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The delta method is a popular and elementary tool for deriving limiting
distributions of transformed statistics, while applications of asymptotic distri-
butions do not allow one to obtain desirable accuracy of approximation for tail
probabilities. The large and moderate deviation theory can achieve this goal.
Motivated by the delta method in weak convergence, a general delta method
in large deviations is proposed. The new method can be widely applied to
driving the moderate deviations of estimators and is illustrated by examples
including the Wilcoxon statistic, the Kaplan–Meier estimator, the empirical
quantile processes and the empirical copula function. We also improve the
existing moderate deviations results for M-estimators and L-statistics by the
new method. Some applications of moderate deviations to statistical hypoth-
esis testing are provided.

1. Introduction. Consider a family of random variables {Yn,n ≥ 1} such as
the sample mean. Assume that it satisfies a law of large numbers and a fluctuation
theorem such as central limit theorem, that is, Yn → θ in law and there exists a
sequence bn → ∞ such that bn(Yn −θ) → Y in law, where θ is a constant and Y is
a nontrivial random variable. A large deviation result is concerned with estimation
of large deviation probabilities P(|Yn − θ | ≥ ε) for ε > 0. A moderate deviation
result is concerned with estimation of large deviation probabilities P(rn|Yn − θ | ≥
ε) for ε > 0, where rn is an intermediate scale between 1 and bn, that is, rn → ∞
and bn/rn → ∞. In particular, if bn = √

n, then rn = n1/2−δ with 0 < δ < 1.
The large deviation and moderate deviation problems arise in the theory of sta-

tistical inference quite naturally. For estimation of unknown parameters and func-
tions, it is first of all important to minimize the risk of wrong decisions implied by
deviations of the observed values of estimators from the true values of parameters
or functions to be estimated. Such gross errors are precisely the subject of large de-
viation theory. The large deviation and moderate deviation results of estimators can
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provide us with the rates of convergence and a useful method for constructing as-
ymptotic confidence intervals. For the classical large deviation theory with the em-
pirical measures and sample means, one can refer to Sanov (1957), Groeneboom,
Oosterhoff and Ruymgaart (1979) and Bahadur and Zabell (1979). The large de-
viations for linear combinations of order statistics (L-estimators) were also inves-
tigated in Groeneboom, Oosterhoff and Ruymgaart (1979). Bahadur and Zabell
(1979) developed a subadditive method to study the large deviations for general
sample means. For some developments of large deviations and moderate deviations
in statistics, see Fu (1982), Kester and Kallenberg (1986), Sieders and Dzhaparidze
(1987), Inglot and Ledwina (1990), Borovkov and Mogul′skii (1992), Puhalskii
and Spokoiny (1998), Bercu (2001), Joutard (2004) and Arcones (2006) for large
deviations of estimators; Kallenberg (1983), Gao (2001), Arcones (2002), Inglot
and Kallenberg (2003), Djellout, Guillin and Wu (2006) and Ermakov (2008) for
moderate deviations of estimators; Louani (1998), Worms (2001), Gao (2003), Lei
and Wu (2005) for large deviations and moderate deviations of kernel density es-
timators, and references therein. On the other hand, large deviations of estimators
can be applied to Bahadur efficiency to determine the Bahadur slope [Bahadur
(1967), Nikitin (1995), He and Shao (1996)] and hypothesis testing [see Dembo
and Zeitouni (1998), Sections 3.5 and 7.1].

In statistics, many important estimators are functionals �(Ln) of the empiri-
cal processes Ln, and so deriving limiting distribution of rn(�(Ln) − �(μ)) from
limiting distribution of rn(Ln − μ) is a fundamental problem, where rn is a se-
quence of positive numbers and μ is the mean of Ln. It is well known that the
delta method is a popular and elementary tool for solving the problem. The method
tells us that the weak convergence of rn(Xn − θ) yields the weak convergence of
rn(�(Xn) − �(θ)) if � is Hadamard differentiable (see Section 3), where Xn

is a sequence of random variables, θ is a constant and rn → ∞. For some de-
velopments and applications of the delta method, one can refer to Gill (1989),
Kosorok (2008), Reeds (1976), and van der Vaart and Wellner (1996) among oth-
ers. For example, Reeds (1976) systematically developed the use of Hadamard in-
stead of Fréchet differentiability to derive asymptotic distributions of transformed
processes. Andersen et al. (1993) also described some applications of the delta
method in survival analysis. More recently, van der Vaart and Wellner (1996) and
Kosorok (2008) provided an excellent summary of the functional delta method in
terms of a weak convergence.

A natural problem is whether the large deviations of rn(�(Xn) − �(θ)) can
be obtained from the large deviations of rn(Xn − θ) if the function � defined on
a set D� is Hadamard differentiable. When rn = r for all n with a constant r ,
the problem can be solved by the contraction principle [see Dembo and Zeitouni
(1998)]. When rn → ∞, for each n ≥ 1, define Dn = {h; θ + h/rn ∈ D�} and
fn(h) = rn(�(θ + h/rn) − �(θ)) for all h ∈ Dn. Then by Hadamard differen-
tiability, for every sequence hn ∈ Dn converging to h, the sequence fn satisfies
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fn(hn) → �′
θ (h). Note that fn(rn(Xn − θ)) = rn(�(Xn) − �(θ)). Motivated by

this, we can also consider to use a contraction principle for establishing the large
deviations of rn(�(Xn)−�(θ)). However, the existing contraction principles can-
not be applicable to these situations as addressed in Remark 2.1 of next section.
For this reason, we need to extend the contraction principle in large deviations.

The objective of this paper is to develop a general delta method in large devi-
ations similar to that in week convergence and applies the method to solve some
moderate deviation problems in statistics. The remainder of the paper is organized
as follows. In Section 2, we present an extended contraction principle, while its
proof will be given in the Appendix. Then a general delta method in large devi-
ations is established by using the extended contraction principle in Section 3. In
Section 4, we apply the proposed delta method in large deviations to some statis-
tical models including censored data, empirical quantile process, copula function,
M-estimators and L-statistics. The moderate deviation principles for the Wilcoxon
statistic, the Kaplan–Meier estimator, the empirical quantile estimator and the em-
pirical copula estimator are established. We also improve the existing moderate
deviation results for M-estimators and L-statistics in Section 4, where our proofs
are different from others but more simple by the new method. Section 5 presents
some applications of the moderate deviation results to statistical hypothesis testing.
Some concluding remarks are made in Section 6.

2. An extended contraction principle. As explained in previous section, to
establish a delta method in large deviation, we first need to generalize the contrac-
tion principle in large deviation theory. In this section, we present an extension of
the contraction principle which plays an important role.

First, let us introduce some notation in large deviations [Dembo and Zeitouni
(1998), Deuschel and Stroock (1989)]. For a metric space X , B(X ) is the Borel
σ -algebra of X . Let (�, F ,P ) be a probability space and let T be an arbitrary
map from � to R, where R = [−∞,∞] is the space of extended real numbers.
The outer integral of T with respect to P is defined by van der Vaart and Wellner
(1996)

E∗(T ) = inf{E(U);U ≥ T ,U :� 	→ R measurable and E(U) exists}.
The outer probability of an arbitrary subset B of � is

P ∗(B) = inf{P(A);A ⊃ B,A ∈ F }.
Inner integral and inner probability are defined by

E∗(T ) = −E∗(−T ) and P∗(B) = 1 − P ∗(� \ B),

respectively.
Let {(�n, Fn,Pn), n ≥ 1} be a sequence of probability spaces and let {Xn,

n ≥ 1} be a sequence of maps from �n to X . Let {λ(n), n ≥ 1} be a sequence
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of positive numbers tending to +∞ and let I : X → [0,+∞] be inf-compact; that
is, [I ≤ L] is compact for any L ∈ R. Then {Xn,n ≥ 1} is said to satisfy the lower
bound of large deviation (LLD) with speed λ(n) and rate function I , if for any
open measurable subset G of X ,

l(G) := lim inf
n→∞

1

λ(n)
logPn∗(Xn ∈ G) ≥ − inf

x∈G
I (x).(2.1)

{Xn,n ≥ 1} is said to satisfy the upper bound of large deviation (ULD) with speed
λ(n) and rate function I , if for any closed measurable subset F of X ,

U (F ) := lim sup
n→∞

1

λ(n)
logPn

∗(Xn ∈ F) ≤ − inf
x∈F

I (x).(2.2)

We say that {Xn,n ≥ 1} satisfies the large deviation principle (LDP) with speed
λ(n) and rate function I , if both LLD and ULD hold.

Now, we present the extended contraction principle.

THEOREM 2.1 (Extended contraction principle). Let (X , d) and (Y, ρ) be
two metric spaces. Let {Dn, n ≥ 1} be a sequences of subsets in (X , d), and let
{fn : Dn 	→ Y;n ∈ N} be a family of mappings. Also for each n ≥ 1, let Xn be a
map from probability space (�n, Fn,Pn) to Dn. Suppose that:

(i) {Xn,n ≥ 1} satisfies the large deviation principle with speed λ(n) and rate
function I ;

(ii) there exists a mapping f : {I < ∞} 	→ Y such that if for a sequence {xn ∈
Dn, n ≥ 1}, xn → x ∈ {I < ∞} as n → ∞, then fn(xn) → f (x) as n → ∞.

Then {fn(Xn), n ≥ 1} satisfies the large deviation principle with speed λ(n) and
rate function If , where

If (y) = inf{I (x);f (x) = y}, y ∈ Y.(2.3)

The proof of the theorem is given in the Appendix.

REMARK 2.1. (1) If Dn = X for all n ≥ 1, then Theorem 2.1 yields Theo-
rem 2.1 in Arcones (2003b). Another popular contraction principle was given in
Theorem 4.3.23 of Dembo and Zeitouni (1998), in which Dn = X for all n ≥ 1, fn

is continuous for all n ≥ 1 and for any L ∈ (0,∞),

lim
n→∞ sup

x : I (x)≤L

ρ(fn(x), f (x)) = 0.(2.4)

This condition cannot be compared to condition (ii) in Theorem 2.1.
(2) It is necessary for proving Theorem 3.1 to introduce the sequence of subsets

Dn in Theorem 2.1, because subsets {h ∈ X ; θ + h/rn ∈ D�}, n ≥ 1 are not equal,
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generally, for θ ∈ X and a subset D� of a topological linear spaces X . In fact, D�

is usually a subset of X in applications (see Section 4).

3. Delta method in large deviations. In this section, we establish a delta
method in large deviations by using the extended contraction principle presented
in Section 2.

Let us first recall some conceptions of Hadamard differentiability [Gill (1989),
van der Vaart and Wellner (1996), Kosorok (2008), Römisch (2005)]. Let X and Y
be two metrizable topological linear spaces. A map � defined on a subset D� of X
with values in Y is called Hadamard differentiable at x if there exists a continuous
mapping �′

x : X 	→ Y such that

lim
n→∞

�(x + tnhn) − �(x)

tn
= �′

x(h)(3.1)

holds for all sequences tn converging to 0+ and hn converging to h in X such that
x + tnhn ∈ D� for every n.

REMARK 3.1. Linearity of the Hadamard directional derivative �′
x(·) is not

required. In fact, �′
x(·) is often not linear if � is given by inequality constraints.

However, by the definition, we can see that �′
x(·) is positively homogenous; that

is, �′
x(th) = t�′

x(h) for all t ≥ 0 and h ∈ X .

The definition of the Hadamard differentiable may be refined to Hadamard dif-
ferentiable tangentially to a set D0 ⊂ X . For a subset D0 of X , the map � is
said to be Hadamard differentiable at x ∈ D� tangentially to D0 if the limit (3.1)
exists for all sequences tn converging to 0+ and hn converging to h in D0 such
that x + tnhn ∈ D� for every n. In this case, the Hadamard derivative �′

x(·) is a
continuous mapping on D0. If D0 is a cone, then �′

x(·) is again positively homoge-
nous.

THEOREM 3.1 (Delta method in large deviation). Let X and Y be two metriz-
able linear topological spaces and let d and ρ be compatible metrics on X and Y ,
respectively. Let � : D� ⊂ X 	→ Y be Hadamard-differentiable at θ tangentially
to D0, where D� and D0 are two subsets of X . Let Xn :�n 	→ D�,n ≥ 1 be a se-
quence of maps and let rn, n ≥ 1, be a sequence of positive real numbers satisfying
rn → +∞.

If {rn(Xn −θ), n ≥ 1} satisfies the large deviation principle with speed λ(n) and
rate function I and {I < ∞} ⊂ D0, then {rn(�(Xn) − �(θ)), n ≥ 1} satisfies the
large deviation principle with speed λ(n) and rate function I�′

θ
, where

I�′
θ
(y) = inf{I (x);�′

θ (x) = y}, y ∈ Y.(3.2)
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Furthermore, if �′
θ is defined and continuous on the whole space of X , then

{rn(�(Xn) − �(θ)) − �′
θ (rn(Xn − θ)), n ≥ 1} satisfies the large deviation princi-

ple with speed λ(n) and rate function

I�,θ (z) =
{
0, z = 0,
+∞, otherwise.

(3.3)

In particular, for any δ > 0,

lim sup
n→∞

1

λ(n)
logP ∗

n

(
ρ
(
rn
(
�(Xn) − �(θ)

)− �′
θ

(
rn(Xn − θ)

)
,0
)≥ δ
)

(3.4)
= −∞.

PROOF. For each n ≥ 1, define Dn = {h ∈ X ; θ + h/rn ∈ D�} and
fn : Dn 	→ Y, fn(h) = rn

(
�(θ + h/rn) − �(θ)

)
for all h ∈ Dn.

Then for every sequence hn ∈ Dn converging to h ∈ D0, the sequence fn satisfies
fn(hn) → �′

θ (h). In addition, �′
θ (·) is continuous on D0. Therefore, Theorem 2.1

implies that {
rn
(
�(Xn) − �(θ)

)
, n ≥ 1

}= {fn

(
rn(Xn − θ)

)
, n ≥ 1

}
satisfies the large deviation principle with speed λ(n) and rate function I�′

θ
.

Now, we consider the mapping ϕn : Dn 	→ Y × Y , where ϕn(h) = (fn(h),

�′
θ (h)) for all h ∈ Dn. If �′

θ (·) is continuous on X , then for every subsequence
hn′ ∈ Dn′ converging to h ∈ X , ϕn′(hn′) converges to (�′

θ (h),�′
θ (h)). Hence, The-

orem 2.1 implies {ϕn(rn(Xn − θ)), n ≥ 1} satisfies the large deviation principle
with speed λ(n) and rate function

J�,θ (y1, y2) = inf{I (x);�′
θ (x) = y1 = y2}, (y1, y2) ∈ Y × Y.

Therefore, by the classical contraction principle [see Dembo and Zeitouni (1998),
Theorem 4.2.1], we conclude that the difference{

rn
(
�(Xn) − �(θ)

)− �′
θ

(
rn(Xn − θ)

)
, n ≥ 1

}
satisfies the large deviation principle with speed λ(n) and rate function

inf{J�,θ = (y1, y2);y1 − y2 = z} = I�,θ (z) for z ∈ Y. �

4. Moderate deviations of estimators. In this section, moderate deviation
principles for some estimators will be established by applying the delta method
in large deviation to Wilcoxon statistic, Kaplan–Meier estimator, the empirical
quantile processes, M-estimators and L-statistics.

Let us introduce some notation. Given an arbitrary set T and a Banach space
(B,‖ · ‖B), the Banach space l∞(T ,B) is the set of all maps z :T 	→ B that are uni-
formly norm-bounded equipped with the norm ‖z‖ = supt∈T ‖z(t)‖B. Let l∞(T )
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be the Banach space of all bounded real functions x on T , equipped with the sup-
norm ‖x‖ = supt∈T |x(t)|. It is a nonseparable Banach space if T is infinite. On
l∞(T ), we will consider the σ -field B generated by all balls and all coordinates
x(t), t ∈ T .

Let (S, d) be a complete separable and measurable metric space and let bS be
the space of all bounded real measurable functions on (S, S) where S is the Borel
σ -algebra of S. Let {X,Xn,n ≥ 1} be a sequence of i.i.d. random variables with
values in S on a probability space (�, F ,P ), of law μ. Let Ln denote the empirical
measures; that is,

Ln = 1

n

n∑
i=1

δXi
, n ≥ 1.

For given a class of functions F ⊂ bS , let l∞(F) be the space of all bounded
real functions on F with sup-norm ‖F‖F = supf ∈F |F(f )|. This is a Banach space.
Every ν ∈ Mb(S) [the space of signed measures of finite variation on (S, S)] cor-
responds to an element νF = ν(f ) = ∫ f dν for all f ∈ F.

Let D[a, b] denote the Banach space of all right continuous with left-hand limits
functions z : [a, b] 	→ R on an interval [a, b] ⊂ R equipped with the uniform norm.
Let BV [a, b] denote the set of all cadlag functions with finite total variation and
set BVM [a, b] = {A ∈ BV [a, b]; ∫ |dA| ≤ M}, where the notation

∫ |dA| denotes
the total variation of the function A. In this article, we also let {an = a(n), n ≥ 1}
be a sequence of real numbers such that as n → ∞,

an → ∞ and an/
√

n → 0.

4.1. Moderate deviations for Wilcoxon statistic. Let X1, . . . ,Xm and Y1, . . . ,

Yn be independent samples from distribution functions F and G on R, respectively.
If Fm and Gn are the empirical distribution functions of the two samples; that is,

Fm(x) = 1

m

m∑
i=1

δXi
((−∞, x]) and Gn(x) = 1

n

n∑
i=1

δYi
((−∞, x]),

then the Wilcoxon statistic is defined by Wm,n = ∫ Fm dGn. It is an estimator of
P(X ≤ Y).

THEOREM 4.1. Assume that m/(m + n) → λ ∈ (0,1) as m,n → ∞. Then{ √
mn/(m + n)

a(mn/(m + n))

(∫
Fm dGn −

∫
F dG

)
, n ≥ 1

}
(4.1)

satisfies the LDP in R with speed a2(mn/(m + n)) and rate function IW defined
by

IW (x) = x2

2(λVar(F (Y )) + (1 − λ)Var(G(X)))
.(4.2)
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PROOF. Applying Theorem 2 of Wu (1994) to LX
n = 1

n

∑n
i=1 δXi

, F1 =
{(−∞, x];x ∈ R}, and LY

n = 1
n

∑n
i=1 δYi

, F2 = {(−∞, y];y ∈ R}, respectively,
and using the product principle in large deviations [Dembo and Zeitouni (1998)],

we obtain that {
√

n
an

(Fn − F,Gn − G),n ≥ 1} satisfies the LDP in l∞(R) × l∞(R)

with speed a2
n and rate function {IF (α) + IG(β)}, where

IF (α) = inf
{
1

2

∫
γ 2(x) dF (x);

∫
γ (x) dF (x) = 0, α(t) =

∫
(−∞,t]

γ (x) dF (x)

for each t ∈ R, γ :R → R is measurable
}

=
⎧⎨
⎩

1

2

∫
|α′

F (x)|2 dF(x), if α � F and lim|t |→∞|α(t)| = 0,

∞, otherwise

and α′
F = dα/dF . Since

√
m√

mn/(m+n)
→ (1 − λ)1/2 and

√
n√

mn/(m+n)
→ λ1/2, then

{ √
mn/(m + n)

a(mn/(m + n))
(Fm − F,Gn − G),n ≥ 1

}

satisfies the LDP in l∞(R)× l∞(R) with speed a2(mn/(m + n)) and rate function
given by

IF,G(α,β) = 1

1 − λ
IF (α) + 1

λ
IG(β).

Note that {IF,G(α,β) < ∞} ⊂ BV (R) × BV (R) and (Fm,Gn) ∈ BV1(R) ×
BV1(R). For each M ≥ 1, we consider the map � :D(R)×BVM(R) 	→ R defined
as

�(A,B) =
∫

R

A(s) dB(s).

Then �(Fm,Gn) = ∫ Fm dGn, and by Lemma 3.9.17 of van der Vaart and Wellner
(1996), � is Hadamard differentiable at each (A,B) ∈ D� = {∫ |dA| < ∞} and
the derivative is given by

�′
A,B(α,β) =

∫
R

A(s) dβ(s) +
∫

R

α(s) dB(s),

where
∫
(a,b] A(s) dβ(s) is defined via integration by parts if β is not of bounded

variation; that is,∫
(a,b]

A(s) dβ(s) = A(b)β(b) − A(a)β(a) −
∫
(a,b]

β(s−)A(s).
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Thus, by Theorem 3.1 with D0 = {(α,β); IF (α) < ∞, IG(β) < ∞}, we conclude
that { √

mn/(m + n)

a(mn/(m + n))

(∫
Fm dGn −

∫
F dG

)
, n ≥ 1

}

satisfies the LDP on R with speed a2(mn/(m + n)) and rate function given by

IW (x) = inf
{

1

1 − λ
IF (α) + 1

λ
IG(β),

∫
F(s) dβ(s) +

∫
α(s) dG(s) = x

}

= inf
{

1

2(1 − λ)

∫
(α′

F )2 dF + 1

2λ

∫
(β ′

G)2 dG,

∫
Fβ ′

G dG −
∫

Gα′
F dF = x,α � F,

β � G, lim|t |→∞|α(t)| = 0, lim|t |→∞|β(t)| = 0
}

= x2

2(λVar(F (Y )) + (1 − λ)Var(G(X)))
. �

4.2. Moderate deviations for Kaplan–Meier estimator. Let X and C be in-
dependent, nonnegative random variables with distribution functions F and G.
Let X1, . . . ,Xn be i.i.d. random variables distributed according to the distribution
function F and let C1, . . . ,Cn be i.i.d. random variables distributed according to
the distribution function G. X1, . . . ,Xn and C1, . . . ,Cn are assumed to be inde-
pendent. Observed data are the pairs (Z1,�1), . . . , (Zn,�n), where Zi = Xi ∧Ci ,
and �i = 1{Xi≤Ci}. The cumulative hazard function is defined by

�(t) =
∫
[0,t]

1

F(s)
dF (s) =

∫
[0,t]

1

H(s)
dHuc(s),(4.3)

where F(t) = P(X ≥ t) and H(t) = P(Z ≥ t) are (left-continuous) survival dis-
tributions, and Huc(t) = P(Z ≤ t,� = 1) is a subdistribution function of the
uncensored observations, where � = 1{X≤C}. We also denote Hc(t) = P(Z ≤ t,

� = 0). The Nelson–Aalen estimator is defined by

�n(t) =
∫
[0,t]

1

Hn(s)
dHuc

n (s),(4.4)

where

Huc
n (t) = 1

n

n∑
i=1

1{Zi≤t,�i=1} and Hn(t) = 1

n

n∑
i=1

1{Zi≥t}(4.5)

are the empirical subdistribution functions of the uncensored failure time and the
survival function of the observation times, respectively.
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The distribution function F(t) can be rewritten as

1− F(t) = ∏
0<s≤t

(
1− d�(s)

)
.

The Kaplan–Meier estimator F̂n(t) for the distribution function F(t) is defined by

1 − F̂n(t) = ∏
0<s≤t

(
1 − d�n(s)

)
.(4.6)

The Kaplan–Meier estimator F̂n is the nonparametric maximum likelihood estima-
tor of F in the right censored data model, proposed by Kaplan and Meier (1958).
Dinwoodie (1993) studied large deviations for censored data and established a
large deviation principle for supx∈τ |F̂n(x) − F(x)| where τ is a fixed time satis-
fying {1 − F(τ)}{1 − G(τ)} > 0. Bitouzé, Laurent and Massart (1999) obtained
an exponential inequality for supx∈R{(1 − G(x))|F̂n(x) − F(x)|}. Wellner (2007)
provided a bound for the constant in the inequality. In this subsection, we establish
its moderate deviation principle.

THEOREM 4.2. Let τ > 0 such that H(τ) < 1. Then {
√

n
a(n)

(�n − �),n ≥ 1}
satisfies the LDP in D[0, τ ] with speed a2(n) and rate function I� given by

I�(φ) = inf
{
IF,G(α,β);

∫
[0,t]

1

H(s)
dα(s) −

∫
[0,t]

β(s)

H
2
(s)

dHuc(s) = φ(t),

(4.7)

for any t ∈ [0, τ ]
}
,

where

IF,G(α,β) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2

(∫
|α′

Huc(u)|2 dHuc(u) +
∫

|(α + β)′Hc(u)|2 dHc(u)

)
,

if α � Huc, α + β � Hc and lim
t→∞|β(t)| = 0,

∞, otherwise.

(4.8)

PROOF. The pair (Huc
n ,Hn) can be identified with the empirical distribu-

tion of the observations indexed by the functions F1 = {I{z≤t,�=1}, t ∈ R} and
F2 = {I{z≥t}, t ∈ R}. It is easy to verify that the two classes F1 and F2 are
Donsker classes and the mapping � : l∞(F) 	→ l∞(F1) × l∞(F2) defined by
φ −→ (φ|F1, φ|F2) is continuous, where F = ⋃2

j=1 Fj . Applying Theorem 2 of

Wu (1994) to Ln = 1
n

∑n
i=1 δ(Zi,�i) and F, and the classical contraction principle

[see Dembo and Zeitouni (1998), Theorem 4.2.1] to � , we can get that{ √
n

a(n)
(Huc

n − Huc,Hn − H),n ≥ 1
}
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satisfies the LDP on D([0, τ ]) × D([0, τ ]) with speed a2(n) and rate function

IF,G(α,β) = inf
{
1

2

(∫
γ 2
1 (u) dHuc(u) +

∫
γ 2
0 (u) dHc(u)

)
;

∫
γ1(u) dHuc(u) +

∫
γ0(u) dHc(u) = 0,

and for any t ∈ [0,∞),

∫
[0,t]

γ1(u) dHuc(u) = α(t),

∫
[t,∞)

γ1(u) dHuc(u) +
∫
[t,∞)

γ0(u) dHc(u) = β(t)

}

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2

(∫
|α′

Huc(u)|2 dHuc(u) +
∫

|(α + β)′Hc(u)|2 dHc(u)

)
,

if α � Huc, α + β � Hc and lim
t→∞|β(t)| = 0,

∞, otherwise.

Set D� = {(A,B) ∈ BV1([0, τ ]) × D([0, τ ]);B ≥ H(τ)/2}. By the Dvoretzky–
Kiefer–Wolfowitz inequality [cf. Massart (1990)], for any ε > 0,

P
(

sup
t∈[0,τ ]

|Hn(t) − H(t)| > ε
)

≤ 2exp{−2nε2}.

In particular, take ε = H(τ)/2, then we have

limsup
n→∞

1

a2(n)
logP ∗((Huc

n ,Hn) /∈ D�

)
(4.9)

≤ lim sup
n→∞

1

a2(n)
logP ∗(Hn(t) ≤ H(τ)/2

)= −∞.

Consider the maps �1 : D� ⊂ BV1([0, τ ]) × D([0, τ ]) 	→ BV1([0, τ ]) ×
D([0, τ ]) and �2 :BV ([0, τ ]) × D([0, τ ]) 	→ D([0, τ ]) defined as

�1(A,B) = (A,1/B) and �2 : (A,B) 	→
∫
[0,·]

B dA.

Define �(A,B) = �2(�1(A,B)). Then �(Huc
n ,Hn) = �n, �(Huc,H) = � and

by Lemma 3.9.17 of van der Vaart and Wellner (1996), � is Hadamard differen-
tiable at each (A,B) ∈ D�. The derivative is given by

�′
A,B(α,β)(t) =

∫
[0,t]

1

B(s)
dα(s) −

∫
[0,t]

β(s)

B2(s)
dA(s).

Applying Theorem 3.1 to �n = {(Huc
n ,Hn) ∈ D�}, Pn(·) = P(·|�n) and D0 =

D� together with (4.9), we conclude that {
√

n
a(n)

(�n − �),n ≥ 1} satisfies the LDP
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in D[0, τ ] with speed a2(n) and rate function I� given by

I�(φ) = inf
{
IF,G(α,β);

∫
[0,t]

1

H(s)
dα(s) −

∫
[0,t]

β(s)

H
2
(s)

dHuc(s) = φ(t),

for any t ∈ [0, τ ]
}
. �

Next, we give some other representations. Let {(Guc(t),G(t)), t ∈ [0, τ ]} be a
zero-mean Gaussian process with covariance structure

E(Guc(s)Guc(t)) = Huc(s ∧ t) − Huc(s)Huc(t),

E(G(s)G(t)) = H(s ∨ t) − H(s)H(t),

and

E(Guc(s)G(t)) = (Huc(s) − Huc(t−)
)
I(−∞,s](t) − Huc(s)H(t).

Set T̃ = {(j, t), j = 1,2, t ∈ [0, τ ]} and
Z̃ = {Z̃(j,t); j = 1,2, t ∈ [0, τ ], Z̃(1,t) = Guc(t), Z̃(2,t) = G(t)

}
.

Then by Theorem 5.2 of Arcones (2004), {{Z̃(j,t)/
√

λ(n), (j, t) ∈ T̃ }, n ≥ 1} sat-
isfies LDP on l∞(T̃ ) with speed λ(n) and rate function given by

Ĩ (x) = inf
{1
2E(γ 2); γ ∈ L, E

(
γ Z̃(j,t)

)= x(j,t) for all (j, t) ∈ T̃
}
,

where L is the closed vector space of L2(P ) generated by {Z̃(j,t), (j, t) ∈ T̃ }. Since
the mapping � : l∞(T̃ ) 	→ l∞([0, τ ],R

2) defined by{
φ(j,t), (j, t) ∈ T̃

}−→ {(φ(1,t), φ(2,t)
)
, t ∈ [0, τ ]}

is continuous, then by the classical contraction principle [see Dembo and Zeitouni
(1998), Theorem 4.2.1], we know that { 1√

λ(n)
(Guc,G),n ≥ 1} satisfies the LDP on

D([0, τ ])×D([0, τ ]) with speed λ(n) and rate function IF,G(α,β), where λ(n) →
∞ as n → ∞.

Define Muc(t) = Guc(t) − ∫[0,t] G(u)d�(u) and

Z(t) =
∫
[0,t]

1

H(s)
dGuc(s) −

∫
[0,t]

G(s)

H
2
(s)

dHuc(s),(4.10)

where the first term on the right-hand side is to be understood via integration by
parts. Then Muc is a zero-mean Gaussian martingale with covariance function [van
der Vaart and Wellner (1996), page 384]

E(Muc(s)Muc(t)) =
∫
[0,s∧t]

H(u)
(
1 − ��(u)

)
d�(u),
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where ��(u) = �(u) − �(u−) and Z(t) = ∫[0,t] 1
H(s)

dMuc(s) is a zero-mean
Gaussian process with covariance function

E(Z(s)Z(t)) =
∫
[0,s∧t]

1 − ��(u)

H(u)
d�(u).

Therefore, by Theorem 2.1, we conclude that {{Z(t)/
√

λ(n), t ∈ [0, τ ]}, n ≥ 1}
satisfies the LDP on D([0, τ ]) with speed λ(n) and rate function I�(φ). Further-
more, from Theorem 5.2 of Arcones (2004) and Theorem 3.1 of Arcones (2003b),
we have the following result.

THEOREM 4.3. Let τ > 0 such that H(τ) < 1. Then {
√

n
a(n)

(�n − �),n ≥ 1}
satisfies the LDP in D[0, τ ] with speed a2(n) and rate function I� given by

I�(φ) = sup
m≥1,t1,...,tm∈[0,τ ]

sup
α1,...,αm∈R

{
m∑

i=1

φtiαi

− 1

2

m∑
k,j=1

αkαj(4.11)

×
∫
[0,tk∧tj ]

1 − ��(u)

H(u)
d�(u)

}
.

In particular, for any r > 0,

lim
n→∞

1

a2(n)
logP

( √
n

a(n)
sup

x∈[0,τ ]
|�n(x) − �(x)| ≥ r

)
= − r2

2σ 2
�

,(4.12)

where σ 2
� = ∫[0,τ ]

1−��(u)

H(u)
d�(u).

Now we present the moderate deviations for the Kaplan–Meier estimator F̂n(t).

THEOREM 4.4. Let τ > 0 such that H(τ) < 1. Then {
√

n
a(n)

(F̂n − F),n ≥ 1}
satisfies the LDP in D[0, τ ] with speed a2(n) and rate function IKM given by

IKM(φ) = sup
m≥1,t1,...,tm∈[0,τ ]

sup
α1,...,αm∈R

{
m∑

i=1

φtiαi

− 1

2

m∑
k,j=1

αkαj

(4.13)

×
∫
[0,tk∧tj ]

(1 − F(tk))(1 − F(tj ))

(1 − ��(u))H(u)
d�(u)

}
.
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In particular, for any r > 0,

lim
n→∞

1

a2(n)
logP

( √
n

a(n)
sup

x∈[0,τ ]
|F̂n(x) − F(x)| ≥ r

)
= − r2

2σ 2
KM

,(4.14)

where

σ 2
KM = sup

t∈[0,τ ]
(
1 − F(t)

)2 ∫
(0,t]

1

(1 − ��(u))H(u)
d�(u).

PROOF. The map � :BV [0, τ ] ⊂ D[0, τ ] 	→ D[0, τ ] is defined as

�(A)(t) = ∏
0<s≤t

(
1 + dA(s)

)
.

Then, 1 − F(x) = �(−�)(x) and 1 − F̂n(x) = �(−�n)(x). Since H(τ) < 1,
there exists some M ∈ (0,∞) such that � ∈ BVM [0, τ ]. From (4.12), we have

limsup
n→∞

1

a2(n)
logP ∗(�n /∈ BVM+1[0, τ ])

≤ lim
n→∞

1

a2(n)
logP
(

sup
x∈[0,τ ]

|�n(x) − �(x)| ≥ 1
)

= −∞.

By Lemma 3.9.30 of van der Vaart and Wellner (1996), we know that � is
Hadamard differentiable in BVM+1[0, τ ] with derivative

�′
A(α)(t) =

∫
(0,t]

�(A)(0, u)�(A)(u, t]dα(u),

where �(A)(u, t] =∏u<s≤t (1 + dA(s)). Applying Theorem 3.1 to �n = {�n ∈
BVM+1[0, τ ]}, Pn(·) = P(·|�n) and D0 = BVM+1[0, τ ], we obtain from Theo-

rem 4.2 that {
√

n
a(n)

(F̂n − F),n ≥ 1} satisfies the LDP in D[0, τ ] with speed a2(n)

and rate function ĨKM given by

ĨKM = inf
{
I�(α);
∫
(0,t]

�(F)(0, u)�(F )(u, t]dα(u) = φ(t), for any t ∈ [0, τ ]
}
.

On the other hand, we consider the process �′−�(Z)(t), where Z is defined by
(4.10). Since

�′−�(Z)(t) =
∫
(0,t]

(1 − F(u−))((1 − F(t))

1 − F(u)
dZ(u)

= (1 − F(t)
) ∫

(0,t]
1

1 − ��(u)
dZ(u),



DELTA METHOD IN LARGE DEVIATIONS 1225

which is a zero-mean Gaussian process with covariance function
(
1 − F(s)

)(
1 − F(t)

) ∫
(0,s∧t]

1

(1 − ��(u))H(u)
d�(u),

then, by Theorem 5.2 of Arcones (2004) and Theorem 3.1 of Arcones (2003b), we
obtain the conclusion of the theorem. �

4.3. Moderate deviations for the empirical quantile processes. For a nonde-
creasing function G ∈ D[a, b] and any p ∈ R, define G−1(p) = inf{x;G(x) ≥ p}.
Let D1[a, b] denote the set of all restrictions of distribution functions on R to
[a, b] and let D2[a, b] denote the set of distribution functions of measures that
concentrate on (a, b].

THEOREM 4.5. Let 0 < p < q < 1 be fixed and let F be a distribution
function with continuous and positive derivative f on the interval [F−1(p) −
ε,F−1(q) + ε] for some ε > 0. Let Fn be the empirical distribution function of

an i.i.d. sample X1, . . . ,Xn of size n from F . Then {
√

n
a(n)

(F−1
n − F−1), n ≥ 1} sat-

isfies the LDP in l∞[p,q] with speed a2(n) and rate function IEQ given by

IEQ(φ) = inf
{
IF (α);−α(F−1(x))

f (F−1(x))
= φ(x) for all x ∈ [p,q]

}
,

where

IF (α) =
⎧⎨
⎩

1

2

∫
|α′

F (x)|2 dF(x), if α � F and lim|t |→∞|α(t)| = 0,

∞, otherwise.

PROOF. Applying Theorem 2 of Wu (1994) to Ln = 1
n

∑n
i=1 δXi

, and F =
{(−∞, x];x ∈ R}, we know that {

√
n

a(n)
(Fn − F),n ≥ 1} satisfies the LDP on

D(R) with speed a2(n) and rate function IF . By Lemma 3.9.23 of van der
Vaart and Wellner (1996), it follows that the inverse map � :G 	→ G−1 as a
map D1[F−1(p) − ε,F−1(q) + ε] 	→ l∞[p,q] is Hadamard differentiable at F

tangentially to C[F−1(p) − ε,F−1(q) + ε], and the derivative is the map α 	→
−α(F−1)/f (F−1). Therefore, by Theorem 3.1, we conclude that {

√
n

a(n)
(F−1

n −
F−1), n ≥ 1} satisfies the LDP in l∞[p,q] with speed a2(n) and the rate function
IEQ. �

4.4. Moderate deviations for the empirical copula processes. Let BV +
1 (R2)

denote the space of bivariate distribution functions on R
2. For H ∈ BV +

1 (R2), set
F(x) = H(x,∞) and G(y) = H(∞, y).

Let (X1, Y1), . . . , (Xn,Yn) be i.i.d. vectors with distribution function H . The
empirical estimator for the copula function C(u, v) = H(F−1(u),G−1(v)) is de-
fined by Cn(u, v) = Hn(F

−1
n (u),G−1

n (v)), where Hn, Fn and Gn are the joint and
marginal empirical distributions of the observations.
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THEOREM 4.6. Let 0 < p < q < 1 be fixed. Suppose that F and G are con-
tinuously differentiable on the intervals [F−1(p)− ε,F−1(q)+ ε] and [G−1(p)−
ε,G−1(q) + ε] with strictly positive derivatives f and g, respectively, for some
ε > 0. Furthermore, assume that ∂H/∂x and ∂H/∂y exist and are continuous on

the product intervals. Then {
√

n
a(n)

(Cn − C),n ≥ 1} satisfies the LDP in l∞([p,q]2)
with speed a2(n) and rate function IC defined by

IC(φ) = inf{IH (α);�′
H(α) = φ},

where

�′
H (α)(u, v) = α(F−1(u),G−1(v)) − ∂H

∂x
(F−1(u),G−1(v))

α(F−1(u),∞)

f (F−1(u))

− ∂H

∂y
(F−1(u),G−1(v))

α(∞,G−1(u))

g(G−1(u))
.

PROOF. By Theorem 2 of Wu (1994), we know that

P

( √
n

a(n)

(
n∑

k=1

δ(Xk,Yk)

(
(−∞, x] × (−∞, y])− H(x,y)

)
∈ ·
)

satisfies the LDP on D(R2) with speed a2(n) and rate function defined as

IH (α) = inf
{
1

2

∫
γ 2(x, y)H(dx, dy); α(s, t) =

∫
γ (x, y)I{x≤s,y≤t}H(dx, dy)

for each (s, t) ∈ R
2, and

∫
γ dH = 0

}

=
⎧⎨
⎩

1

2

∫
(α′

H)2(x, y)H(dx, dy), if α � H and lim|s|,|t |→∞|α(s, t)| = 0,

∞, otherwise.

Then, by Lemma 3.9.28 of van der Vaart and Wellner (1996), we conclude that

the map � :H 	→ H(F−1,G−1) as a map BV +
1 (R2) ⊂ D(R

2
) 	→ l∞([p,q]2) is

Hadamard differentiable at H tangentially to C(R
2
), and the derivative is �′

H .

Therefore, it follows from Theorem 3.1 that, {
√

n
a(n)

(Cn − C),n ≥ 1} satisfies the

LDP in l∞([p,q]2) with speed a2(n) and rate function IC as defined in the theo-
rem. �

4.5. Moderate deviations for M-estimators. M-estimators were first intro-
duced by Huber (1964). Let X be a random variable taking its values in a mea-
surable space (S, S) with distribution F , let X1, . . . ,Xn be a random sample of X,
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and let Fn denote the empirical distribution function of X. Let � be a Borel subset
of R

d . A M-estimator θn(X1, . . . ,Xn) over the function g is a solution of∫
g(x, θn) dFn(x) = inf

θ∈�

∫
g(x, θ) dFn(x).

If g(x, θ) is differentiable with respect to θ , then the M-estimator θn(X1, . . . ,Xn)

may be defined as a solution of the equation∫
∇θg(x, θn) dFn(x) = 0,

where ∇θg(x, θ) = (
∂g(x,θ)

∂θ1 , . . . ,
∂g(x,θ)

∂θd ). The detailed description on M-estima-
tors can be found in Serfling (1980).

Jurečková, Kallenberg and Veraverbeke (1988), Arcones (2002) and Inglot and
Kallenberg (2003) studied moderate deviations for M-estimators. In this subsec-
tion, we study the problem by the delta method. Let ψ(x, θ) = (ψ1(x, θ), . . . ,

ψd(x, θ)) :S × � 	→ R
d . We also need the following conditions.

(C1) ψ(x, θ) is continuous in θ for each x ∈ S, and ψ(x, θ) is measurable in x

for each θ ∈ �.
Define

�(θ) = (�1(θ), . . . ,�d(θ)) = E(ψ(X, θ)) =
∫

ψ(x, θ) dF (x), θ ∈ �,

and

�n(θ) = (�1
n(θ), . . . ,�d

n (θ)) = 1

n

n∑
i=1

ψ(Xi, θ) =
∫

ψ(x, θ) dFn(x), θ ∈ �.

(C2) � has a unique zero at θ0; there exists some η > 0 such that B(θ0, η) :=
{θ ∈ R

d; |θ − θ0| ≤ η} ⊂ � and � is homeomorphism on B(θ0, η); � is differen-
tiable at θ0 with nonsingular derivative A :Rd 	→ R

d ; and E(|ψ(X, θ)|2) < ∞.
Let C(B(θ0, η)) denote the space of continuous R

d -valued functions on
B(θ0, η) and define ‖f ‖ = supθ∈B(θ0,η) |f (θ)| for f ∈ C(B(θ0, η)). Let �0(θ)

and �0n be the restrictions of � and �n on B(θ0, η), respectively.
(C3) {a(n), n ≥ 1} satisfies

a(n) ↗ ∞ and
a(n)√

n
↘ 0(4.15)

and {ψ(Xi, θ), i ≥ 1} satisfies√
n

a(n)
sup

θ∈B(θ0,η)

|�n(θ) − �(θ)| P−→ 0(4.16)

and

limsup
n→∞

1

a2(n)
log
(
nP
(

sup
θ∈B(θ0,η)

|ψ(X, θ)| ≥ √
na(n)

))
= −∞.(4.17)
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REMARK 4.1. Let Y be a random variable taking its values in a Banach
space and E(Y ) = 0. If there exists a sequence of increasing nonnegative func-
tions {Hk, k ≥ 1} on (0,+∞) satisfying

lim
u→∞u−2Hk(u) = +∞, lim

k→∞ lim
n→∞

1

a2(n)
log

Hk(
√

na(n))

n
= +∞,(4.18)

and

E(Hk(‖Y‖)) < ∞ for any k ≥ 1,(4.19)

then

limsup
n→∞

1

a2(n)
log
(
nP
(‖Y‖ ≥ √

na(n)
))= −∞.(4.20)

In particular [cf. Chen (1991), Ledoux (1992)], if for each k ≥ 1,

E(‖Y‖2(log‖Y‖)k) < +∞,

then (4.20) holds for a(n) = √
log logn; if for each k ≥ 1,

E(‖Y‖k) < +∞,

then (4.20) holds for a(n) = √
logn; if for some 1 ≤ p < 2, there exists some δ > 0

such that

E(exp{δ‖Y‖2−p}) < +∞,(4.21)

then (4.20) holds for a(n) = o(n(2−p)/2p); if for some 1 < p < 2, and

E(exp{δ‖Y‖2−p}) < +∞ for all δ > 0,(4.22)

then (4.20) holds for a(n) = O(n(2−p)/2p).
In fact, by Chebychev’s inequality,

P
(‖Y‖ >

√
na(n)

)≤ E(Hk(‖Y‖))
Hk(

√
na(n))

.

Hence, (4.18) and (4.19) yield (4.20).

LEMMA 4.1 [See Lemma 4.3 in Heesterman and Gill (1992)]. Assume that
(C1) and (C2) hold. Then there exists a neighborhood V of �0 in C(B(θ0, η)) and
a functional � :C(B(θ0, η)) 	→ B(θ0, η) such that f (�(f )) = 0, f oranyf ∈ V,

and � is Hadamard differentiable at �η with derivative �′
�0

(f ) = −A−1f (θ0).

THEOREM 4.7. Suppose that (C1), (C2) and (C3) hold. Define

θn = �(�0n).(4.23)

Then {
√

n
a(n)

(θn − θ0), n ≥ 1} satisfies the LDP with speed a2(n) and rate function

IM(z) = 1
2〈Az,�−1Az〉,(4.24)
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where � is the covariance of ψ(X, θ0) − �(θ0), and

lim sup
n→∞

1

a2(n)
logP
(
�n(θn) �= 0

)= −∞.(4.25)

PROOF. Set T = {1, . . . , d} × B(θ0, η). Since

T × T � ((i, s), (j, t)) 	→ d((i, s), (j, t)) := (Var(ψi(X1, t) − ψj(X1, s)
))1/2

is continuous on T × T and d((i, t), (i, t)) = 0, then (T , d) is totally bounded.

Hence, under (C3), Theorem 2.8 in Arcones (2003a) yields that {{
√

n
a(n)

(�i
0n(θ) −

�i(θ)), (i, θ) ∈ T }, n ≥ 1} satisfies the LDP in l∞(T ) with speed a2(n) and rate
function

Î (f ) = 1
2 inf
{
E(α2(X));f (i, θ) = E

(
α(X)
(
ψi(X, θ) − �i(θ)

))}
satisfying

limsup
λ→∞

1

λ
inf{Î (f ); ‖f ‖ ≥ λ} = −∞.

Then, applying the classical contraction principle [see Dembo and Zeitouni (1998),
Theorem 4.2.1] to l∞(T̃ ) � f → (f (1, θ), . . . , f (d, θ)) ∈ l∞(B(θ0, η),R

d), we

obtain that {{
√

n
a(n)

(�0n(θ) − �(θ)), θ ∈ B(θ0, η)}, n ≥ 1} satisfies the LDP in

C(B(θ0, η)) with speed a2(n) and rate function

I (f ) = 1
2 inf
{
E(α2(X));f (θ) = E

(
α(X)
(
ψ(X, θ) − �(θ)

))}
.

Therefore, we have

limsup
n→∞

1

a2(n)
logP(�0n /∈ V ) = −∞,

and so (4.25) holds. Then, by Theorem 3.1, we conclude that {
√

n
a(n)

(θn − θ), n ≥ 1}
satisfies the LDP with speed a2(n) and rate function

IM(z) = 1
2 inf
{
E(α2(X)),E

(
α(X)
(
ψ(X, θ0) − �(θ0)

))= −Az
}

= 1
2〈Az,�−1Az〉. �

REMARK 4.2. Comparing with Theorem 2.8 in Arcones (2002), in Theo-
rem 4.7, we remove the condition

limsup
n→∞

1

a2(n)
logP(|θn − θ0| > ε) = −∞,

which is required by Arcones (2002).
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4.6. Moderate deviations for L-statistics. Let X1n ≤ X2n ≤ · · · ≤ Xnn be the
order statistics of a random sample X1, . . . ,Xn from a random variable X with
distribution function F(x) and let J be a fixed score function on (0,1). Also let Fn

be the empirical distribution function of the sample. We consider the L-statistics
of the form

Ln :=
n∑

i=1

Xin

∫ i/n

(i−1)/n
J (u)du =

∫ 1

0
F−1

n (s)J (s) ds.

Groeneboom, Oosterhoff and Ruymgaart (1979) had obtained some large devi-
ations for L-statistics. The Cramér type moderate deviations for L-statistics had
been studied in Vandemaele and Veraverbeke (1982), Bentkus and Zitikis (1990)
and Aleskeviciene (1991). In this subsection, we study the moderate deviation
principle for L-statistics by the delta method.

Take X = l∞(R) and Y = R. Let D� be the set of all distribution functions on
R, and set D0 = {a(G − F);G ∈ D�,a ∈ R}. Define � : D� 	→ R as follows:

�(G) =
∫ 1

0
G−1(s)J (s) ds =

∫ ∞
−∞

xJ (G(x)) dG(x).

Assume that E(X2) < ∞. Set m(J,F ) = ∫∞−∞ xJ (F (x)) dF (x), and

σ 2(J,F ) =
∫

R2
J (F (x))J (F (y))

(
F(x ∧ y) − F(x)F (y)

)
dx dy,

where x ∧ y = min{x, y}. We also assume σ 2(J,F ) > 0.

THEOREM 4.8. Suppose that the score function J is trimmed near 0 and 1,
that is, J (u) = 0, u ∈ [0, t1) ∪ (t2,1] where 0 < t1 < t2 < 1. If J is bounded and

continuous a.e. Lebesgue measure and a.e. F−1, then {
√

n
a(n)

(Ln −m(J,F )), n ≥ 1}
satisfies the LDP in R with speed a2(n) and rate function IL(x) = x2

2σ 2(J,F )
.

PROOF. By Theorem 1 in Boos (1979), we have

lim‖G−F‖→0

|�(G) − �(F) − ∫ (F (x) − G(x))J (F (x)) dx|
‖G − F‖ = 0.

Therefore, for any tn → 0+ and Hn → α ∈ D0 with F + tnHn ∈ D�,

lim
n→∞

∣∣∣∣ |�(F + tnHn) − �(F)

tn
+
∫

Hn(x)J (F (x)) dx

∣∣∣∣= 0,

and so, � : D� 	→ R is Hadamard-differentiable at F tangentially to D0 with re-
spect to the uniform convergence, and �′

F (α) = − ∫
R

α(x)J (F (x)) dx,α ∈ D0.

By Theorem 3.1, we conclude that {
√

n
a(n)

(Ln − m(J,F )), n ≥ 1} satisfies the LDP

in R with speed a2(n) and rate function IL given by

IL(y) = inf
{
IF (α);−

∫
R

α(x)J (F (x)) dx = y

}
,
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which equals the rate function of {−
√

n
a(n)

∫
R
(Fn(x) − F(x))J (F (x)) dx,n ≥ 1},

that is, IL(y) = y2

2σ 2(J,F )
. �

Now, let us remove the trimming restrictions on J . Set

D̃� =
{
G̃(x) = G(x)I(−∞,0)(x) + (G(x) − 1

)
I[0,∞)(x);

G ∈ D�,

∫
|x|dG(x) < ∞

}

and D̃0 = {a(G̃ − F̃ ) ≡ a(G − F);a ∈ R, G̃ ∈ D̃�}. Then D̃�, D̃0 ⊂ L1(R). De-
fine �̃ : D̃� 	→ R by �̃(G̃) = �(G) for all G̃ ∈ D̃�.

LEMMA 4.2. If J is Lipschitz continuous on [0,1], then �̃ : D̃� 	→ R is
Hadamard-differentiable at F̃ tangentially to D̃0 with respect to L1-convergence,
and

�̃′
F̃
(α) = −

∫
R

α(x)J (F (x)) dx, α ∈ D̃0.

PROOF. By integration by parts, we can write [cf. Boos (1979), Shao (1989)]

�̃(G̃) − �̃(F̃ ) +
∫

R

(
G(x) − F(x)

)
J (F (x)) dx = R(G,F) for any G̃ ∈ D̃�,

where R(G,F) = ∫
R

WG,F (x)(G(x) − F(x)) dx, and

WG,F (x) =
⎧⎪⎨
⎪⎩
∫G(x)
F (x) (J (t) − J (F (x))) dt

G(x) − F(x)
, if G(x) �= F(x),

0, if G(x) = F(x).

By the Lipschitz continuity of J , there exists a constant C > 0 such that

|R(G,F)| ≤ C

∫
R

(
G(x) − F(x)

)2
dx = C

∫
R

(
G̃(x) − F̃ (x)

)2
dx.

For any tn → 0+ and Hn → α ∈ D̃0 in (L1(R),‖ · ‖L1) with F̃ + tnHn ∈ D̃�,
then |Hn| ≤ 2/tn and∫

R

|Hn(x) − α(x)|2 dx ≤ (‖α‖ + 2/tn)

∫
R

|Hn(x) − α(x)|dx,

where ‖α‖ = supx∈R |α(x)|. Therefore,
1

tn

∫
R

(
F̃ (x) + tnHn(x) − F̃ (x)

)2
dx

≤ 2tn

∫
R

|Hn(x) − α(x)|2 dx + 2tn

∫
R

|α(x)|2 dx → 0,
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and so

lim
n→∞

∣∣∣∣�̃(F̃ + tnHn) − �̃(F̃ )

tn
+
∫

Hn(x)J (F (x)) dx

∣∣∣∣= 0,

which yields that �̃ is Hadamard-differentiable at F̃ tangentially to D̃0 with re-
spect to L1-convergence, and �̃′

F̃
(α) = − ∫

R
α(x)J (F (x)) dx. �

LEMMA 4.3. Let X be a random variable with values in a separable Banach
space B and E(‖X‖2) < ∞. Then (B∗

1, d) is totally bounded, where B∗
1 is the unit

ball of the dual space B∗ of B, and

d(g,h) = (E((g(X − E(X)
)− h
(
X − E(X)

))2))1/2
, g, h ∈ B∗

1.

PROOF. Noting |g(X−E(X))−h(X−E(X))| ≤ 2‖X−E(X)‖ for all g,h ∈
B∗
1 and E(‖X − E(X)‖2) < ∞, by the dominated convergence theorem, we know

that the function (g,h) 	→ d(g,h) is continuous from B∗
1 × B∗

1 to R with respect
to w∗-topology. Let d∗ denote a compatible metric on (B∗

1 ,w∗). Since B∗
1 is w∗-

compact and d(g, g) = 0, then, for any ε > 0, there exists some δ > 0 such that
d(g,h) < ε, if d∗(g,h) < δ. Choose finite points h1, . . . , hm ∈ B∗

1 such that B∗
1 ⊂⋃m

i=1{g;d∗(g,hi) < δ}, then B∗
1 ⊂ ⋃m

i=1{g;d(g,hi) < ε}. Therefore, (B∗
1, d) is

totally bounded. �

Define

�2,1(X) =
∫ ∞
0

√
P(|X| > t)dt.

Then [cf. del Barrio, Giné and Matrán (1999), page 1014], �2,1(X) < ∞ if and
only if

∫∞
−∞

√
F(x)(1 − F(x)) dx < ∞.

LEMMA 4.4. Assume that �2,1(X) < ∞. If (4.15) holds and

lim sup
n→∞

1

a2(n)
log
(
nP
(|X| ≥ √

na(n)
))= −∞,(4.26)

then {
√

n
a(n)

(Fn − F) =
√

n
a(n)

(F̃n − F̃ ), n ≥ 1} ⊂ D̃0 satisfies the LDP in (L1(R),

‖ · ‖L1) with speed a2(n) and rate function IF .

PROOF. Set ξi = I{Xi≤x} − F(x), x ∈ R, then

‖ξi‖L1 = 2
(
XiF(Xi) −

∫
(−∞,Xi)

x dF (x)

)
.

Therefore, the condition of the lemma implies

lim sup
n→∞

1

a2(n)
log
(
nP
(‖ξ1‖L1 ≥ √

na(n)
))= −∞,
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and by Theorem 2.1(b) of del Barrio, Giné and Matrán (1999), we also have
1

a(n)
‖∑n

i=1 ξi‖L1
P−→ 0. By Lemma 4.3, (B∗

1, d) is totally bounded, where

B∗
1 :=
{
g ∈ L∞;‖g‖∞ := esssup

x∈R

|g(x)| ≤ 1
}

and

d(g,h) =
(
E

((∫
R

(
g(x) − h(x)

)
ξ1(x) dx

)2))1/2
.

Therefore, by Theorem 2.8 in Arcones (2003a), the conclusion of the lemma holds.
�

By Lemmas 4.4 and 4.2 and Theorem 3.1, we obtain the following result.

THEOREM 4.9. Assume that �2,1(X) < ∞, (4.15) and (4.26) hold. If J is

Lipschitz continuous on [0,1], then {
√

n
a(n)

(Ln − m(J,F )), n ≥ 1} satisfies the LDP

in R with speed a2(n) and rate function IL(x) = x2

2σ 2(J,F )
.

REMARK 4.3. From Remark 4.1, the moment condition in Theorem 4.9 is
weaker than the conditions given in Vandemaele and Veraverbeke (1982), Bentkus
and Zitikis (1990) and Aleskeviciene (1991). In particular, if E(|X|2+δ) < ∞ and
a(n) = √

log logn, then the condition of Lemma 4.4 is valid, and so, for any r > 0,

lim
n→∞

1

log logn
logP

(√
n

log logn
|Ln − m(J,F )| ≥ r

)
= − r2

2σ 2(J,F )
.

5. Application: Statistical hypothesis testing. In this section, we applied the
moderate deviations to hypothesis testing problems. We only consider the right-
censored data model. The method can be applied to other models.

Let F be the unknown distribution function in the right-censored data model
considered in Section 4.2 and let F̂n be the Kaplan–Meier estimator of F . Consider
the following hypothesis testing:

H0 :F = F0 and H1 :F = F1,

where F0 and F1 are two distribution functions such that F0(x0) �= F1(x0) for some
x0 ∈ [0, τ ]. Similar to the Kolmogorov–Smirnov test, we take the Kaplan–Meier
statistic Tn := supx∈[0,τ ] |F̂n(x)−F0(x)| as test statistic. Suppose that the rejection
region for testing the null hypothesis H0 against H1 is {

√
n

a(n)
Tn ≥ c}, where c is a

positive constant. Then the probability αn of Type I error and the probability βn of
Type II error are

αn = P

( √
n

a(n)
Tn ≥ c

∣∣∣F = F0

)
and βn = P

( √
n

a(n)
Tn < c

∣∣∣F = F1

)
,
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respectively. Then

βn ≤ P

( √
n

a(n)
sup

x∈[0,τ ]
|F̂n(x) − F1(x)|

≥
√

n

a(n)
sup

x∈[0,τ ]
|F0(x) − F1(x)| − c

∣∣∣F = F1

)
.

Therefore, Theorem 4.4 implies that

lim
n→∞

1

a2(n)
logαn = − c2

2σ 2
KM

, lim
n→∞

1

a2(n)
logβn = −∞,

where

σ 2
KM = sup

t∈[0,τ ]
(
1 − F0(t)

)2 ∫
(0,t]

1

(1 − ��(u))H 0(u)
d�0(u),

�0(t) =
∫
[0,t]

1

1 − F0(s−)
dF0(s), H 0(t) = P(Z ≥ t |F = F0),

and Z is as defined in Section 4.2.
The above result tells us that if the rejection region for the test is {

√
n

a(n)
Tn ≥ c},

then the probability of Type I error tends to 0 with decay speed

exp{−c2a2(n)/(2σ 2
KM)},

and the probability of Type II error tends to 0 with decay speed exp{−ra2(n)} for
all r > 0.

6. Concluding remarks. This article discussed the large deviations of trans-
formed statistics. For the problem, an extended contraction principle was devel-
oped and a general delta method in large deviation theory was proposed. The new
method was used to establish the moderate deviation principles for the Wilcoxon
statistic, the Kaplan–Meier estimator, the empirical quantile estimator and the em-
pirical copula estimator, which have not been addressed in the literature. The pro-
posed method was also used to improve the existing moderate deviation results
for M-estimators and L-statistics, where our proofs are different from others but
simpler by the new method. Moreover, our moderate deviation results are very use-
ful for statistical hypothesis testing. As shown in Section 5, a moderate deviation
result can be used to construct a test of a statistical hypothesis such that the prob-
abilities of both Type I and Type II errors tend to 0 with an exponentially decay
speed as n → ∞.

Note that the asymptotics for multivariate trimming and general Z-estimators
have been studied by using the delta method in a weak convergence; see Nolan
(1992) and van der Vaart and Wellner (1996). Similar to those presented in Sec-
tion 4, the moderate deviations for these estimators can be established by using the
proposed delta method in large deviations.
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These applications show that the proposed method is very powerful for deriving
moderate deviation principles on estimators. The method will play an important
role in large sample theory of statistics like the functional delta method in weak
convergence. Theoretically speaking, we can apply the proposed delta method to
obtain moderate deviations for estimators where the classical delta method can be
applied.

APPENDIX: PROOF OF THE EXTENDED CONTRACTION PRINCIPLE

Step 1. First of all, let us prove {I < ∞} ⊂ D∞, where D∞ denotes the set of
all x for which there exists a sequence xn with xn ∈ Dn and xn → x.

In fact, by the definition of D∞, x ∈ D∞ if and only if for any k ≥ 1, there
exists a positive integer nk such that Bd(x,1/k) ∩ Dn �= ∅ for all n ≥ nk , where
Bd(x,1/k) = {y ∈ X ;d(y, x) < 1/k}. Therefore, for any x /∈ D∞, there exist an
open neighborhood U of x and a subsequence {Dnk

, k ≥ 1} such that Dnk
∩U = ∅

for all k ≥ 1. Then by the lower bound of the large deviations for {Xn,n ≥ 1}, we
have

−∞ = lim inf
k→∞

1

λ(nk)
logPnk ∗(Xnk

∈ U) ≥ −I (x),

which implies {I < ∞} ⊂ D∞, where Pnk ∗ is the inner measure corresponding to
Pnk

as defined in Section 2.
Step 2. Let us prove that if some subsequence xnk

→ x ∈ {I < ∞} with xnk
∈

Dnk
, then fnk

(xnk
) → f (x) and the restriction of the function f to {I < ∞} is

continuous.
The proof is similar to that of the extended mapping theorem [see Theo-

rem 1.11.1 in van der Vaart and Wellner (1996)], which is given below. Let a
subsequence xnk

→ x ∈ {I < ∞} be given. Since x ∈ D∞, there exists a sequence
yn → x with yn ∈ Dn for each n ≥ 1. Define xn = xnI{nk,k≥1}(n)+ynI{nk,k≥1}c (n).
Then xn ∈ Dn for each n ≥ 1 and xn → x. Therefore, by condition (ii), fn(xn) →
f (x), and so fnk

(xnk
) → f (x). To prove the continuity of f on {I < ∞}, let

xm → x in {I < ∞}. For every m, there is a sequence xm,n ∈ Dn with xm,n → xm

as n → ∞. Since xm ∈ {I < ∞}, then fn(xm,n) → f (xm) as n → ∞. For every m,
take nm such that nm is increasing with m satisfying d(xm,nm, xm) < 1/m and
ρ(fnm(xm,nm), f (xm)) < 1/m. Then xm,nm → x, and by the first conclusion in
Step 2, fnm(xm,nm) → f (x) as m → ∞. This yields f (xm) → f (x).

Step 3. Let us prove that [If ≤ L] = f ([I ≤ L]) for any L ≥ 0 and If is inf-
compact, that is, for any L ∈ [0,+∞), [If ≤ L] is compact. This can be shown by
the continuity of f |{I<∞} obtained in Step 2.

Step 4. Next, we show the upper bound of large deviations.
Let F be a closed subset in Y . Then, using the arguments similar to the proof of

the extended continuous mapping theorem [see Theorem 1.11.1 in van der Vaart
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and Wellner (1996)],

∞⋂
n=1

∞⋃
m=n

f −1
m (F ) ⊂ f −1(F ) ∪ ({I < ∞})c.(A.1)

Now for every fixed k, by the large deviation principle of {Xn,n ≥ 1}, for each
L > 0, there exists a compact subset KL such that for any δ > 0,

lim sup
n→∞

1

λ(n)
logP ∗

n

(
Xn ∈ (Kδ

L)c
)≤ −L,

and so

limsup
n→∞

1

λ(n)
logP ∗

n

(
fn(Xn) ∈ F

)

≤ lim sup
n→∞

1

λ(n)
logP ∗

n

(
Xn ∈

∞⋃
m=k

f −1
m (F )

)

≤ max
{
− inf

x∈Kδ
L∩⋃∞

m=k f −1
m (F)

I (x),−L

}
,

where Kδ
L = {y;d(y, x) < δ for some x ∈ KL} and P ∗

n is the outer measure cor-
responding to Pn as defined in Section 2. Since KL is compact and I is lower
semi-continuous, then, when δ ↓ 0,

inf
x∈Kδ

L∩⋃∞
m=k f −1

m (F)

I (x) ↑ inf
x∈KL∩⋃∞

m=k f −1
m (F)

I (x).

Hence it follows that

lim sup
n→∞

1

λ(n)
logP ∗

n

(
fn(Xn) ∈ F

)≤ max
{
− inf

x∈KL∩⋃∞
m=k f −1

m (F)

I (x),−L

}
.

Choose a sequence xk ∈ KL ∩ ⋃∞
m=k f −1

m (F ), k ≥ 1 such that I (xk) =
inf

x∈KL∩⋃∞
m=k f −1

m (F)
I (x), and then choose a subsequence {xkm,m ≥ 1} and

x0 ∈ KL such that xkm → x0. Then we have

x0 ∈ KL ∩
( ∞⋂

k=1

∞⋃
m=k

f −1
m (F )

)
⊂ KL ∩ (f −1(F ) ∪ ({I < ∞})).

Letting k → ∞, we have

lim inf
k→∞ I (xk) ≥ I (x0) ≥ inf

x∈KL∩(f −1(F )∪({I<∞})c)
I (x) ≥ inf

x∈f −1(F )
I (x).

Now letting L → ∞, we conclude that

lim sup
n→∞

1

λ(n)
logP ∗

n

(
fn(Xn) ∈ F

)≤ − inf
x∈f −1(F )

I (x) = − inf
x∈F

If (x).
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Step 5. Finally, we show the lower bound of large deviations: for any y0 ∈ Y
with If (y0) < ∞,

lim inf
n→∞

1

λ(n)
logPn∗

(
fn(Xn) ∈ B(y0, δ)

)≥ −If (y0).

For any a > If (y0), there is some x0 ∈ X with f (x0) = y0 and I (x0) < a. For
any δ > 0, set B(δ) = Bρ(y0, δ) = {y ∈ Y;ρ(y0, y) < δ} and F(δ) = B(δ)c. Then,
by (A.1), we have

∞⋃
n=1

∞⋃
m=n

f −1
m (F (δ))

c

⊃ f −1(B(δ)) ∩ ({I < ∞}) � x0.(A.2)

Now for every fixed k, by the large deviation principle of {Xn}, we have

lim inf
n→∞

1

λ(n)
logPn∗

(
fn(Xn) ∈ B(δ)

)

≥ lim inf
n→∞

1

λ(n)
logPn∗

(
Xn ∈

∞⋃
m=k

f −1
m (F (δ))

c)
≥ − inf

x∈⋃∞
m=k f −1

m (F(δ))
c
I (x).

Since x0 ∈ f −1(B(δ)) ⊂⋃∞
n=1
⋃∞

m=n f −1
m (F (δ))

c

, there is some k ≥ 1 such that

x0 ∈⋃∞
m=k f −1

m (F (δ))
c

. Therefore,

lim inf
n→∞

1

λ(n)
logPn∗

(
fn(Xn) ∈ B(δ)

)≥ −I (x0) > −a.

Letting a ↓ If (y0), we obtain the lower bound of large deviations.

REMARK A.1. When Dn = X for all n ≥ 1, the continuity of f can be proved
directly by the following property [see Theorem 2.1 in Arcones (2003a)]: Given
ε > 0, for any x0 ∈ {I < ∞}, there are δ > 0 and a positive integer n0 such that for
all n ≥ n0, fn(B(x0, δ)) ⊂ B(f (x0), ε). However, when Dn �= X , fn(B(x0, δ)) is
not well defined since B(x0, δ) �⊂ Dn. Thus, the above property cannot be used for
proving the continuity of f in this case.
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