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We study the morphological evolution of strained heteroepitaxial films using kinetic Monte Carlo
simulations in two dimensions. A novel Green’s function approach, analogous to boundary integral
methods, is used to calculate elastic energies efficiently. We observe island formation at low lattice misfit
and high temperature that is consistent with the Asaro-Tiller-Grinfeld instability theory. At high misfit
and low temperature, islands or pits form according to the nucleation theory of Tersoff and LeGoues.
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Coherent three-dimensional (3D) islands in strained
heteroepitaxial films are of great interest because they
can self-assemble as quantum dots for possible advanced
optoelectronic applications [1,2]. They are observed in a
variety of film-substrate combinations including Ge/Si,
InAs/GaAs, InAs/InP, etc. In these systems, island for-
mation follows the Stranski-Krastanov mode. Initially,
two-dimensional (2D) layer-by-layer growth leads to a
flat wetting layer under stress. Beyond a threshold film
thickness, 3D islands emerge on top of the wetting layer
partially relieving the stress. The precise island for-
mation mechanism is currently under intensive debate.
According to the nucleation theory of Tersoff and
LeGoues, the growth of stable islands requires overcom-
ing an energy barrier associated with a critical island size
[3]. However, experiments reveal gradual development of
ripples [4] or prepyramids [5] at the initial stage of island
formation. These observations are more consistent with
the Asaro-Tiller-Grinfeld (ATG) linear instability theory,
which predicts that morphological perturbations at suffi-
ciently long wavelengths grow spontaneously and stead-
ily [6,7]. It was originally proposed for smooth surfaces,
but extensions to faceted ones based on nonequilibrium
deposition conditions [8] or finite vicinality of substrates
[9] have been suggested.

To better understand the roughening mechanism of
strained layers, we have performed kinetic Monte Carlo
simulations using an atomistic model [10-13]. This ap-
proach is computationally very intensive but can reliably
account for both lattice discreteness and nonequilibrium
conditions. Previous simulations successfully demon-
strated island formation in strained layers but only via
the nucleation mechanism [10-12]. In this work we in-
troduce significantly more efficient algorithms. Thus
we can explore a much wider range of conditions and
observe a rich variety of morphologies in better general
agreement with experiments. In particular, by lowering
the lattice misfit and raising the temperature, the rough-
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ening mechanism crosses over from nucleation to insta-
bility controlled.

We adopt the 2D ball and spring model of heteroepi-
taxy defined on a square lattice first studied by Orr ef al.
[10] and subsequently by Barabasi [11] and Khor and
Das Sarma [12]. Simulations in 3D limited to submono-
layer coverage were performed by Meixner et al. [13]. Our
model parameters are appropriate to the widely studied
Si;_,Ge,/Si(001) system. We assume a substrate lattice
constant a, = 2.715 A so that a3 gives the correct atomic
volume in crystalline silicon. The lattice constant as
of the film material is related to the lattice misfit € =
(ar — a,)/ay which has a compositional dependence € =
0.04x. Nearest and next nearest neighboring atoms are
directly connected by elastic springs with force constants
ky = 13.85eV/a? and kyy = ky/2, respectively. This
choice gives the correct modulus cy; of silicon and a shear
modulus constant along tangential and diagonal direc-
tions, despite a slight anisotropy in the Young’s modulus.
The elastic couplings of adatoms with the rest of the
system are weak and are completely neglected for better
computational efficiency. Solid-on-solid conditions and
atomic steps limited to at most two atoms high are
assumed. Every topmost atom in the film can hop to a
random topmost site s columns away where s = *1,
*2,...,0or £s,,,, with equal probability. Previous simu-
lations allowed only nearest neighbor hopping (i.e.,
Smax = 1) [10-13]. To speed up the simulations, we put
Smax = 8 or 20, respectively, for x > 0.6 or x = 0.6. These
hopping ranges are much shorter than the dimensions of
the relevant structures (islands or pits) on the films, and
we have checked that decreasing s,,,, does not alter our
results. The hopping rate I',, of a topmost atom m follows
an Arrhenius form:

n,y — AE, — E, } 0

kT

Here n, is the number of nearest and next nearest

', =R exp[ -
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neighbors of atom m. We choose a bond strength y =
0.4 eV which will be explained later. The energy AE,, is
the difference in the strain energy E; of the whole lattice
at mechanical equilibrium when the site is occupied
versus unoccupied. Finally, we put E, = 0.53 eV and
Ry = 2D,/(0,a,)* with Dy = 3.83 X 10"* A2s~! and
07 = (Smax T 1)(28max + 1). This gives the appropriate
adatom diffusion coefficient for silicon (100) [14]. Our
model follows detailed balance.

The simulations involve intensive computations result-
ing solely from the long-range nature of elastic interac-
tions. Practically all the CPU time is spent on the
repeated calculations of E, which is needed to find AE,,
and hence I',, in Eq. (1). The elastic problem is formulated
as follows. First, a flat film is homogeneously strained [2].
This provides a convenient reference position with dis-
placement ii; = O for every atom i. In general, the elastic
force on atom i by a directly connected neighbor j is
fij = —Ky;(@; — i;) + b;; after linearization where the
2 X 2 symmetric matrlx K k,]ﬁuﬁf] is the modulus
tensor and b = (Z?J )K,, ;j arises from the homoge-
neous stress 1n flat ﬁlms The spring constant k;; equals
either ky or kyy for tangential or diagonal connection,
respectively. The unit column vector 7;; points from the
unstrained lattice position of atom j towards that of atom
i, and t denotes transpose. Furthermore, l and /;; are,
respectively, the natural and homogeneously stramed
spring lengths which follow easily from a, and e.
Mechanical equilibrium requires Z/- fij =0 for each
atom i. This leads to a large set of equations coupling
the #; of all of the atoms. The solution then gives the
elastic energy stored in every spring and hence E;.

We now introduce a Green’s function approach for
calculating E efficiently requiring the explicit considera-
tion of only the surface atoms. It is a lattice analogue of
boundary integral methods and is superior to boundary
element techniques for our intrinsically discrete problem.
We first derive the exact formalism. Figure 1 shows an
example of a small lattice of atoms (solid circles). As a
mathematical construct, we extend the lattice by adding
ghost atoms (open circles) with similar elastic properties.
Unphysical couplings are hence introduced but can be
exactly canceled by applying external forces f ¢ and f ¢

to every real surface atom j and ghost surface atom j/,
respectively, with

= > (K,yii; = byy), 2)
!

Fo == Kyi 3)

The summation in Eq. (2) is over each ghost atom j'
connected directly to the real atom j, and it is analogous
in Eq. (3). It is easy to see that the real atoms are then
exactly decoupled from the ghost atoms which are held
precisely at their homogeneously strained positions.
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FIG. 1. Ghost atoms (open circles) are added on top of the
real atoms (solid circles) forming an extended lattice.
Unphysical couplings are exactly canceled by external forces
(arrows) applied to the real and ghost surface atoms.

A lattice Green’s function is then applied to express the
displacement, i;, of every real surface atom i under the
influence of the external forces:

U = ZGijff + Zsz'}f/- €]
J J'

Note that the Green’s function G is defined for the ex-
tended lattice and is independent of the film morphology.
It can thus be computed numerically once prior to the
start of the simulation. It should not be confused with the
half-plane Green’s function which provides simpler but
only approximate results [3,13]. Combining Egs. (2)—(4),
we arrive at the reduced set of equations

= >1Gy; — Gip)K yii; — Gyb ;] 5)
i7

coupling only the real surface atoms where the sum
is over all pairs of directly connected real and ghost
surface atoms j and j’, respectively. The solution of
Eq. (5) gives u;.

The elastic energy E; can then be calculated directly
from

< .
Eijj,-uj, (6)
i

which is derived from a simple consideration of virtual
work. Here the sum is defined similarly to that in Eq. (5),
and E? equals the unrelaxed value of E, when i; =0
which can be straightforwardly computed. The method
summarized in Egs. (5) and (6) is exact and practical for
simulations at moderate scales.

We can go further and use a coarse-grained version of
our Green’s function approach for a further boost on the
computational efficiency. Finding the strain energy AE,,
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of the atom m needed in Eq. (1) requires calculating the
strain energy E; of the whole lattice twice with and
without the atom m. Certain fine details of the surface
far away are obviously unimportant and can be neglected.
Specifically, surface atoms are grouped into sets with the
Ith of them denoted by ();. We neglect fluctuations within
a set by assuming identical displacement &; = i, for each
member i € ();. Equation (5) is then approximated as

. , ) ,
i Z[ > (G~ G;K }u, ZG,, i D
J

JEQ.LT

where G;; = G;; with the lattice point i at the centroid of
the set ();. Every atom within three columns from the
atom m is not coarsened and constitutes its own single-
membered set. Farther away at r columns from the atom
m, sets contain atoms in neighborhoods of 2r/3 + 1 col-
umns wide, a form motivated by simple error analysis. We
have checked numerically that a smaller degree of coars-
ening leads to no noticeable difference in our results.

Surface diffusion can be simulated using the hopping
rates in Eq. (1) as AE,, is now readily computable.
We adopt an acceptance-rejection algorithm aided by
tabulated values of AE,, for 5% sample surface configu-
rations. Details will be explained elsewhere. In our
main simulations, the lattice is of 1024 atoms wide fol-
lowing periodic boundary conditions. The substrate is
1024 monolayers (ML) thick while the extended lattice
on which we compute the Green’s function includes also a
film of 80 ML. Fixed boundary conditions are applied to
the top and bottom layers of the extended lattice.

We first simulate deposition of pure Ge film (i.e.,x = 1)
with misfit e = 4% at temperature 7 = 600 K. At very
high deposition rate R = 80 MLs™! [Fig. 2(a)], we ob-
serve layer-by-layer growth. At slower deposition rate
R =8MLs™! [Fig. 2(b)], the film is initially flat but
pits then develop. A detailed examination of the morpho-
logical evolution indicates that the pits appear rather
independently and suddenly. Once created, they are im-
mediately bounded by sidewalls at an energetically favor-
able 45° inclination. These features strongly support the
nucleation mechanism for their formation, noting that
pits are energetically more favorable than islands [3]. This
pit nucleation process is similar to that in Fig. 1(d) of

OML — 10ML — 20ML — 30ML
 (8)R=80MLs"

_ (b)R=8MLs"
N e N e V-
0

() R=0.8MLs"

T : . I
0 200 400 600 800 1000

FIG. 2. Simulations of deposition of Ge films at 7 = 600 K
with substrate width and thickness both equal 1024a, =~
2780 A. The axes are in unit of a,.
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Ref. [10]. At R = 0.8 ML s~ ! [Fig. 2(c)], islands with 45°
sidewalls nucleate at a very early stage before the film is
sufficiently thick for pit formation. The result is analo-
gous to those in Fig. 1(a) of Ref. [10] and also Refs. [11,12].
Further decreasing R towards realistic values of order
R = 0.01 MLs ™! leads to similar but more widely sepa-
rated islands.

Figure 3 shows results for deposition at misfit € = 2%
with x = 0.5 at T = 1000 K. Depending on R, we observe
analogous layer-by-layer growth [Fig. 3(a)], layer-by-
layer growth followed by roughening [Fig. 3(b)], and
island growth [Fig. 3(c)]. However, the islands in
Figs. 3(b) and 3(c) emerge gradually from ripplelike
perturbations with local surface inclinations increasing
steadily and relatively synchronously in agreement with
experiments [4,15,16] and ATG instability theory [6,7].
This regime has not been reported in previous atomistic
simulations mainly due to inaccuracies in accounting for
the long-range parts of the elastic interactions or the
rather thin substrates used [10-13]. Instead, it was ob-
served in continuum simulations [17], which, however,
cannot realize the nucleation mechanism.

The importance of the lattice misfit in deciding the
roughening mechanism is particularly easy to under-
stand. The nucleation of islands or pits occurs at a rate
R, ~ exp(—ce™*) with ¢ being a constant [3] and be-
comes very slow at small € [16]. The ATG instability with
a roughening rate Ry, ~ €® [7] then dominates. For
Figs. 2(b) and 3(b), we have chosen deposition rates close
to the relevant roughening rates. We then observe kineti-
cally limited wetting layers prior to roughening which is
characteristic of Stranski-Krastanov growth. However,
the threshold thickness depends strongly on R contrary
to experimental findings [2]. A more realistic model in
the future should include other mechanisms such as
film-substrate interactions [18] or nonlinear elasticity
[9] which have been argued to give a more stable wet-
ting layer.

We have also simulated annealing of initially flat films
of 30 ML at T = 1000 K. At this high temperature,
roughening is mainly due to the ATG instability, and
we observe the development of ripples followed by is-
lands. Figure 4 shows the surface profiles after the islands
are fully developed. The cusps on the surfaces [19] are

< OML  — 10ML — 20ML — 30ML
(a) R=750 ML s™'
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0

(b) R=150 ML s™'
30 =
0
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. e
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FIG. 3. Simulations of deposition of SiysGeys films at

T = 1000 K.
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FIG. 4. Simulations of annealing of initially flat Si;_,Ge,
films of 30 ML at T = 1000 K for a period of time z.

limited by either the substrate or the local step height
limit imposed in our model. We have measured the island
size | from power spectra of 11 realizations of similar
surfaces. We obtain [~ x~ ! in reasonable agreement
with x~2 from the instability theory [6] but slightly
different from x~! from experiments [15,16]. The dis-
crepancy with experiments may be improved if the com-
positional dependence of film properties such as bond
energies and diffusion coefficients are properly consid-
ered. The island sizes in general lie within the experi-
mental range due to our choice of the bond strength
v = 0.4 eV, which, in fact, is a reasonable value.

We have already discussed possible extensions of the
model to include film-substrate chemical interactions,
nonlinear elasticity, and composition-dependent material
properties. In our 2D model, starting from (01) surfaces,
(11) facets at an inclination of 45° can be obtained. Other
facets are energetically unstable and are not observed. To
enhance the morphological resemblance with experi-
ments in which (105) and (113) facets are found [4], one
can explore more sophisticated forms of bond energies
favoring appropriate 2D analogs of them.

The ATG theory assumes a nonsingular form of the
equilibrium surface energy which applies to all 2D sur-
faces at finite temperatures. In 3D, the surface energy is
instead singular in the presence of facets at the relevant
temperatures below the roughening transition. Therefore,
the validity of the ATG instability is not clear [2,8,9].
Critical tests of the theory by 3D simulations are impor-
tant, and may be feasible using our method. For example,
our 2D simulation leading to Fig. 2(b) involves about
6 X 107 hops and ran for 18 h on a pentium 2 GHz com-
puter. Thus, extensions to 3D should be practical.

In conclusion, using accelerated algorithms which
properly and efficiently account for long-range elastic
interactions, we have simulated deposition and annealing
of strained heteroepitaxial layers in 2D. At low misfit and
high temperature, we observe ripples and subsequently
gradual island formation consistent with the ATG insta-
bility theory. At high misfit and low temperature, islands
or pits are generated via the nucleation pathway. These
suggest a nontrivial competition between roughening
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mechanisms, although reliable quantitative determina-
tion of the crossover conditions is beyond the scope of
our model. The ATG instability is the most promising
description of island formation in Si;_,Ge, films at low,
and probably also at high lattice misfit [4,5]. However, the
nucleation mechanism applied to high misfit regimes in
certain experimental situations has not been ruled out
[20]. Thus the competition of mechanisms can be impor-
tant for interpreting experimental results. In our simula-
tions, for deposition rates close to the relevant roughening
rate, kinetically limited wetting layers develop prior to
roughening. At lower but more realistic deposition rates,
islands form at an early stage and are more widely sepa-
rated. This may be related to the great variation in how
closely the islands are packed under various conditions in
experiments [4,5].
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