson & Solomon, 2004; Wright, 2004). The exclusion of central 

vowels and diphthongs meant that the set of words in the analysis of vowel dispersion was 

a subset of the words in the analysis of word durations. The two sets of words were 

analyzed in two separate models, which we present in turn. 

 

Model 1: Word durations 

The outcome variable of the model of word duration was the log-transformed 

token duration. Durations were log transformed to take into account the fact that a given 

absolute difference in duration will amount to a more minor difference in tokens of longer 
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duration. The transformation was further motivated by inspection of the univariate 

distributions: The distribution of log-transformed token durations was more nearly normal 

than the distribution of the raw durations. Log-transforms were also applied to several of 

the predictor variables, as noted in the description of each variable. After all relevant 

transformations, numerical variables were centered, by subtracting the mean transformed 

value from each raw value, following the recommendations in Baayen (2008a).  

The model of word durations included Word type and Talker as random effects, 

and the variables described below as fixed effects, presented here in alphabetical order. 

Treatment coding was used for categorical predictors. Summary statistics for the outcome 

variable and the control variables are shown in Tables 1 (for numerical predictors) and 2 

(for the categorical predictors).  

-----------------------Insert Table 1 about here ------------------------------ 

-----------------------Insert Table 2 about here ------------------------------ 

 

Age: The corpus annotations only indicate two age groups (below and above 40 

years), so Age was included as a binary categorical variable in the model. The majority of 

the talkers mention their age in the course of the interviews, and the ones that do not 

reveal their approximate age to within a small number of years. Talker age ranged from 

late teens to late seventies, but was distributed unevenly across age groups. Preliminary 

versions of the model included more fine-grained information on age, with no change in 

the pattern of results (Yao, 2011).   
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Baseline word duration: Phonological segments differ in duration. For example, 

tense vowels tend to be longer in duration than lax vowels, and nasal stops tend to be 

longer than voiceless oral stops (Bent, Bradlow, & Smith, 2008; Crystal & House, 1988; 

Peterson & Lehiste, 1960; Smiljanić & Bradlow, 2008). Word durations can therefore be 

expected to vary in part as a function of their segmental content. We calculated the 

average duration of each segment type across the entire Buckeye corpus (Pitt, et al., 

2007). We then summed the average durations of each segment in the citation form of 

each word type. That sum represented the word’s baseline duration. The baseline 

durations were log-transformed and centered. 

The purpose of the Baseline duration variable is to capture the fact that word 

durations can be expected to vary due to segment-level properties, in addition to lexical-

level properties. It will be noted that the Baseline durations likely overestimate the 

duration of the word tokens in our corpus, for two reasons: The Baseline values were 

estimates of citation forms, but conversational speech is characterized by many segment 

deletions (Johnson, 2004). Also, the average segment durations were estimated from the 

whole corpus, including utterance-final words and segments, as well as material before 

and after speech disfluencies. Since words and segments lengthen in utterance-final 

positions and near disfluencies, and since we excluded utterance-final and disfluent tokens 

from the regression analyses, average segment durations in the sample we analyzed are 

likely to be shorter.    

Bigram probability given the word preceding / following the target: The 

probability of a word, given the immediately preceding or following word in an utterance, 

has proven a strong predictor of word durations in connected speech (Bell, et al., 2003; 
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Fosler-Lussier & Morgan, 1999). Bigram probabilities were estimated based on the entire 

Buckeye corpus. As mentioned before, word types with average bigram probabilities of 1 

were excluded from further analysis. The bigram probabilities were log-transformed and 

centered around their respective means.    

Familiarity: Subjective familiarity ratings, like frequency estimates, tend to be 

significant predictors of the speed of lexical retrieval (Gernsbacher, 1984; Nusbaum, et 

al., 1984; Pisoni, et al., 1985). Familiarity ratings were those in the MRC 

Psycholinguistics database (Coltheart, 1981; Wilson, 1988).  

Frequency: Frequent words tend to shorten and undergo other types of phonetic 

reduction (Bell, et al., 2009; Bybee, 2001; Gahl, 2008; Schuchardt, 1885).The frequency 

measure used in the current model was each word’s American English SUBTLEX 

frequency (Brysbaert & New, 2009).  We adopted this measure because it has been shown 

to predict lexical decision times and accuracy better than several more widely-used 

measures of word frequency, including CELEX (Baayen, et al., 1993; Kučera & Francis, 

1967). For category-ambiguous items, such as nap, we used the cumulative frequencies, 

e.g. the summed frequencies of the noun nap and the verb nap. The word frequency 

variable was log transformed and centered.  

Phonological neighborhood density: The number of phonological neighbors for 

each word type was obtained from the Hoosier mental lexicon (Nusbaum, Pisoni, & 

Davis, 1984).   

Orthographic length: The length of each word, in letters. Previous work (Warner, 

Jongman, Sereno, & Kemps, 2004) has shown that orthographic length can affect word 
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durations even when segmental content and syllable count are controlled for. 

Orthographic length was centered.  

Phonotactic probability: Two separate phonotactic probability estimates for each 

word type were obtained through the web-based phonotactic probability calculator 

(Vitevitch & Luce, 2004). One was the average bi-phone positional probability, the other 

was the average single-phone positional probability. Since measures of phonotactic 

probability and neighborhood density tend to be highly correlated, and since phonotactic 

probability has been found to facilitate production when neighborhood density is 

controlled (Vitevitch, Armbrüster, & Chu, 2004), we examined the behavior of 

phonotactic probability and neighborhood density closely, in a separate set of models, as 

described below. The Phonotactic probability measures were log-transformed and 

centered. 

Previous mention: Using the same word multiple times in a discourse tends to 

promote shortening and possibly other types of phonetic reduction (Bard, et al., 2000; 

Bell, et al., 2009; Fowler, 1988; Fowler & Housum, 1987; Gahl, 2009).  This information 

was entered into the model as a binary variable coding whether the talker had used the 

target word previously in the course of the interview.   

Speech rate: Two speech rate measures, both measured as syllables per second, 

were coded for each word token: one for the stretch of speech preceding the target within 

the utterance, and the other for the stretch of speech following the target. The speech rates, 

measured in syllables per second, were log-transformed and centered. 

Sex: Talker sex was coded as a binary variable, based on the Buckeye corpus 

information. 



Neighborhood density and phonetic reduction   21 

Syntactic category (part of speech): Each word type was coded as noun, verb, 

adverb, or adjective, based on its syntactic category in the CELEX database. The corpus is 

not syntactically annotated, and hand-disambiguating each token was not feasible. For 

category-ambiguous items, we therefore used the category with the highest frequency for 

that item.  

 

Modeling procedure 

We used the following procedure to ascertain which of the predictor variables 

significantly predicted word duration and vowel dispersion: First, we fitted models using 

only the control predictors, i. e. without the critical variable Neighborhood Density, 

beginning with a model containing all control variables and retaining only those variables 

that showed a significant effect, using an alpha level of .15. Significance was estimated 

based on comparisons between pairs of models with and without each control variable. 

Then, we added Neighborhood Density to the “control” model and used backward 

elimination to make the final decisions as to which predictors to retain in the model, i.e. 

based on comparisons between successively less complex models. At each step, we 

removed one variable and refit the model. We then compared the Log-Likelihoods of the 

models with and without the variable in question. When the null hypothesis is true, the 

change in Log Likelihood (multiplied by 2) follows a chi-square distribution (for 

sufficiently large datasets) with the difference in the number of parameters between the 

two models as the degrees of freedom. Predictors that did not significantly lead to 

significant model improvement, based on this criterion, were eliminated from the model. 
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In the backward elimination procedure for the models of word duration, we 

removed variables in the following order: (1) Neighborhood Density; (2) Speaking rate 

preceding the target; (3) Speaking rate following the target; (4) Bigram probability of the 

target, given the preceding word; (5) Bigram probability of the target, given the following 

word; (6) Baseline duration; (7) Part of Speech; (8) Target word frequency. In the 

backward elimination procedure for the models of vowel dispersion, the order was as 

follows: (1) Neighborhood Density; (2) Vowel duration; (3) Speaking rate following the 

target word; (4) Consonant duration; (5) Bigram probability, given the preceding word; 

(6) Place of articulation of the consonant preceding the target vowel. The least complex 

models of word duration and vowel dispersion contained only the random effects (Talker 

and Word). The p-values associated with the beta coefficients in the final model were 

estimated using the procedure described in Baayen, Davidson and Bates (2008), based on 

the posterior distribution of model parameters generated by Markov Chain Monte Carlo 

(MCMC) sampling procedure (10,000 samples). We also conducted model comparisons 

comparing the full model to models omitting each of the predictors in turn. Each of the 

predictors in the final models that we arrived at using backward elimination yielded 

significant model improvement based on those comparisons, and the direction of predicted 

effects was the same for all predictors regardless of modeling strategy. In prior work 

(Yao, 2011) and in preliminary work for the current study, we explored the behavior of 

the control variables further. Since the order in which predictors are included affects the 

resulting models, we were interested to see whether the behavior of the Neighborhood 

Density variable remained stable under various different orders of entry. This was found 

to be the case. 
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Table 3 shows the bivariate correlations between pairs of variables in the final 

model. 

-----------------------Insert Table 3 about here ------------------------------ 

 

Word Duration Model: Results 

Six predictors – Talker Age, Sex, Orthographic length, Familiarity, Imageability, 

and Previous mention - did not yield significant model improvement based on the change 

in log-likelihood and were eliminated. We also explored some non-linear relationships 

between predictors and word duration, by testing the ability of quadratic and cubic 

functions of the continuous predictor variables to improve the model. This was the case 

for the quadratic effect of Speaking rate in the region preceding the target word. We also 

examined the interaction between Neighborhood size and word frequency, and the three-

way interaction between neighborhood size, frequency, and Sex. Neither of these 

produced significant model improvement, so they were eliminated from the final model. 

With random effects and fixed effects, the final model accounted for 41% of the observed 

variability in word duration. A model with only the random effects (Word and Talker) and 

without any fixed effects accounted for 38% of the variance. A comparison of the random-

effects-only model vs. in the model with the fixed effects showed that including the fixed 

effects reduced the standard deviation of the random effect for Word by 42%.  

Model comparisons also revealed that including random slopes for the 

neighborhood density variable did not yield significant model improvement. This is 

unsurprising, given that many words in our sample only occurred a very small number of 
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times in the speech of a given talker. Given the large number of control variables, we were 

concerned about possible multicollinearity. We assessed the degree of collinearity 

following the procedure in Baayen (2008). The condition number for the model of word 

durations was 6.4, suggesting a level of multicollinearity that is unlikely to be problematic 

(Belsley, Kuh, & Welsch, 1980, cited in Baayen et al. 2007) . A summary of the final 

model is shown in Tables 4 and 5.  

 

-----------------------Insert Table 4 about here ------------------------------ 

-----------------------Insert Table 5 about here ------------------------------ 

 

 

The relationship of the control variables to word duration was what one would 

expect, given previous studies: Longer baseline duration was associated with longer word 

durations. Increasing Frequency, Bigram probabilities, and Speaking rates were associated 

with shorter word durations. The proportion of variability accounted for is low compared 

to some previous models of word and segment duration in connected speech (Bell, et al., 

2009; Gahl, 2008; Quené, 2008). This difference is likely to be due in part to the fact that 

the studies just cited included utterance-final and pre-pausal tokens. Phrase-final position 

and disfluencies produce large effects on word duration, making it possible to account for 

a substantial portion of variability in duration based on these two predictors alone. 

Crucially for the point of the study, increased Neighborhood density was 

associated with shorter word durations. Comparison of models with and without this 
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predictor indicates that including this variable resulted in a significant improvement in 

model fit (χ2(1) = 25.42, p < .0001). The contribution of neighborhood density to word 

duration, although subtle, approaches that of well established predictors of duration: The 

difference between the predicted word durations of words with the smallest vs. the largest 

number of neighbors was 40 ms (269 vs. 229 ms when other predictors are held at their 

median values). For comparison, the difference in predicted duration of words with the 

lowest vs. highest frequency in the dataset was 61 (300 ms. vs. 239 ms.).   

Figure 2 shows the partial effects of all fixed effects in the final model of word 

durations.  

 

 

------------------------Insert Figure 2 about here ---------------------------- 

 

Given the high bivariate correlation between neighborhood density, i.e. the critical 

variable of interest, and phonotactic probability measures, we scrutinized the behavior of 

these variables in a separate set of modeling steps, as follows: We first fitted simple linear 

regression models, predicting neighborhood density from phonotactic probability and vice 

versa. The residuals of these models represent the portion of variability in one variable 

(e.g. Neighborhood density) not attributable to the other (e.g. Phonotactic probability). We 

then added the resulting residuals to our mixed-effects regression models of word 

durations. This allowed us to see the individual contribution of Phonotactic probability 

and Neighborhood density to variability in word duration.  

We used two different measures of Phonotactic probability: The single-phone 

positional probability and the biphone positional probability (Vitevitch & Luce, 2004). 
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Since these two measures are highly correlated with neighborhood density and with one 

another (r = .62 for the correlation between biphone positional probability and 

neighborhood density, r = .58 for the correlation between single-phone positional 

probability and neighborhood density in our data), separate linear regression models were 

fitted, regressing neighborhood density on each phonotactic probability measure in turn. 

The simple regression models are summarized in Table 11 in the Appendix.  

The effects of neighborhood density were stable, regardless of whether phonotactic 

probability or neighborhood density were given a chance to explain the variability that 

could be attributed to phonotactic probability or to neighborhood density: In all models, 

neighborhood density, or the residual neighborhood density measure representing density 

not attributable to Phonotactic probabiliy, neighborhood density was associated with 

shorter word durations (all pMCMC < .0001).  

The effects of phonotactic probability were more variable: When single phone 

positional probability was given a chance to explain all the variability attributable to 

neighborhood density or phonotactic probability, it did not yield a significant effect (t = -

1.46, pMCMC = .17), while residual neighborhood density remained significant (t = -5.92, 

pMCMC < .0001). Likewise, when biphone positional probability was given a chance to 

explain all the variable attributable to neighborhood density or phonotactic probability, it 

also did not yield a significant effect (t = -0.74, pMCMC = .50), while residual neighborhood 

density still remained significant (t = -5.84, pMCMC < .0001). On the other hand, in models 

where neighborhood density was given a chance to explain all the variability ambiguously 

attributable to density or phonotactic probability, residual single-phone and residual 

biphone positional probability were each associated with lengthening to a significant or 
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marginally significant degree (t = 3.02, p MCMC  = .009 for single-phone probability; t = 

1.74, p = .09 for biphone positional probability); in both of these latter models, 

neighborhood density was associated with significant degrees of shortening (t = -6.008, 

pMCMC = .0001 and t = -5.25, pMCMC = .0001, respectively). We conclude that the observed 

effect of neighborhood density is unlikely to be due to phonotactic probability.  

Whereas the model just described measures neighborhood density as the number 

of neighbors, some earlier studies (e.g. Munson, 2007) used a frequency-weighted 

measure of neighborhood density. To facilitate comparison of our results to those earlier 

studies, we repeated the analysis, this time using a frequency-weighted measure of 

phonological neighborhood density (the sum of the neighbors’ log frequencies). The 

frequency-weighted measure of neighborhood density was associated with shorter word 

durations (t = -5.2.91, pMCMC = <.0001), just like the unweighted measure of 

neighborhood size. The pattern of significance and the direction of the predicted effects 

also remained unchanged.  

In summary, the models of word duration suggest that, other things being equal, 

words with many phonological neighbors are shorter than words with few neighbors. To 

examine the effect of phonological neighborhood density on phonetic reduction more 

closely, and to facilitate comparison of our data with earlier studies, we now turn to the 

analysis of vowel dispersion.  
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Model 2: Vowel dispersion 

Methods 

The data set for the analysis of vowel dispersion was smaller than the data set for 

word durations, in part due to the exclusion of central vowels and diphthongs. One 

speaker's data (speaker s35, 222 tokens) were removed due to errors in the transcript, 

which contained incorrect time labels for a sizable portion of the vowels. An additional 

125 word tokens had to be excluded because extremely short durations or low intensity 

precluded reliable formant measurements. The final dataset for the analysis of vowels 

contained 414 word types, represented by 9,075 tokens from 39 talkers.  

Vowel formant analyses were carried out using Praat (Boersma & Weenik, 2002-

2005). The onset and offset of the vowels were those in the Buckeye segmentation. The 

duration of the analysis window was 25 ms, and the time steps were 2.5 ms. For each 

token, we extracted the mean F1 and F2 over the middle 50% of the vowel.  Tokens with 

mean formant values at least 2.5 standard deviations away from the speaker- and vowel-

specific means were manually checked: Where possible, formants for such tokens were 

measured by hand. Tokens for which estimates of the formant values were impossible to 

obtain, e.g. because of excessively short duration, were removed from the dataset. Fewer 

than 1% of the tokens in the database were removed for this reason. Further details about 

the treatment of the data and preliminary analyses can be found in Yao (2011). 

The center of each talker’s F1/F2 space was estimated by obtaining the average F1 

and F2 values for the mid central vowel [ʌ] in all CVC monomorphemic content words 

(e.g. hub) produced by that talker (41 tokens on average). Figure 1 above shows the vowel 
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space of one of the talkers (s26, female). The center of the talker’s F1/F2 space is marked 

with a plus sign.  

Following earlier work (Bradlow, et al., 1996), vowel dispersion was quantified as 

mean Euclidean distance between the F1 and F2 of each vowel token and the center of 

each talker’s F1/F2 space. That distance measure was then normalized, to control for 

between-vowel differences in vowel dispersion: For example, tokens of the vowel [i] are 

further from the F1/F2 center, on average, than tokens of the vowel [ɑ]. We calculated the 

standardized distance of each token as a z-score, i.e. as the difference between the token’s 

distance from the F1/F2 center and the mean distance from the center for all tokens of a 

given vowel type, divided by the standard deviation of the distance from the center for all 

tokens of a given vowel type. Increased distance from the F1/F2 center, compared to other 

tokens of a given vowel, increases standardized distance.   

Normalizing the distance measurements in this way meant that the exact location 

of the designated center of each speaker’s vowel space would not substantially affect the 

results: The standardized distance represented the distance of particular token from the 

center, relative to the typical distance from the center for tokens of that vowel type for a 

given speaker. For example, tokens of the vowel [i] have a certain average distance from 

whatever reference point one might choose. The standardized distance of a particular 

token is the difference between the token’s F1/F2 coordinates and the coordinates of the 

average [i] values, normalized by the standard deviation of F1/F2 values of [i] (to take 

into account the spread of F1/F2 values for tokens of [i]). If the chosen reference point 

were at an extreme point of the vowel space, the estimates of standardized distance would 

be distorted. To check whether the choice of reference point unduly affected the outcome, 
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we repeated our analyses using a different center, based on the average F1/F2 of two sets 

of four non-schwa vowels ([a, æ, i, o] and [a, æ, i, u], respectively). The pattern of results 

was unchanged. 

The model included Word type and Talker as random effects. Most of the fixed-

effect variables in the vowel dispersion model were the same as in the word duration 

model. The model of vowel dispersion additionally included several variables, described 

below, that pertain to the analysis of single segments. As in the model of word duration, 

continuous variables were centered and log-transformed where appropriate. Tables 6 and 

7 present summary statistics of the numerical (Table 6) and categorical (Table 7) 

variables. Table 8 shows the pairwise correlations between the predictors.  

The following variables were specific to the vowel dispersion model: 

Vowel duration: Vowel dispersion is in part a function of vowel duration 

(Lindblom, 1964), both in that short vowels have a tendency to centralize, and in that the 

formants of short vowels tend to be similar to those of surrounding consonants. Therefore, 

reduced vowel dispersion could easily result from variation in vowel duration alone. We 

therefore entered vowel duration in the model. Vowel durations were log-transformed and 

centered.  

Consonant duration: To control for effects of word duration outside of the target 

vowel itself, we also controlled for the duration of the consonants preceding and following 

the target vowel, i.e. the target word duration minus the duration of the vowel (recall that 

all target words were CVC words). Durations were log-transformed and centered.  
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Place and manner of articulation (before, after the target vowel): Neighboring 

consonants can affect vowel formants, due to coarticulation. For example, vowels near 

nasal consonants tend to have lower F2 values, whereas vowels near alveolar consonants 

tend to have higher F2 values. To control for the influence of the consonants in the target 

words, we added categorical variables coding place (front vs. back) and manner (glide vs. 

nasal vs. obstruent) of the consonants preceding and following the target vowel.  

-----------------------Insert Table 6  about here ------------------------------ 

-----------------------Insert Table 7  about here ------------------------------ 

-----------------------Insert Table 8  about here ------------------------------ 

 

 

Results: Vowel dispersion model 

Several variables (Vowel type, Talker age, Sex, Frequency, Part of speech, 

Manner of articulation, Voicing of neighboring segments, Bigram probability given the 

following word, Speaking rate preceding the target word, and Previous mention) were not 

associated with significant model improvement and were removed from the model. 

Random slopes for neighborhood density also did not improve the model and were 

eliminated. Neither the Frequency * Density interaction, nor the three-way interaction of 

Frequency, Density and Sex, yielded significant effects. The control variables that did 

give rise to significant effects in the final model did so in the expected direction: Other 

things being equal, vowels were more centralized (less dispersed) following non-back 

consonants, and before stretches of speech with higher speaking rates. Vowels were more 
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dispersed in tokens with greater vowel and consonant durations. The model accounted for 

34 % of the observed variability in vowel dispersion. The final model is summarized in 

Tables 9 and 10. The partial effects are shown in Figure 3.  

 

------------------------Insert Figure 3 about here ---------------------------- 

 

Turning to the neighborhood density variable, we observed that high neighborhood 

density and squared neighborhood density were both associated with reduced vowel 

dispersion, to a significant degree (Neighborhood density: t.= -1.695,  pMCMC = .04; 

Squared neighborhood density: t = -2.687, pMCMC = .0076).  

-----------------------Insert Table 8 about here ------------------------------ 

 

We examined the contribution of phonotactic probability, using the same 

residualization and model comparison techniques as with the model of word durations: 

We residualized neighborhood density on phonotactic probability and vice versa using 

simple linear regression. We then fitted mixed-effects models with the same random and 

fixed effects as in the final model of vowel dispersion, except that instead of the measure 

of neighborhood density, we entered fixed effects probing the contributions of 

neighborhood density and phonotactic probability. For example, in one model, single-

phone positional probability was entered along with residual neighborhood density, i.e. 

the variability in neighborhood density that could not be predicted from single-phone 

positional probability.  
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The pattern of results was simple. Measures of phonotactic probability (single-

phone positional probability and biphone probability) did not give rise to significant 

effects in any of these models, regardless of whether phonotactic probability was 

residualized on neighborhood density or the other way around (all t < 1.8, all pMCMC > 

.18).  Neighborhood density, by contrast, gave rise to a significant effect in all models and 

was consistently associated with decreased vowel dispersion. This was the case regardless 

of whether neighborhood density was regressed on a measure of phonotactic probability 

or vice versa (all |t| > 2.25, all pMCMC < .03). We conclude that the observed effect of 

neighborhood density was unlikely to be due to phonotactic probability. We note that the 

inability of Phonotactic probability to account for variability in vowel dispersion may 

have to do with competition from the Place of articulation variable, which models some of 

the same segment-to-segment coarticulatory effects that would lead one to expect effects 

of phonotactic probability.  

To facilitate comparison of our results to earlier studies, we also fitted a model 

with a frequency-weighted measure of neighborhood density, in place of the 

neighborhood size variable. The frequency-weighted density measure did not yield a 

significant effect (beta = -0.020, t = -1.125, pMCMC = .37).  

An anonymous reviewer points out that there is some evidence suggesting a 

tendency for talkers to produce novel dialectal variants more readily in contexts that are 

predictable semantically (Clopper & Pierrehumbert, 2008) or based on word frequency or 

frequency-weighted neighborhood density (P. J. Watson & Munson, 2007). The effect we 

observed was not restricted to particular vowel types, which one would expect if the 
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pattern were driven by dialect variation. We therefore believe that dialect variation is 

unlikely to be the source of the effect.   

There is some evidence in previous studies (Munson, 2007; Munson & Solomon, 

2004) of an interaction between frequency and neighborhood density, such that the effect 

of neighborhood density was stronger, or possibly restricted to, low-frequency words. We 

did not observe such an interaction. Nevertheless, it is of course possible that some effects 

of neighborhood density are restricted to, or are strongest in, low-frequency words, which 

are underrepresented in spontaneous speech corpora.  

In summary, neighborhood density – the number of a word’s neighbors in the 

lexicon – was associated with reduced vowel dispersion.  

 

Discussion  

 

Our central finding was that, in conversational speech, words from dense 

phonological neighborhoods were shorter and contained more centralized (less dispersed) 

vowels than words from sparse phonological neighborhoods. These findings resemble a 

familiar pattern of phonetic reduction in words that are of high frequency or high 

contextual predictability (Aylett & Turk, 2006; Bell, Brenier, Gregory, Girand, & 

Jurafsky, 2009; Bell, et al., 2003; Gahl, 2008). 

Our aim in investigating the effects of neighborhood density on word durations 

and vowel dispersion was to understand the role of lexical retrieval and intelligibility in 

pronunciation variation of predictable forms. Neighborhood density provides a means to 
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adjudicate between competing explanations of pronunciation variation, because it has 

been shown to yield facilitative effects on production (Stemberger, 2004; Vitevitch, 1997, 

2002), yet detrimental ones on intelligibility (e.g. Vitevitch & Luce, 1998). Therefore, 

production-based accounts of pronunciation variation lead one to expect phonetic 

reduction of words in dense neighborhoods, whereas intelligibility-based accounts would 

lead one to expect the opposite. Our findings are consistent with the predictions of 

production-based accounts of pronunciation variation in spontaneous speech. 

We begin our discussion by considering some limitations of the current study, 

before comparing our findings to those reported in earlier studies.  

 

Limitations and alternative explanations for the observed pattern 

Some limitations of the current study are inherent in data from spontaneous 

speech: Our findings may reflect uncontrolled variation in the corpus. Secondly, our 

measure of neighborhood density was based on citation forms. Conversational speech is 

characterized by many instances of omissions of segments or entire syllables (Johnson, 

2004). In fact, this was one of the reasons for our decision to restrict our analysis to tokens 

in which all segments present in the citation form were actually produced. It remains as a 

topic for future research whether neighborhood density effects in conversational speech 

perhaps reflect neighborhood characteristics of forms as they are actually produced. 

Furthermore, like all previous studies of the effects of neighborhood density on 

pronunciation variation, we used a position-independent measure of neighborhood 

density, meaning that “cap” and “fat” were counted equally as neighbors of “cat”. As an 
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estimate of lexical competition, that measure is problematic in a number of ways (see 

Goldrick, et al., 2010). 

The uncontrolled nature of conversational speech data makes it especially 

important to consider alternative explanations of the observed patterns. One candidate for 

such an alternative might be word frequency: The measure of word frequency that we 

chose (Brysbaert & New, 2009) has been shown to be a good predictor of lexical decision 

and naming times. The decision to use a corpus-external frequency measure leaves open 

the possibility that our results might have been due to a positive correlation between 

phonological neighborhood density and corpus-specific word frequency. We therefore 

examined the role of frequency within the corpus in a set of follow-up analyses. 

The Buckeye corpus consists of one-on-one interviews. As a result, many words, 

particularly content words, occur frequently in some interviews, and hence in the speech 

of some talkers, but not in others. Overall frequency in the corpus is a poor index of word 

frequency in any one talker’s speech. To check if the observed effect was due to usage 

frequency within the corpus, we therefore examined the relationship between talker-

specific word frequency and neighborhood density:  If words used frequently by 

individual talkers tended to reside in dense neighborhoods, then the observed pattern of 

reduction of high-density words could have come about due to talker-specific frequency in 

our sample. To investigate this possibility, we determined, for each talker, the Spearman 

rank correlation between talker-specific word frequency and neighborhood density. These 

correlations turned out to be weak, ranging from -.10 to .02. A total of 33 out of these 40 

correlations were negative, three of them significantly so at an alpha level of .05. None of 

the seven positive correlations were significant at an alpha level of .05 (all p > .65).  In 
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light of this, we consider it unlikely that the observed association of high neighborhood 

density with shortening and vowel reduction was due to talker-specific word frequency in 

the Buckeye corpus. If anything, there was a slight tendency for words in dense 

neighborhoods to occur less frequently in a given interview; therefore, effects of corpus-

specific frequency should counteract the overall observed association of high 

neighborhood density and reduction.  

The more general possibility remains, of the observed effect resulting from 

uncontrolled variation. For example, our model does not control for effects of upcoming 

material, except through the bigram probability of the target word given the word 

immediately following it. Future, more complete, models of spontaneous speech 

generally, and of the Buckeye corpus in particular, may provide alternative explanations 

for the observed pattern.  

 

Comparison to previous results 

Previous studies (Kilanski, 2009; Munson, 2007; Munson & Solomon, 2004; P. J. 

Watson & Munson, 2007; Wright, 1997, 2004) found increased vowel dispersion for 

words in dense neighborhoods compared to words in sparse neighborhoods, contrary to 

our findings. What might account for this apparent discrepancy? We see several 

methodological differences, including the different measures of neighborhood density and 

our use of a normalized measure of vowel dispersion. We discuss these differences next, 

before turning to what we believe is the main source of differences between our results 

and previous studies, which is the fact that our observations are based on conversational 

speech, as opposed to single-word production. 
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As mentioned above, using a frequency-weighted measure of neighborhood 

density in place of the measure of neighborhood size left the pattern of results unchanged 

in the model of word duration. When entered into the model of vowel dispersion, 

frequency-weighted neighborhood density did not give rise to a significant effect. It is 

thus possible that our use of an unweighted neighborhood density measure was 

responsible for the difference in findings concerning vowel dispersion.  

Our use of a normalized measure of vowel dispersion constitutes another source of 

differences between the present findings and previous results. Whereas the greater 

dispersion of vowels in “hard” words in Wright (1997, 2004) was only observed in the 

“point” vowels /i,a,u/, we found an across-the-board effect of neighborhood density on 

vowel dispersion, for all vowel types. Presumably, our dispersion normalization procedure 

is responsible for part of this difference: Despite vowel-to-vowel differences in absolute 

dispersion, when dispersion is expressed as a z-score relative to the range of acoustic 

variation typically seen for a particular vowel, the degree of dispersion is seen to be 

constant across vowels.  Normalization does not change the direction of the result, but the 

normalization procedure may explain why the observed effect did not depend on vowel 

type in our data. 

 
We suspect that the main reason for the discrepancy between previous findings 

and ours is the fact that we examined conversational speech, as opposed to words 

presented in isolation or in short carrier phrases. It is clear that temporal characteristics of 

the material analyzed in previous studies differ from ours: Wright (1997, 2004), for 

example, presented words one at a time and instructed talkers to say each word “at a 

‘medium’ rate” (Wright, 1997: 475). Even when speakers are not specifically instructed to 
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keep their speaking rate constant, they tend to produce word lists at an even pace (Kello & 

Plaut, 2000, 2003). By contrast, the current study is based on word tokens excised from 

running conversational speech, which is highly variable and very fast, compared to words 

produced in isolation (Bard & Aylett, 2005). As importantly, attentional demands in 

elicited isolated utterances and conversational speech differ. We believe that these 

differences in temporal and attentional constraints may explain the apparent discrepancy 

between the current findings and previous studies.  

Increased vowel dispersion is associated with greater intelligibility (Bradlow, et 

al., 1996). Given that neighborhood density inhibits word recognition, it is natural to 

attribute variation in vowel dispersion to speakers’ attempts to maximize intelligibility, 

and several previous accounts have done so (e.g. Scarborough, 2005; Wright, 1997, 2004), 

building on Lindblom (1990). Previous authors have also noted other possible 

explanations for the increased vowel dispersion for words in dense neighborhoods, based 

articulatory target drift (Pierrehumbert, 2001) and perceptual factors unrelated to 

speakers’ attempts to modify intelligibility (Baese-Berk & Goldrick, 2009; Munson, 2007; 

Munson & Solomon, 2004). For example, Baese-Berk and Goldrick (2009) attribute their 

observed pattern of longer VOTs for words with minimal-pair neighbors differing only in 

voicing of an initial stop consonant (pox vs. box), compared to words without such 

neighbors (posh vs. *bosh) to “higher activation levels for words in dense neighborhoods” 

(Baese-Berk & Goldrick, 2009, p. 531). Activation, in the model that study is situated in, 

models lexical retrieval speed. If Baese-Berk and Goldrick’s proposal is correct, then 

faster retrieval speed for production might be associated with maximally intelligible 

pronunciation more generally – or more accurately, with the more precise realization of 
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articulatory targets. High word frequency has been argued to cause articulatory targets to 

“drift” towards more phonetically reduced productions (Pierrehumbert, 2001); high 

neighborhood density, by contrast, does not have this effect.  Taken together with the 

current results, and with the observation that word lists tend to be produced at a regular 

pace (Kello & Plaut, 2003), Baese-Berk and Goldricks’ and Pierrehumbert’s proposals 

leads to a different understanding of the previously observed association of high 

neighborhood density and intelligibility: Given that people tend to read word lists at an 

even pace, fast retrieval leaves speakers time to realize extreme articulatory targets, which 

in turn tend to be highly intelligible.  

Production speed aside, conversational speech may also create different attentional 

demands than word lists or short, scripted utterances. In single-word naming tasks, for 

example, speakers are only faced with the task of planning whatever word is required for 

the current trial. Conversational speech, on the other hand, requires the language 

production system to coordinate grammatical and phonological encoding of upcoming 

material during lexical retrieval, phonological encoding, and articulation of current 

targets. In single-word naming tasks, this is not the case, freeing speakers to realize more 

or less extreme articulatory targets as temporal and attentional demands allow, and as 

articulatory target selection may favor.  

 

Conclusion 

Neighborhood density effects in conversational speech yielded a pattern of 

shortening and vowel centralization in words that are generally found to be challenging 

targets for word recognition, yet easy production targets. Our findings are consistent with 
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the generalization that pronunciation variation associated with lexical access and retrieval 

-- “early”, automatic processes in language production --  are speaker-centric (Bard & 

Aylett, 2005). In our view, these results are fully compatible with the notion that variation 

at some levels of linguistic structure, with different levels of planning and encoding, may 

reflect speakers’ models of their listeners and of their surrounds. Clearly, speakers do take 

their listeners’ needs into account, and this fact is reflected in referential form and other 

dimensions of linguistic structure (Arnold, 2008; Brennan & Clark, 1996). More 

generally, we see no reason to doubt, for example, the existence of foreigner talk, “clear 

speech”, or baby talk. 

Previous research studying situations in which speakers’ and listeners’ needs are 

pitted against each other suggests limits of intelligibility-based behavior (Arnold, 2008; 

Bard & Aylett, 2005; Ferreira, 2008; Ferreira & Dell, 2000), partly as a function of 

demands on attention and working memory (Wardlow Lane & Ferreira, 2008; Wardlow 

Lane, Groisman, & Ferreira, 2006).  Our findings suggests that conversational speech is a 

situation of just this kind. It is our hope that they current study will inspire further scrutiny 

of the mechanisms – be they production-based or otherwise – linking what is known about 

lexical access and retrieval to the study of the phonetic realization of conversational 

speech.  

 



Neighborhood density and phonetic reduction   42 

Appendix A:  

Results of residualizing phonotactic probability on neighborhood density and vice 

versa 

-------------------------Insert Table 11 about here ----------------------------- 

Appendix B:  

Summary of word duration models using residualized measures of phonotactic 

probability or neighborhood density 

-------------------------Insert Table 12 about here ----------------------------- 
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Table 1. Summary statistics of the numerical variables in the model of word durations. See text for additional information about each 
variable. 

 Median Mean (SD) Range 

Token duration 241 ms 256 ms (89) 10 – 1043 ms 

Baseline duration 250 ms 252 ms (34) 188 – 378 ms 

Bigram 
probability, given 
the preceding 
word  

.005 .027 (.070) 7.90e-5 - .75 

Bigram 
probability, given 
the following 
word  

.005 .030 (.078) 7.90e-5 - .83 

Familiarity 7.0 6.95 (0.13) 2.4 – 7.0 

Frequency 523.1 799.1 (763.3) 0.43 – 
3141.0 

Neighborhood 
density (number 
of neighbors) 

21.0 20.65 (6.84) 3-40 

Frequency-
weighted 
neighborhood 
density 

40.68 43.0 (15.47) 

 

4.4-92.0 

Orthographic 
length (in letters) 

4.0  4.05 (0.70) 3-7 

Phonotactic 
probability: 

   



Phoneme 
probability 

.046 .048 (.016) .012 – .098 

Biphone 
probability 

.002 .003 (.002) .000 - .016 

Speech rate 
(before) (in 
syllables/sec) 

5.94 6.25 (2.28)  0.9 – 33.3 

Speech rate (after) 5.25 5.32 (1.70) 

 

0.42 – 41.0 



Table 2. Summary statistics of the categorical control variables in the model of word durations. See text for additional information 
about each variable. 

 

Age Young (< 40): 5,450 

Old: (> 40): 6,964 

Part of speech Adjective: 2,399 

Noun: 4,530 

Verb: 4,981 

Adverb: 504 

Previous mention True: 8,811 

False: 3,603 

Sex of talker Female: 5,910 

Male: 6,504 



Table 3. Pairwise (Spearman) correlations between variables in the model of word durations  

 

 Dur Age Base BigrA BigrB Fam Freq Len ND PoS BiPh SPh Prev RateA RateB Sex 

Dur 1 0 0.17 -0.09 -0.04 0.05 -0.12 0.05 -0.01 -0.08 -0.03 -0.04 0.1 -0.12 -0.11 0.01 

Age 0 1 -0.01 0 -0.01 0 -0.04 -0.01 0 -0.01 0 -0.02 0.06 -0.05 0.01 0.04 

Base 0.17 -0.01 1 -0.05 -0.01 0.03 -0.09 0.09 0.17 -0.02 0.04 -0.02 0.09 0.01 -0.01 0 

BigrA -0.09 0 -0.05 1 -0.01 -0.11 0.07 -0.05 0.04 -0.12 0.09 0.07 -0.02 -0.06 0.02 0.01 

BigrB -0.04 -0.01 -0.01 -0.01 1 -0.01 0.15 0.04 0 -0.21 0.01 0.02 -0.09 0.02 -0.03 0 

Fam 0.05 0 0.03 -0.11 -0.01 1 -0.1 0.16 -0.1 -0.18 -0.11 -0.15 0 0 -0.01 0.02 

Freq -0.12 -0.04 -0.09 0.07 0.15 -0.1 1 0.06 -0.04 -0.03 -0.06 -0.13 -0.26 0.05 0.04 -0.01 

Len 0.05 -0.01 0.09 -0.05 0.04 0.16 0.06 1 -0.28 -0.02 -0.29 -0.38 0.02 0.01 -0.01 -0.03 

ND -0.01 0 0.17 0.04 0 -0.1 -0.04 -0.28 1 0.13 0.44 0.44 0.07 0 -0.01 0.02 

PoS -0.08 -0.01 -0.02 -0.12 -0.21 -0.18 -0.03 -0.02 0.13 1 -0.16 -0.08 0.07 0.03 0.02 -0.02 

BiPhono -0.03 0 0.04 0.09 0.01 -0.11 -0.06 -0.29 0.44 -0.16 1 0.73 0.02 0 0.02 0.01 

SPhono -0.04 -0.02 -0.02 0.07 0.02 -0.15 -0.13 -0.38 0.44 -0.08 0.73 1 0.03 0 0.02 0.02 

PrevMen 0.1 0.06 0.09 -0.02 -0.09 0 -0.26 0.02 0.07 0.07 0.02 0.03 1 -0.02 -0.02 0.01 

RateA -0.12 -0.05 0.01 -0.06 0.02 0 0.05 0.01 0 0.03 0 0 -0.02 1 0.09 0.01 



RateB -0.11 0.01 -0.01 0.02 -0.03 -0.01 0.04 -0.01 -0.01 0.02 0.02 0.02 -0.02 0.09 1 0.03 

Sex 0.01 0.04 0 0.01 0 0.02 -0.01 -0.03 0.02 -0.02 0.01 0.02 0.01 0.01 0.03 1 

                 

 
Note. Dur = word duration; Age = talker age; Base = baseline word duration; BigrA = Bigram probability of the target word, given the 

following word; BigrB = Bigram probability of the target word, given the previous word; Fam = Subjective familiarity rating; Freq = 

SUBTLEX word frequency; Len = orthographic length; ND = neighborhood density; PoS = part of speech; BiPhono = biphone 

positional probability; SPhono = single-phone positional probability; PrevMen = previous mention; RateA = speech rate following the 

target; RateB = speech rate preceding the target; Sex = talker sex (see text).  

 

 



 Table 4. Summary of the model of word durations.   

 

Variable name beta SE t pMCMC AIC Chisq          p(Chisq)  

(Intercept) 0.1404 0.0295 4.759 0.0001 3652.1  

Frequency -0.0281 0.0044 -6.407 0.0001 3575.2 78.86 (1)     <.0001 

PoS      3538.9 42.28 (3)     <.0001 

 Adverb -0.072 0.0653 -1.101 0.2334   

 Noun 0.0202 0.02 1.009 0.2036   

 Verb -0.0896 0.0206 -4.357 0.0001   

BaselineDur 0.6442 0.0525 12.266 0.0001 3406.8 134.11 (1)     <.0001 

Bigr_After -0.0249 0.0014 -17.814 0.0001 3159.8 249.03 (1)     <.0001 

Bigr_Bef -0.0149 0.0016 -9.539 0.0001 3081.6 80.19 (1)       <.0001 

Rate_After -0.1382 0.0079 -17.514 0.0001 2756.2 327.39 (1)     <.0001 

Rate_Bef -0.0864 0.0075 -11.533 0.0001 2627.7 130.48 (1)     <.0001 

Rate_Bef^2 -0.0263 0.011 -2.389 0.0156 2624 5.67 (1)         .0172 

Neighb.Density -0.0044 0.0009 -5.084 0.0001 2600.6 25.42 (1)       <.0001 

 



Table 5. Random effects in the model of word durations.  

 

 

Random effect SD MCMC median HPD95lower HPD95upper 

Word (Intercept) 0.0983 0.0829 0.0750 0.0911 

Speaker (Intercept) 0.0897 0.0874 0.0698 0.1096 

Residual 0.2621 0.2632 0.2598 0.2666 



Table 6. Summary statistics for the outcome variable and the numerical predictors in the model of vowel dispersion  

 Median Mean (SD) Range 

Degree of dispersion -0.02 0.00 (1.0) -3.9– 9.0 

Bigram probability 

(Preceding) 

.005 .026 (.079) 7.89e-5 - .75 

Bigram probability 

(Following) 

.005 .031 (.079) 7.90e-5 - .83 

Consonant duration 137.8 145.0 (55.8) 0.0 – 632.1 

Frequency 

 

523.10 767.90 (699.04) 0.43 – 2610.0 

Neighborhood 
density 

21 21.15 (6.96) 3 – 40 

Frequency-weighted 

neighborhood 

density 

44.3 44.48 4.4-92.00 

Orthographic length 4 4.005 (0.72) 3 -7 

Phonotactic 
probability 

   

Single-phoneme 
probability 

.049 .049 (.016) .012 – .098 

Biphone .002 .003 (.002) .000 - .016 



probability 

Speech rate 
(Preceding) (ms/syl) 

5.94 6.24 (2.29) 0.95 – 33.33  

Speech rate 
(Following) 

5.23 5.31 (1.68) 0.88 – 41.0 

Vowel duration (ms) 92 103 (0.05) 25 – 490 



Table 7. Summary statistics for categorical variables in the vowel dispersion database  

 

 

Vowel type [ɑ]: 1,193 

[æ]: 824 

[ɛ]: 1,263 

[eɪ]: 1,341 

[ɪ]:1,555 

[i]: 828 

[o]: 788 

[ʊ]: 918 

[u]: 365 

Manner of articulation  

(Preceding) 

Approximant ([l], [j], [w], [r]) : 1,643 

Nasal ([m], [n], [ŋ]): 1,092 

Obstruent (oral stop, fricative, affricate): 6,340 

Manner of articulation  

(Following) 

Approximant ([l], [j], [w], [r]) : 1,653 

Nasal ([m], [n], [ŋ]): 1,401 

Obstruent (oral stop, fricative, affricate): 6,021 

Place of articulation  

(Preceding) 

Front (bilabial, alveolar, labial dental, labial-alveolar): 
7,137 

Back (velar, glottal): 1,938 

Place of articulation  Front (bilabial, alveolar, labial dental, labial-alveolar):  
6,643 



(Following) Back (velar, glottal): 2,432 

Speaker sex Female: 4,434  Male: 4,641 

Speaker age Young: 4,177   Old: 4,898 

Part of speech Adverb: 483 

Adjective: 1,994 

Noun: 2,618 

Verb: 3,980 

Previous mention True: 6,423 

False: 2,652 



Table 8. Pairwise (Spearman) correlations between variables in the model of vowel dispersion  
 

 Disp BigrB BigrA CDur Fq ND NDFq Len SPhon BiPhon RatB RatA 

Dispersion 1 0 .02 .08 -.07 .02 .04 .04 .07 -.01 0 -.03 

BigrB 0 1 .01 -.07 .15 -.11 .01 .09 -.05 .02 -.02 .02 

BigrA .02 .01 1 -.05 .08 .06 .03 -.04 .03 .01 .03 -.06 

CDur .08 -.07 -.05 1 -.14 0 -.01 .02 .05 .07 -.09 -.1 

Frequency -.07 .15 .08 -.14 1 -.1 -.06 .1 -.15 -.08 .04 .05 

ND .02 -.11 .06 0 -.1 1 .76 -.22 .4 .28 -.02 -.01 

NDFq .04 .01 .03 -.01 -.06 .76 1 -.23 .6 .47 -.02 0 

Len .04 .09 -.04 .02 .1 -.22 -.23 1 -.41 -.28 -.01 .02 

SPhon .07 -.05 .03 .05 -.15 .4 .6 -.41 1 .56 0 -.01 

BiPhon -.01 .02 .01 .07 -.08 .28 .47 -.28 .56 1 0 0 

RateBef 0 -.02 .03 -.09 .04 -.02 -.02 -.01 0 0 1 .08 

RateAft -.03 .02 -.06 -.1 .05 -.01 0 .02 -.01 0 .08 1 

VDur .03 0 -.06 .1 -.09 .08 .03 0 -.04 -.01 -.09 -.07 

Vtype 0 -.07 -.02 .01 -.11 -.13 -.28 .03 -.16 -.27 -.01 -.03 

MannerB .06 .07 -.05 .09 .07 -.08 .02 -.02 .23 .24 .02 .03 

MannerA -.14 -.08 -.09 -.04 .23 -.03 -.08 -.17 -.08 -.11 .02 .01 

PlaceB -.18 .05 -.02 -.01 .03 -.07 -.02 -.02 -.18 -.02 -.03 .01 

PlaceA .03 -.09 -.05 .01 -.36 -.05 .08 -.15 .31 .17 0 -.03 

Sex -.05 0 0 0 -.02 .01 .02 -.02 .01 .02 .03 0 

Age 0 -.02 .01 -.01 -.04 .01 0 -.01 0 -.03 0 -.05 

PoS -.05 -.23 -.15 .07 -.04 .08 .06 0 -.07 -.2 .02 .02 

PrevMen .02 -.08 -.03 .09 -.26 .12 .08 0 .06 .03 -.02 -.01 

 



 

 

  VDur Vtype MnrB MnrA PlB PlA Sex Age PoS PrevMen 

Dispersion  .03 0 .06 -.14 -.18 .03 -.05 0 -.05 .02 

Bi_Bef  0 -.07 .07 -.08 .05 -.09 0 -.02 -.23 -.08 

Bi_Aft  -.06 -.02 -.05 -.09 -.02 -.05 0 .01 -.15 -.03 

CDur  .1 .01 .09 -.04 -.01 .01 0 -.01 .07 .09 

Frequency  -.09 -.11 .07 .23 .03 -.36 -.02 -.04 -.04 -.26 

ND  .08 -.13 -.08 -.03 -.07 -.05 .01 .01 .08 .12 

NDFq  .03 -.28 .02 -.08 -.02 .08 .02 0 .06 .08 

Len  0 .03 -.02 -.17 -.02 -.15 -.02 -.01 0 0 

SPhon  -.04 -.16 .23 -.08 -.18 .31 .01 0 -.07 .06 

BiPhon  -.01 -.27 .24 -.11 -.02 .17 .02 -.03 -.2 .03 

RateB  -.09 -.01 .02 .02 -.03 0 .03 0 .02 -.02 

RateA  -.07 -.03 .03 .01 .01 -.03 0 -.05 .02 -.01 

VDur  1 -.16 .03 .06 .06 0 .01 -.03 -.11 .05 

Vtype  -.16 1 -.08 .03 -.15 .14 -.02 .01 .09 .01 

MannerB  .03 -.08 1 .04 -.34 .04 .02 -.01 -.11 -.06 

MannerA  .06 .03 .04 1 .17 -.17 -.02 -.02 .15 -.01 

PlaceB  .06 -.15 -.34 .17 1 -.29 0 -.02 .01 .01 

PlaceA  0 .14 .04 -.17 -.29 1 0 .01 -.03 .13 

Sex  .01 -.02 .02 -.02 0 0 1 .08 -.02 .01 

Age  -.03 .01 -.01 -.02 -.02 .01 .08 1 -.02 .05 

PoS  -.11 .09 -.11 .15 .01 -.03 -.02 -.02 1 .09 

PrevMen  .05 .01 -.06 -.01 .01 .13 .01 .05 .09 1 

 



 

Note. Disp = vowel dispersion; BigrA = Bigram probability of the target word, given the following word; BigrB = Bigram probability 

of the target word, given the previous word; CDur = consonant duration; Frequency = Fq = target word frequency; ND = 

neighborhood density; NDFq = frequency-weighted neighborhood density; Len = orthographic length; SPhon = single-phone 

positional probability; BiPhon = biphone positional probability; RateB = speech rate preceding the target; RateA = speech rate 

following the target; VDur = vowel duration; Vtype = vowel type; MannerB = manner of articulation of consonant preceding the 

target vowel; MannerA = manner of articulation of consonant following the target vowel; PlaceB = place of articulation of consonant 

preceding the target vowel; PlaceA = place of articulation of consonant following the target vowel; Sex = talker sex; Age = talker age; 

PoS = part of speech; PrevMen = previous mention of target (see text).   

 

 
 



Table 9. Summary of fixed effects in the model of vowel dispersion  

 
 

Variable name beta SE t pMCMC AIC Chisq p(Chisq) 

(Intercept) 0.3681 0.1024 3.596 0.0001 22895   

PlaceBeforefront -0.4002 0.099 -4.042 0.0001 22883 14.24 0.0002 

BigramBefore -0.0125 0.0058 -2.156 0.0254 22876 8.91 0.0028 

CDur 0.1797 0.0264 6.813 0.0001 22790 87.42 <.0001 

SpeechRateAfter -0.1026 0.029 -3.535 0.0004 22777 15.12 0.0001 

VDur 0.1747 0.024 7.277 0.0001 22725 53.91 <.0001 

Neighborhood 

density -0.0086 0.0051 -1.695 0.0388 22723 4.91 0.0268 

Neighborhood 

density, squared -0.0015 0.0006 -2.687 0.0002 22717 7.12 0.0076 

 

 
 



Table 10. Random effects in the model of vowel dispersion  

 

Random effect SD MCMC median HPD95lower HPD95upper 

Word (Intercept) 0.618 0.4286 0.3963 0.4628 

Speaker (Intercept) 0.261 0.2538 0.2031 0.3193 

Residual 0.807 0.8185 0.8064 0.8310 

 
 

 



Table 11: Summary of simple linear regression models relating neighborhood density and phonotactic probability (N = 534) 

Model β (SE β) R2 Quantity represented by 

model residuals 

ND ~ SPhono 13.77 (.75) .39 rNDS = Variability in 

neighborhood density not 

attributable to single-phone 

positional probability 

ND ~ BiPhono 6.33 (.39) .33 rNDBi = Variability in 

neighborhood density not 

attributable to biphone 

positional probability 

SPhono ~ ND .03 (.002) .39 rSPhono = Variability in 

single-phone positional 

probability not attributable to 

neighborhood density 

BiPhono ~ ND .05 (.003) .33 rBiPhono = Variability in 

biphone positional probability 

not attributable to 

neighborhood density 

 



 

Figure 1: Vowel space of a talker (s26) in the Buckeye corpus. Each observation 

represents F1 and F2 measurements for a single vowel token. Labels indicate the words 

the vowel token occurred in. The plus sign marks the center of the talker’s F1/F2 space. 

 

 



Figure 2: Partial effects, Word duration model 

 

 



 

 
 
Figure 3: Partial effects, vowel dispersion model 
 
  
 

 

 




