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Exact soliton solutions for the core of dispersion-managed solitons
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We consider the averaged dispersion-managed~DM! fiber system equation, which governs the dynamics of
the core of the DM solitons. For a special case of such a system equation, we derive the exact soliton solutions
using the Darboux transformation. Further, we discuss the interaction scenario between two neighboring
solitons. Finally, we derive a dark soliton solution for such a system by assuming an ansatz, and the interaction
between neighboring dark solitons is discussed.
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The dispersion-managed~DM! fiber system has paved
new way to increase the transmitting capacity of optical fi
links @1–4#. Basically, the dispersion-management techniq
utilizes a fiber transmission line with a periodic dispersi
map, such that each period is built up by two types of fib
generally with different lengths and opposite group-veloc
dispersion ~GVD!. Because of the periodic splicing o
anomalous and normal dispersion fibers, there is an ab
discontinuity in the GVD of the DM fiber system. This ha
left almost no way to analytically handle the DM fiber sy
tem governing equation. Hence, only numerical DM solit
solutions are being derived using the averaging method@5#.

To analytically describe the evolution of the parameters
the DM solitons, the variational principle is widely used wi
the help of a Gaussian ansatz@1#. Based on the exact solutio
of the variational equations, very recently analytical metho
have been reported for designing the dispersion map of
DM fiber systems@6,7#. All these techniques are fundame
tally based on the feature that most of the time during
periodic evolution of the DM soliton, the core is very clo
to a Gaussian shape@8,9#.

Hasegawaet al. @10# tried a different kind of approach to
studying is the properties of the core of the DM solitons.
that approach they considered the lossless DM fiber sys
and after removing the fast varying chirp part of the D
soliton they derived the averaged DM fiber system equa
which governs the dynamics of the core of the DM solito

In this work, we also follow a similar procedure to deriv
the averaged DM soliton equation for DM fiber system w
loss or gain. The same system equation also governs
nonlinear pulse propagation in a uniform fiber system w
loss ~gain! and frequency chirp. We show that for a speci
choice of the DM fiber system parameters the averaged
soliton system equation has exact soliton solutions. Lax
for such a soliton system is reported. Based on the Lax p
a methodology to deriveN-soliton solutions is presented b
employing simple, straightforward Darboux transformatio
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As examples, one- and two-soliton solutions in expli
forms are generated and their properties are also analyze
is shown that there is an exact balance between the fiber
~gain! and pulse chirping to achieve the compression of
soliton pulse. In addition, we discuss the interaction scen
between two neighboring solitons in detail. Finally, we d
rive a dark soliton solution for such a system by assuming
ansatz, and the interaction between neighboring dark soli
is discussed.

The nonlinear Schro¨dinger equation~NLSE! which gov-
erns the dynamics of DM fiber system is given by

]u

]z
5

id~z!

2

]2u

]T2
1 i uuu2u2Gu, ~1!

whereu is the envelope of the axial electric field,d(z) is the
periodically varying GVD parameter representing anomalo
and normal dispersions, andG is the loss~gain! coefficient.
In the following we follow the same steps as Hasegawaet al.
@10# for deriving the averaged DM soliton system equatio
Here the only difference is that we explicitly retain the lo
~gain! term also in the NLSE.

Because of the large variation in the GVD parameter
going from the normal dispersion fiber to the anomalous d
persion fiber and vice versa, there is a large variation in
quadratic phase chirp of the DM soliton within each disp
sion map. Hence the DM soliton field can be considered
the form

u~z,T!5w~z,T!expF i

2
C~z!T2G . ~2!

Inserting Eq.~2! into Eq. ~1!, we have

i S ]w

]z
1dCT

]w

]T D1
d

2

]2w

]T2
1uwu2w2

1

2
~Ċ1dC2!T2w

52
i

2
dCw2 iGw, ~3!

i-
s:
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where Ċ represents the derivative ofC with respect toz.
Now introduce a new coordinatet and the amplitude function
a(z) such as

t5p~z!T[TexpF2E
0

z

d~z!C~z!dzG , ~4!

w~T,z!5a~z!v~ t,z!. ~5!

Then we have

i
]v
]z

1
dp2

2

]2v

]t2
1a2uvu2v5

k~z!

2
t2v2 iGv ~6!

with the equations fora(z), p(z), andC(z) as

ȧ52
1

2
Cad, ~7!

ṗ52Cpd, ~8!

k~z![
Ċ1C2d

p2
. ~9!

Now averaging Eq.~6! for one dispersion map, we get

i
]q

]z
1

D0

2

]2q

]t2
1g0uqu2q2k0t2q52 iG0q, ~10!

where D05^dp2&, g05a^p&, k05^k&/2, and G0 is the
small residual loss or gain in one dispersion map. In regu
DM systems an amplifier at the end of each dispersion m
will compensate for the total power loss in the respect
dispersion map. Here we consider that the periodic amp
cation is not exactly compensating for the loss. One can c
sider that either there is a small residual loss or gain in e
dispersion map, which is a must for our study, which will
shown in the following. The study on Eq.~10! is restricted
not only for the core of a DM soliton but also for the optic
pulse propagating in a uniform fiber system with loss~gain!
effect with quadratic phase chirp represented by thet2 term.
This finds application in pulse compression. It should
pointed out that without the residual loss~gain! term, Eq.
~10! has been studied in different contexts in Refs.@11,12#,
concretely speaking, where nonlinear compression of chir
solitary waves@11# and quasisoliton propagation in DM op
tical fiber @12# have been discussed. With the loss~gain!
term, the special case of Eq.~10! has been reported in Refs
@13–15# from the integrability point of view, where by
choosing a special parameter, one soliton solution has b
obtained by Ba¨cklund transformation. Equation~10! also de-
scribes the propagation of envelope solitons in inhomo
neous media—an example being that of electromagn
waves in an inhomogeneous plasma@16#. In this paper, we
present the general procedure to construct theN-soliton so-
lutions, and the explicit one- and two- soliton solutions a
presented.
04660
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Now, we consider the special parametric choice withD0
52a1 , g052m2a1 , k052b2, andG05b so that Eq.~10!
becomes

i
]q

]z
1a1

]2q

]t2
12m2a1uqu2q1b2t2q1 ibq50. ~11!

In Eq. ~11!, one can see that the coefficients of the quadra
phase chirp term and the loss~gain! term are related to the
parameterb. This relationship is a must for the comple
integrability of Eq. ~10! as shown through the Painlev´
analysis@17#. This is why we need a residual gain or lo
factor in the averaged DM soliton system, in contrast to
usual DM fiber system where the periodic amplification e
actly compensates for the fiber loss in the respective sp
Note that with respect to the sign of the parameterb, the
averaged DM fiber system will have either a lossy or amp
fying effect.

Considering the following spectral problem:

c t5Uc, ~12!

cz5Vc, ~13!

where

U5lJ1P,

V52ia1l2J22btlJ12ia1lP1W,

with

J5S 1 0

0 21D , P5S 0 mQ

2mQ̄ 0 D ,

W5S im2a1uQu2 22mbtQ1 ima1Qt

2mbtQ̄1 ima1Q̄t 2 im2a1uQu2 D .

Here Q̄ represents the complex conjugate ofQ. From the
compatibility conditionUz2Vt1@U,V#50 one can derive
Eq. ~11!. Where Q5qexp(2ibt2/2) and l is the variable
spectral parameter given by

l5h~z!1 i z~z!, lz522bl,l t50,

l5nexp~22bz!, h~z!5Re~n!exp~22bz!,

z~z!5Im~n!exp~22bz!.

Here Re(n) and Im(n) are the real and imaginary parts, r
spectively, of the hidden isospectral parametern. The Lax
pair assures the complete integrability of a nonlinear sys
and is specially used to obtain integrability condition a
N-soliton solutions by means of the inverse scattering tra
form method. In this paper, we investigate Eq.~11! by em-
ploying a simple, straightforward Darboux transformati
@18–20#. In the following, we give the Darboux transforma
tion of Eq. ~11!.

Introducing transformation
5-2
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w85~lI 2S!w, S5HLH21, L5diag~l1 ,l2!, ~14!

whereH is a nonsingular matrix, requiring

w t85U8w8, U85lJ1P8, P85S 0 mQ8

2mQ̄8 0 D ,

~15!

and combining Eqs.~12!, ~13!, ~14!, and~15!, we obtain the
Darboux transformation for Eq.~11! in the form

P85P1JS2SJ. ~16!

It is easy to verify that, if (w1 ,w2)T is a solution of Eq.~12!

corresponding to eigenvaluel5l1 , (2w̄2 ,w̄1)T is also a
solution of Eq.~12! and the eigenvaluel is replaced by
2l̄1, that is, if we consider

L5S l1 0

0 2l̄1
D , H5S w1 2w̄2

w2 w̄1
D ,

then

Si j 52l̄1d i j 1
~l11l̄1!w i w̄ j

D
, i , j 51,2, ~17!

where

D5detuHu5uw1u21uw2u2.

From Eq.~16! we obtain other solutions as

Q85Q1
2

m
S12; Q̄85Q̄1

2

m
S21. ~18!

Thus we obtain the fundamental expression of the Darb
transformation.

Analogous to this procedure and taking the Darbo
transformationn times, we find the following formula:

Q@n#5Q1
2

m (
~lm1l̄m!c1@m,lm#c̄2@m,lm#

c@m,lm#Tc̄@m,lm#
,

~19!

wherem51, . . . ,n and

c@m,l#5~l2S@m21# !•••~l2S@1# !c@1,l#,

Si j @k#52l̄kd i j 1
~lk1l̄k!c i@k,lk#c̄ j@k,lk#

~c@k,lk#,c@k,lk# !
,

i , j 51,2,k51,2, . . . ,m21, m52,3, . . . ,n, wherec@1,l# is
the eigenfunction corresponding tol for w1 andw2. Substi-
tuting the zero solution of Eq.~11! asq50 into Eq.~19!, one
can derive the one-soliton solution for Eq.~11!. Using that
one soliton solution as the seed solution in Eq.~19!, we can
derive the two-soliton solution. Thus in recursion, one c
generate up toN-soliton solution.
04660
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By settingn51 in Eq. ~19!, the one-soliton solution can
be derived as

q5
2h~z!

m
sech@2j~z,t !#expF i2u~z,t !1

ibt2

2 G , ~20!

where

j~z,t !5h~z!t24a1E h~z!z~z!dz1T1 , ~21!

u~z,t !5z~z!t12a1E @h2~z!2z2~z!#d; ~22!

T1 is an integration constant. The explicit form ofj(z,t) and
u(z,t) can be derived from Eqs.~21! and ~22!, respectively,
using the expression for the spectral parameterl(z). Thus
we have derived the exact soliton solution for the core of
DM solitons propagating in a DM fiber system with residu
loss ~gain!, using the Darboux transformation. In Ref.@14#,
such a simple soliton solution withm51 has been derived.

Similarly, settingn52, the two-soliton solution can be
written in an explicit form as follows:

q@2#5
G

F
exp~ ibt2/2!, ~23!

where

G5@a1~z!1a3~z!#cosh@2j2~z,t !#exp@ i2u1~z,t !#1@a2~z!

1a4~z!#cosh@2j1~z,t !#exp@ i2u2~z,t !#1a5~z!

3$sinh@2j1~z,t !#exp@2iu2~z,t !#

2sinh@2j2~z,t !#exp@2iu1~z,t !#%,

F5b1~z!cosh~2j1!1b2~z!cosh~2j2!1b3~z!cos~2u2!,

with

j15j1~z,t !1j2~z,t !, j25j2~z,t !2j1~z,t !;

u15u2~z,t !1u1~z,t !, u25u2~z,t !2u1~z,t !.

The explicit form ofjk(z,t) anduk(z,t) can be, respectively
derived from the following equations using the express
for the spectral parameterl(z):

lk~z!5hk~z!1 i zk~z!,

jk~z,t !5hk~z!t24a1E hk~z!zk~z!dz1Tk ,

uk~z,t !5zk~z!t12a1E @hk
2~z!2zk

2~z!#dz, k51,2,

where theTk’s are integration constants, and introducing n
tations with the spectral parameterl(z) as follows:

a1~z!52
h1~z!h1h2

m
,

5-3
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a2~z!5
h2~z!h1h2

m
,

a3~z!5
h1~z!~z2!2

m
,

a4~z!5
h2~z!~z2!2

m
,

a5~z!5
2ih1~z!h2~z!z2

m
;

b1~z!5
~h2!21~z2!2

4
,

b2~z!5
~h1!21~z2!2

4
,

b3~z!52h1~z!h2~z!;

h15h2~z!1h1~z!,

h25h2~z!2h1~z!,

z25z2~z!2z1~z!.

Thus we have derived the exact two-soliton solution for
wave propagation in the uniform optical fiber system eq
tion with the fiber loss~gain! and pulse chirping or the cor
of the DM solitons propagating in a DM fiber system wi
residual loss~gain! using the Darboux transformation. The
solutions will also be useful for the study of soliton intera
tions under the influence of perturbations.

In order to understand the influence of frequency ch
parameterb on the interaction between neighboring soliton
here we investigate their transmission properties. Figur
shows the interaction scenario between neighboring soli
with larger initial pulse separation515 ps. As shown in Fig.
1~a!, since b is smaller ~here we takeb50.000 01), the
transmission property of the two-soliton solution, Eq.~23!, is
similar to the one without frequency chirp effect as shown
Fig. 2~a! of Ref. @18#. However, with increasingb, it can be
seen in Figs. 1~b! and 1~c! that the effect of frequency chirp
leads to the splitting of the two-soliton solution. This pro
erty has been confirmed by direct numerical simulation
Eq. ~11!. In fact, from the exact two-soliton solution~23! it is
shown that the group velocity varies by the exponential l
exp(24bz). In addition, we also note that the pulses unde
broadening or compression depending on the sign of the
quency chirp parameterb as they propagate along the fibe

However, as the initial separation of two solitons d
creases further, the interaction between neighboring soli
becomes much stronger. In the following, two different ca
are discussed. Figure 2~a! depicts the in-phase injection o
the two solitons with equal amplitudes. From Fig. 2~a!, we
can note that the transmission properties of the two-sol
solution are the same as the ones without the frequency c
as shown in Fig. 3 of Ref.@18# except that their amplitude
04660
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decrease in an exponential way. Consequently, there
pulse broadening during the propagation. However,
changing the sign of parameterb, one can achieve the com
pression of soliton pulses. Figure 2~b! shows the contour of
the interaction between neighboring solitons. In another c
when the amplitudes of two-soliton become unequal
shown in Fig. 3~a!, the interaction between neighboring so
tons is suppressed as a result of the unequal amplitude
addition, we clearly note that the two solitons experienc
periodic evolution due to the effect of frequency chirp. Fi
ure 3~b! represents the contour of the interaction betwe
neighboring solitons in this unequal amplitude case. Here
should be pointed that there is a special relation~integrable
condition! between the frequency chirp and fiber loss~gain!
in the model we considered. However, by direct numeri
simulation, we found that when this constraint condition
not valid, the soliton solution still exists in the model,
shown in Fig. 4. Hence, a more detailed study on this issu
under way and will be published elsewhere.

In the following, we construct a dark solitary wave sol
tions for Eq.~11!. For that we rewrite Eq.~11! as follows:

FIG. 1. Interaction of two equal amplitude pulses with initi
pulse separation equal to 15. The parameters are as follo
Re(n1)520.500 56, Re(n2)50.499 451 5, Im(n1)5Im(n2)50,
a150.5, m51, T15T250. Frequency chirp parameter:~a! b
50.000 01,~b! b50.001, ~c! b50.005.
5-4
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i
]q

]z
1a1

]2q

]t2
1a2uqu2q5b1~z!t2q2 ib2~z!q. ~24!

In order to proceed, we first analyze Eq.~24! by separating
q(z,t) into the complex amplitude functionA(z,t) and the
phase functionf(z,t) as

q~z,t !5A~z,t !exp@ if~z,t !#, ~25!

and we consider that the phase is given by

f~z,t !5dt21k~z!t1V~z!.

Thus we have the following equation:

i
]A

]z
1a1

]2A

]t2
12ia1

]f

]t

]A

]t
1a2uAu2A2F]f

]z
1a1

]f

]t

]f

]t

1b1~z!t2GA1 i Fa1

]2f

]t2
1b2~z!GA50. ~26!

In the following, we look for the solitary wave solutions fo
Eq. ~26! by introducing an ansatz similar to Refs.@21,22#:

A~z,t !5 ib~z!1l~z!tanhu1 ir~z!sechu, ~27!

FIG. 2. Interaction of two equal amplitude pulses with initi
pulse separation equal to 7. The parameters are as follo
Re(n1)520.536 555, Re(n2)50.476 214, Im(n1)5Im(n2)50,
a150.5, m51, T15T250. Frequency chirp parameter:b
50.0017.
04660
where

u5h~z!@ t2x~z!#,

and h(z) and x(z) are the pulse width and shift of invers
group velocity, respectively. The solitary wave amplitude
given by uAu25(b21l2)12br(sechu)1(r22l2)sech2u.

Substituting ansatz~27! into Eq. ~26! and equating the
coefficients of independent terms, one obtains

b1524a1d2, b252a1d, ~28!

b5C1exp~24a1dz!,

l5C2exp~24a1dz!,

r5C3exp~24a1dz!, ~29!

h5C4exp~24a1dz!,

k5C5exp~24a1dz!,

where theCk’s (k51, . . . ,5) arearbitrary constants, and in
dependent equations as follows:

r@22a1h21a2~r22l2!#50,

l@22a1h21a2~r22l2!#50, ~30!

s:

FIG. 3. Interaction of two unequal amplitude pulses, the para
eters are as follows: Re(n1)521.073 11, Re(n2)50.952 427,
Im(n1)5Im(n2)50, a150.5, m51, T153.5, T2523.5. Fre-
quency chirp parameter:b50.0005.
5-5
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@Vz1a1k22a2~b21l2!#l50,

@Vz1a1k22a2~b21l2!#b50,

@Vz1a1k22a2~b21l2!#r2r~a1h212b2a2!50,
~31!

2lhxz14a1dlhx12a1lhk12a2br21a2b~r22l2!

50,

r~2hxz14a1dhx12ha1k12lba2!50. ~32!

For the sake of simplicity, here we consider only the follo
ing two cases.

~1! Taking b5l50, namely,C15C250, we obtain the
bright soliton solution for Eq.~26! as follows:

A~z,t !5 ir~z!sechu, ~33!

where

r5C3exp~24a1dz!,

u5C4F texp~24a1dz!1
1

4d
C5exp~28a1dz!2C11G .

This solution is the same as the one, Eq.~20!, obtained by
Darboux transformation.

~2! Taking r50, namely, C350, we obtain the dark
~black! or gray soliton solution for Eq.~26! as follows:

A~z,t !5 ib~z!1l~z!tanhu, ~34!

where

b5C1exp~24a1dz!, l5C2exp~24a1dz!,

h5C4exp~24a1dz!,

FIG. 4. Pulse shape of a bright soliton for Eq.~10! by direct
nemerical simulation. The parameters are as follows:a150.5, D0

52a1 , g052m2a1 , G050.001, and~a! for integrable condition
k052G0

2 and ~b! for nonintegrable conditionk0520.012. The
solid line corresponds to the input pulse shape, the dotted cu
red and green, correspond to cases~a! and ~b!, respectively.
04660
-
a2522a1

C4
2

C2
2

, ~35!

u5C4exp~24a1dz!@ t2x~z!#,

x5C11exp~4a1dz!2
1

4C2d
~C4C11C5C2!exp~24a1dz!,

f~z,t !5dt21k~z!t1V~z!,

V52
1

8a1d
@a2~C1

21C2
2!2a1C5

2#exp~28a1dz!1C10.

To the best of our knowledge, this kind of solution has n
been reported earlier. Figure 5~a! depicts the surface of the
amplitude of the dark soliton solution for the different sig
of parameterd. As shown in Fig. 5~a!, the depth of the dark
soliton increases exponentially due to the exponentially
creasing nature ofl(z)5C2exp(24a1dz) for da0, while
for ds0 as shown in Fig. 5~b!, the depth of the dark soliton
decreases exponentially and also the width of the dark s
ton gets compressed during its propagation. Furthermore
investigate the interaction between neighboring dark solit
by direct numerical simulation for Eq.~24!. Figure 6~a!

s,

FIG. 5. Pulse evolution of a black dip with chirping frequen
and gain~loss!. The parameters are as follows:a1520.5, C150,
C251, C451, C550.003, C1050, and ~a! C1150.5, d50.0015
and ~b! C11520.5, d520.0015.
5-6
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EXACT SOLITON SOLUTIONS FOR THE CORE OF . . . PHYSICAL REVIEW E 68, 046605 ~2003!
shows the pulse shape of the output pulse when the in
soliton separation is equal to 4 after it propagates a dista
of z550 in a fiber. As shown in Fig. 6~a!, as the pulse travels
further down the fiber, the separation between two solit
keeps increasing. However, when we increase the separ
of dark solitons further up to 6, the repulsive force betwe
two soltions is decreased, which is shown in Fig. 6~b!. This
property for dark solitons is similar to that in Ref.@23#,
where the NLS equation has been considered. Here as

FIG. 6. Pulse shapes of a pair of dark solitons. The parame
are as follows:a1520.5, a251, d50.0005. ~a! with the initial
separation equal to 4 and~b! with the initial separation equal to 6
The dotted curves correspond to the input pulse shapes.
o

.

ic

p
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add the loss~gain! in the model, as shown in Fig. 6, th
intensity of the pulses will decrease~increase! depending on
the sign ofd after a distance. In addition, we also find th
unlike the case of bright solitons, the frequency chirp eff
does not completely influence the dark soliton, which sho
that dark pulses in optical fibers are more stable than br
pulses with respect to frequency chirp effect.

In conclusion, we have considered a special case o
averaged DM soliton system equation with residual lo
~gain!. The same system equation also governs the nonlin
pulse propagation in a uniform fiber system with fiber lo
~gain! where the effects due to fiber loss~gain! and chirping
of the pulse exactly balance each other. We have prese
the explicit Lax pair for such a system equation using a va
able spectral parameter. We have constructed the Darb
transformation on the basis of this Lax pair, and a sim
procedure to derive theN-soliton solutions has been pre
sented. For instance, the explicit one-soliton and two-soli
solutions have been generated. The interaction scenario
tween neighboring solitons has been discussed in detail
the influence of the frequency chirp on the soliton interact
has also been presented. We also showed that the ampl
of the pulse tends to decrease or increase in an expone
way with the same amount of broadening in the pulse wi
during its propagation such that the area of the pulse en
lope remains constant. Furthermore, we have derived
dark soliton solution for such a system with the help of
ansatz. Finally, we have discussed the compression or br
ening of the dark solitons. On the other hand, we have
cussed the interaction between neighboring dark solito
Hence, we believe that the bright soliton solutions repor
here can be used for propagating the ‘‘sech’’ form of puls
in the special DM fiber system having residual loss~gain!.
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