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We develop a simple analytical theory that relates dense sphere packings in a cylinder to corresponding

disk packings on its surface. It applies for ratios R ¼ D=d (where d and D are the diameters of the hard

spheres and the bounding cylinder, respectively) up to R ¼ 1þ 1= sinð�=5Þ. Within this range the densest

packings are such that all spheres are in contact with the cylindrical boundary. The detailed results

elucidate extensive numerical simulations by ourselves and others by identifying the nature of various

competing phases.
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Packing problems, such as that of finding the densest
arrangement of hard spheres, are among the most ancient
and challenging problems in mathematics and science. The
most famous example is the Kepler conjecture (1611),
concerned with identical spheres in an unbounded volume
[1]. In contrast, the optimal packing of such spheres within
a bounded space is much less well understood. A promi-
nent example is finding the densest packing arrangement of
monodisperse spheres within a cylindrical channel, which
we consider here. There are extensive results from simu-
lations, which we corroborate and augment in this Letter.
We supply a detailed interpretation of them, by making a
connection with the analogous (but simpler) problem of
packing disks on the bounding surface, which is an inter-
esting problem in its own right [2].

Our procedure is therefore to first explore an analytical
treatment of the surface disk packing problem and then
develop a transformation which gives approximate but
illuminating results for sphere packing within a cylinder.
Such surface patterns have their origin in the early study of
intriguing spiral arrangements of leaves and stems [3].
Thus they are associated with the term phyllotaxis, which
now stands for the standard classification of triangular
patterns on a cylinder, in any context. It is defined and
used, in what follows, together with the corresponding
notation for rhombic patterns.

Both packing problems find numerous counterparts in
nature and in the laboratory; examples include biological
microstructure [4], the morphology of dry [5] and wet
foams [6] in tubes, colloids in microchannels [7], and the
packing of fullerenes in nanotubes [8].

Simulations intended to search for the densest cylindri-
cal arrangement of spheres [9] have revealed a sequence of
helical columnar phases, as the ratio R ¼ D=d is varied
(where d and D are the diameters of the hard spheres and
the bounding cylinder, respectively). Some of these struc-
tures have been recognized in various experimental

contexts, but there has until now been no clear understand-
ing of what determines the sequence of structural transi-
tions as the cylinder diameter is increased. In this Letter,
we demonstrate that the key to this progression is the
familiar phyllotactic description. Using a straightforward
and elementary method, we provide a full taxonomy of
competing phases and also elucidate the geometric rela-
tionships between them. Surprisingly, we can use this
method to also provide a full semiquantitative description
of the helical structures together with their packing den-
sities. In general, the densest structures are of the kind
called ‘‘staggered’’ by Pickett, Gross, and Okuyama [9]:
We shall use the term ‘‘line slip.’’
We begin by discussing the disk packing problem. It is

known that the densest packing arrangement of disks on a
plane is that of a symmetric triangular lattice with lattice
spacing d0 (where d0 is the disk diameter) [10]. A piece of
the lattice can be excised and wrapped onto a cylinder
of diameter D0 (without any mismatch at the wrap edges)
if there exist two lattice points separated by a vector V of
magnitude

jVj ¼ �D0: (1)

Thus V plays the role of the periodicity vector, as shown in
Fig. 1(a) (where the lattice vertices correspond to the disk
centers). The excised section is bounded by two parallel
lines perpendicular to V; these are the wrap edges and
correspond to lines with � ¼ 0 and � ¼ 2�, respectively,
on the surface of a cylinder described by polar coordinates

(� ¼ D0
2 ; �; z).

In the phyllotactic scheme the periodicity vector V can
be defined by a set of three, ordered, positive integers (l ¼
mþ n;m; n), known as parastichy numbers in biology.
Any pair of these numbers are the absolute values of the
coefficients expressing V as a combination of two basis
vectors, chosen from among three possibilities. Figure 1(a)
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shows an example for the structure ½l; m; n� ¼ ½5; 4; 1�
along with the basis vectors of the triangular lattice.

The resulting structure, when wrapped onto a cylinder, is
a dense, homogenous packing—in the sense that all disk
sites are equivalent—which we call a symmetric lattice
packing. Between the discrete values of D0, and fixed d0,
for which such symmetric packings exist, we first consider
the most obvious adjustment to fit the cylinder. In this the
required periodicity is accommodated by an affine trans-
formation, or strain, of the lattice (more complex arrange-
ments are possible, but we do not find it necessary to
consider them). The affine transformation distorts the equi-
lateral triangle into an isosceles triangle by keeping the
length of two adjacent sides fixed and varying the third.
The imposed strain has three free parameters; these can be
chosen to satisfy Eq. (1) and give each disk four contacting
neighbors (in any one of three ways).

AsD0 is varied, the strained structure proceeds from one
symmetric packing to another, as shown in Fig. 1(c). The
rules for this process, when applied to the second and third
phyllotactic indices, are as follows [11]:

ðm; nÞ ! ðm� n; nÞ;
ðm; nÞ ! ðmþ n;mÞ;
ðm; nÞ ! ðmþ n; nÞ;

where the new indices may have to be rearranged into
descending order. For example, in the case of the symmetric

packing ½5; 3; 2� the above rules yield ð3; 2Þ ! ð2; 1Þ,
ð3; 2Þ ! ð5; 3Þ, and ð3; 2Þ ! ð5; 2Þ, where a rearrangement
of the indices in the first case was necessary. Thus the
symmetric packing ½5; 3; 2� is connected, by an affine shear,
to the symmetric packings ½3; 2; 1�, ½8; 5; 3�, and ½7; 5; 2�.
The surface density (or area fraction of the disks on the

plane) has a maximum value for a symmetric structure.
Between any two symmetric structures, connected in the
way described above, the surface density has a lower value
since each disk now has only four contacting neighbors.
Such intermediate arrangements can be labeled by using
rhombic notation ½p; q� (see [4]) and have a minimum
surface density when the disks are arranged into a square
lattice. Figure 1(c) shows such a square packing intermedi-
ate between two symmetric packings.
We shall call these asymmetric lattice packings. In gen-

eral, they are superseded by another type, as follows (in-
deed, one can show by convexity arguments that the
asymmetric lattice structure is always unstable with respect
to perturbations, under pressure).
The second type of packing is achieved by an inhomo-

geneous deformation of the symmetric lattice in which
there is a localized strain or slip along a line (and its
periodic replicas) as shown in Fig. 1(d). Again we have
three choices of the direction of slip. The rest of the
structure remains symmetric and close-packed, i.e., with
six contacts for every disk. This line-slip distortion, as we
shall call it, can again be expressed analytically. Other
possibilities, involving less localized strain, exist, but these
yield a lower density. Hence we include only the (opti-
mized) case of single line-slip solutions.
Again there is a simple rule for the close-packed struc-

tures that are the end points of line-slip solutions; in view
of their importance, we will identify explicitly the three
types of solution [11]:

ð1Þ ðm; nÞ ! ðmþ 1; nÞ or ðm� 1; nÞ;
ð2Þ ðm; nÞ ! ðm; nþ 1Þ or ðm; n� 1Þ;
ð3Þ ðm; nÞ ! ðmþ 1; n� 1Þ or ðm� 1; nþ 1Þ;

where the leading numbers denote the direction â1, â2, or
â3 of the line slip. Again the above rules apply to the
second and third phyllotactic indices of a given close-
packed structure and keep either n, m, or l constant. For
example, by using the above rules, the symmetric packing
½5; 3; 2� is connected by a line slip along â1 to ½6; 4; 2� or
½4; 2; 2�, a line slip along â2 yields ½4; 3; 1� or ½6; 3; 3�, and a
line slip along â3 yields ½5; 4; 1� or ½5; 3; 2� (note in the
second case along â3 that a rearrangement of the phyllo-
tactic indices into descending order was necessary; the new
structure has the same indices as the initial one).
Degeneracy is also possible; e.g., ½4; 2; 2� is connected to
½5; 3; 2� by a line slip along â1 or â2.
Such solutions (inspired by our simulations—see below)

are the densest we have found by analytical searches, but

FIG. 1 (color online). (a) Symmetric packing ½5; 4; 1�—the
black and red arrows indicate the periodicity V and primitive
lattice vectors, respectively; (b) square packing ½5; 4�;
(c) symmetric packing ½9; 5; 4� which is connected to the struc-
ture ½5; 4; 1� by an affine shear; (d) a line-slip structure between
the symmetric packings ½6; 4; 2� and ½5; 4; 1�.
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we can offer no proof that excludes other denser structures
of greater complexity. Figure 2 presents the analytic results
(to be published in detail elsewhere [11]) for the surface
density of all of the packings described above, where we
have set d0 ¼ 1. Asymmetric packings are shown by (red)
dashed curves and line-slip solutions by (black) continuous
curves; the symmetric packings are the labeled peaks with
maximum density, while the lines connecting them are
labeled by using the rhombic notation.

These results already show a strong resemblance to the
corresponding simulation data for sphere packings in cyl-
inders (but before we make a final comparison we will
make a further transformation). The heavy continuous
(black) line in Fig. 3 indicates the computed optimal
packing density (or volume fraction) of monodisperse
hard spheres in an infinitely long cylindrical tube for
Rð¼ D=dÞ. The present analysis was stimulated by that
the numerical work of Pickett, Gross, and Okuyama [9],
who used the method of simulated annealing to investigate
the cylindrical packing of hard spheres. We have employed
two alternative approaches to verify and extend their find-
ings. One is based on simulated annealing and employs the
use of spiral boundary conditions to make the search for
optimal structures more efficient, the other on sequential
deposition. Both will be described elsewhere. The data of
Fig. 3 are obtained by the method with spiral boundary
conditions, but the results of all three approaches are
consistent.

A representative sample of the simulated 3D structures
is shown in Fig. 4. Below each structure is the ‘‘rolled out’’
phyllotactic pattern. The sphere centers lie on an inner
cylinder D0 ¼ D� d and can be mapped to the plane by
using Cartesian coordinates ½ðD0�Þ=2; z�, where they are
shown as black dots. Contacting spheres are indicated by
dots connected by black lines. The periodicity vector,

between two identical points on the cylinder, is denoted
by a red arrow. The relationship to planar line-slip struc-
tures is evident.
We relate the disk packings to those of spheres in contact

with a cylinder, such as those shown in Fig. 4, as follows.
Recall that the sphere centers lie on an inner cylinder of
diameterD0. The sphere packing density is trivially related
to the point density of centers on that cylinder and, hence,
to that of the planar pattern of points obtained by rolling
out the cylinder on a plane. The qualitative resemblance to

FIG. 2 (color online). Area fraction of disk packings on the
plane which are consistent with wrapping onto a cylinder of
diameter D0 ¼ jVj=�. Asymmetric packings are shown by (red)
dashed curves; line-slip solutions are (black) continuous curves.

FIG. 3 (color online). Comparison of simulated and analytic
volume fractions for the densest packings—upper and lower
curves, respectively. Dotted lines are a guide for the eye to the
detailed correspondence. In the analytic results, the line-slip
structures are identified by black dashed lines, and the red
dashed-dotted lines denote asymmetric packing structures. The
numbers 1, 2, and 3 (see text) denote the type of line slip
observed (upper curve) or predicted (lower curve)—with 1n2
denoting a degenerate case.

FIG. 4 (color online). Simulated 3D structures for various
values of R, with the corresponding rolled out phyllotactic
diagram below (the red arrow denotes the periodicity vector).
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the disk problem becomes obvious, but its exact quantita-
tive expression is not straightforward. Two sphere centers,
separated by a vector r in 3D, correspond to points in 2D
whose separation S depends on the orientation of r. For
D0 > d, the two extreme cases are S ¼ jrj, for r parallel to
the cylinder axis, and S ¼ D0sin�1ðjrj=D0Þ, for r perpen-
dicular to the cylinder axis. We adopt, as an ansatz, an
interpolation between these two limits which has the cor-
rect analytic form

S2 ¼ ½jrj sinð�Þ�2 þ ½D0sin�1ðjrj=D0Þ cosð�Þ�2; (2)

where � is the angle that the points on the inner cylinder
make with the vector V. This rule is applicable for R � 2,
and a 2D packing that is consistent with it is simply a
packing of identical ellipses, whose major axes are all
parallel to the vectorV defined above, and may be obtained
from any one of the disk packings by a simple stretch in the
direction of V (which also changes V itself). In this way,
we arrive at a transformation of the circular disk packings
into an approximate representation of corresponding
sphere packings, with densities as shown in Fig. 3.

This is a good approximation for our purposes; we note
that the ratio between the predicted volume fraction, by
using our method, and numerical results is already 0.9426
at R ¼ 2:15 (i.e., the symmetric ½3; 3; 0� structure) and
continues to rapidly improve as jVj becomes larger. A
more cumbersome method that uses the exact dependence
of d on � is perfectly possible, but a small sacrifice of
accuracy preserves the extreme simplicity and transpar-
ency of our approach. By reference to the corresponding
disk packing the approximate description developed above
identifies the nature of all of the simulated sphere packing
structures involved and is mostly correct in picking the
optimal structure. Transition between different sphere
packings structures, indicated by the vertical dotted lines
at the top of Fig. 3, can be understood by reference to the
analogous disk packing problem.

There are two situations leading to qualitative discrep-
ancies between the theory and numerical results. The first
corresponds to the region R � 2:0 for which the approxi-
mation Eq. (2) fails. The result is that the twisted zigzag
structure [9] arises unexpectedly as a stable asymmetric
lattice structure. The transition to the line-slip structure at
R ¼ 1:995 is therefore of a different character from the
others. Above this point, all of the intermediate structures
are derived from the planar line-slip configurations.
They are of the staggered spiral character (see the second
and third figures in Fig. 4), noted by Pickett, Gross,
and Okuyama in their simulations [9], and exist up to
R ¼ 1þ 1= sinð�=5Þ. Beyond this point, not all the
spheres are in contact with the boundary, and the corre-
spondence with the phyllotactic scheme is lost, although it
may prove useful in the analysis of the surface layers.

The second discrepancy is due to neglecting higher order
corrections to S in Eq. (2) and leads to the observation of
line-slip solutions of type (2), in the numerical data, where
type (3) would have been expected. This effect, whereby
type (2) solutions have a greater than expected volume
fraction, diminishes for larger jVj as the higher order
corrections to S fade away.
A notable detail that emerges in the planar lattice analy-

sis, and is retained in transformation to the sphere packing
problem, is the singular behavior just before the points
labeled 220, 330, etc. For reasons of symmetry, the de-
crease of density takes a square-root form, and this is
observed in the simulation data (most clearly in plots of
the derivative of the density with respect to D).
In summary, for 2 � R � 1þ 1= sinð�=5Þ, each

phyllotactic state ðl; m; nÞ corresponds to a local density
maximum. Because of periodic constraints, and the non-
overlapping nature of hard spheres, these maxima are
attained only at discrete values of D where six contacts
are possible. Where only four contacts are possible, the
line-slip structure with the highest density is observed. The
density of the line-slip structure varies continuously with
D, but transitions between them involve a structural dis-
continuity. Though we are not aware of any experimental
observations of line-slip structures, transitions between
phyllotactic states have been observed in other systems
[12]. In further work we will provide full details of the
analytical results used here [11] and include questions of
stability and chirality. We shall extend our numerical re-
sults to larger cylinder diameters—the packing problem
then changes to one in which not all spheres touch the
cylinder.
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[2] M. Bleicher and L. F. Tóth, Mich. Math. J. 11, 337 (1964).
[3] H. Airy, Proc. R. Soc. London 21, 176 (1872).
[4] R. O. Erickson, Science 181, 705 (1973).
[5] S. Hutzler et al., Philos. Mag. Lett. 82, 297 (2002).
[6] H. K. Chan et al. (to be published).
[7] M. Tymczenko et al., Adv. Mater. 20, 2315 (2008); M.A.

Lohr et al., Phys. Rev. E 81, 040401 (2010).
[8] A. Khlobystov et al., Phys. Rev. Lett. 92, 245507 (2004).
[9] G. T. Pickett, M. Gross, and H. Okuyama, Phys. Rev. Lett.

85, 3652 (2000).
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