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We introduce two different systems of coupled-mode equations to describe the interaction of two waves coupled
by the Bragg reflection in the presence of saturable nonlinearity. The basic model assumes the ordinary linear
coupling between the modes. It may be realized as a photorefractive waveguide, with a Bragg lattice perma-
nently written in its cladding. We demonstrate the presence of a cutoff point in the system’s bandgap, with gap
solitons existing only on one side of it. Close to this point, the soliton’s norm diverges with power −3/2. The
soliton family between the cutoff point and the edge of the bandgap is stable. In this model, stationary bound
states of two in-phase solitons are found too, but they are unstable, transforming themselves into breathers.
Another model assumes a photoinduced longitudinal bulk grating, with the corresponding intermode coupling
subject to saturation along with the nonlinearity. In that model, another cutoff point is found, with the soliton’s
norm diverging near it with power −2. Solitons are stable in this model too (while it does not give rise to two-
soliton bound states). Collisions between moving solitons are always quasi-elastic, in either model. © 2007
Optical Society of America
OCIS codes: 060.5530, 190.5530, 350.2770.
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. INTRODUCTION AND THE MODELS
eriodic structures in optical waveguides known as Bragg
ratings (BGs), which provide for resonant reflection of
ight, and thus strong linear coupling between counter-
ropagating waves, have been a subject of intensive the-
retical and experimental research, due to their numer-
us applications to optical sensors and various
elecommunication devices (such as add–drop multiplex-
rs, dispersion compensators, narrowband filters, etc. [1]),
s well as their great potential as media for fundamental
tudies of nonlinear optical dynamics [2]. A notable fea-
ure of these periodic structures is the presence of the
topband, alias photonic bandgap, in the linear spectrum.
he combination of the bandgap (that generates ex-
remely strong effective dispersion in the temporal do-
ain, or effective diffraction in the spatial-domain real-

zation of the BG, near edges of the bandgap) with the
aveguide’s material nonlinearity gives rise to a variety
f effects, such as optical bistability, limiting, and modu-
ational instability. An especially interesting manifesta-
ion of the nonlinearity is the formation of BG solitons
alias gap solitons, if they are spectrally centered inside
he bandgap). A standard theoretical model of a Kerr-
onlinear medium equipped with the BG is based on a
ystem of coupled-mode equations (CMEs) for amplitudes
f the counterpropagating waves, U�x , t� and V�x , t�,
0740-3224/07/071458-11/$15.00 © 2
hich are coupled linearly by the BG reflection, and non-
inearly by the cross-phase modulation (XPM), and also
ake into account the self-phase modulation (SPM) effect
3]:

iUt + iUx + ���U�2 + �V�2�U + �V = 0,

iVt − iVx + ���V�2 + �U�2�V + �U = 0, �1�

here, in the most relevant case of the BG in the optical
ber, x and t are the coordinates along the fiber and time,
nd � is the Bragg reflectivity (i.e., the coefficient of the
ntermode linear coupling), while the group velocity of
ight and the overall Kerr coefficient are scaled to be 1.
he value of the SPM to XPM ratio in Eqs. (1) correspond-

ng to the ordinary Kerr nonlinearity is �=1/2.
Within the framework of Eqs. (1), a family of exact soli-

on solutions is available (for any value of �), with two in-
rinsic parameters, which determine the soliton’s ampli-
ude and velocity [4,5]. The stability of these solutions
as first studied by means of the variational approxima-

ion [6], and then with the help of accurate numerical
ethods [7,8]. It was found that approximately half of the

ap-soliton family is stable, and the other half unstable
the solitons with positive and negative intrinsic frequen-
ies are, respectively, stable and unstable). Moving BG
olitons (with the velocity no less than half the group ve-
007 Optical Society of America
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ocity of light in the same material) have been created ex-
erimentally in silica fibers with the BG written in the
ladding [9,10].

In addition to the studies of temporal gap solitons in fi-
er BGs, much effort has been focused on gap solitons in
he spatial domain, which were predicted in Refs. [11,12]
nd later theoretically elaborated in detail in various set-
ings [13–16]. In particular, Eqs. (1), with t and x realized,
espectively, as the propagation distance and transverse
oordinate, provide for a model of the copropagation of
wo waves in a nonlinear planar waveguide, the waves be-
ng linearly coupled by the Bragg reflection from a longi-
udinal lattice of parallel riblets or grooves on the
aveguide’s surface (“longitudinal” means that the grat-

ng is drawn parallel to the propagation axis, whereas the
oynting vectors of the two waves make angles ±� with

he axis; see Eqs. (9) below]. In the experiment, one-
imensional (1D) spatial gap solitons were created in
uasi-discrete waveguide arrays with the Kerr nonlinear-
ty [17–19], as well as in arrays of photovoltaic
aveguides in LiNbO3 [20]. Parallel to that, 1D [21,22]
nd two-dimensional (2D) [23] spatial solitons of the gap-
ype were created in photonic lattices, which can be opti-
ally induced in photorefractive media (that feature satu-
able, rather than cubic, nonlinearity), using the
echnique proposed in [24,25] and then applied to the cre-
tion of spatial solitons of various types; see review [26].
The recent experimental demonstration of discrete ra-

ial solitons in an axially symmetric photonic lattice in-
uced in a photorefractive material [27] suggests that gap
olitons may be created in that setting too, as recently
hown in detail in a 2D model with the cubic nonlinearity
28] (for the first time, solitons in a radial potential com-
ined with the cubic nonlinearity were considered in
29,30]). However, in the present work, we only deal with
D models.
The objective of the present work is to propose physi-

ally relevant systems of CMEs with saturable nonlinear-
ty, modeling BGs in photorefractive media, and find fami-
ies of gap-soliton solutions in those systems (including
he investigation of the soliton stability). The evolution of
ocal amplitude E�x ,z� of the electromagnetic field along
he propagation coordinate z in a photorefractive material
quipped with the photonic lattice, of period 2� /K and
trength I0, is described by the well-known equation
24,25]. In the normalized form, it is

i
�E

�z
+

1

2

�2E

�x2 −
E

1 + I0 cos2�Kx� + �E�2
= 0, �2�

here x is the transverse coordinate. A natural issue is to
erive CMEs from Eq. (2), substituting the field as a su-
erposition of two waves coupled by the Bragg reflection,
�x ,z�=U�x ,z�eiKx+V�x ,z�e−iKx, where the amplitudes U
nd V are assumed to be slowly varying functions of x in
omparison with the carrier waves, exp�±iKx�. The deri-
ation was performed in [31], by expanding the nonlinear
erm in Eq. (2) into a Fourier series and keeping the
owest-order harmonics. The result is a system of CMEs
ith a specific form of saturable nonlinearity, which im-
licitly contains four-wave mixing, along with SPM and
PM:
i
�U

�z
+ iK

�U

�x
=

�U − V�

�1 + I0�1 + �U − V�2� + 2��U�2 + �V�2�
,

i
�V

�z
− iK

�V

�x
=

�V − U�

�1 + I0�1 + �U − V�2� + 2��U�2 + �V�2�
. �3�

MEs were derived in [31] also for a 2D configuration,
hen the angles between the wave vectors carrying the
eld amplitudes U and V and the propagation axis �z� are
ifferent from 90°. In the latter case, the equations fea-
ure a different saturable nonlinearity,

i
�U

�z
+ iK

�U

�x
=

�U − V�

�I0�1 + �U�2 + �V�2�
,

i
�V

�z
− iK

�V

�x
=

�V − U�

�I0�1 + �U�2 + �V�2�
�4�

rescaling x, one may set K=1 in Eqs. (3) and (4), and con-
tant I0, which is an irreducible parameter in Eqs. (3), can
e scaled out from Eqs. (4); hence the latter equations do
ot contain any irreducible coefficient]. Note that Eqs. (4),
nlike Eqs. (3), feature solely SPM and XPM effects, with-
ut four-wave mixing. It is noteworthy too that both sys-
ems, Eqs. (3) and (4), demonstrate not only the satura-
ion of the SPM and XPM terms in each equation, but also
he saturation of the coupling between the two waves [the
oupling is no longer purely linear; cf. Eqs. (1)].

Gap-soliton solutions (including tilted ones, i.e., coun-
erparts of moving solitons in the temporal domain) to
qs. (3) and (4) were found in [31], and their stability was

nvestigated by means of direct simulations. Nontrivial
nternal stability borders in the soliton families were
ound [in particular, two disjoint stability areas were dis-
overed in the model based on Eqs. (4)].

These results, as well as more general arguments, sug-
est studying BG solitons in physically relevant systems
ith the most fundamental saturable nonlinearity, which

esembles that in Eqs. (4), but is rational, rather than al-
ebraic. We introduce two models, one of which combines
he saturable nonlinearity and ordinary linear intermode
oupling, and another, more formal one (see an explana-
ion of the physical realization of the models below), in
hich the coupling between the two waves is also subject

o the saturation. The former model is based on the fol-
owing CMEs in a normalized form; cf. Eqs. (1) and (4),

iUt + iUx −
U

1 + �U�2 + �V�2
+ �V = 0,

iVt − iVx −
V

1 + �U�2 + �V�2
+ �U = 0. �5�

he latter model (also cast in the normalized form) is
ore similar to Eqs. (4):
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iUt + iUx −
U − �V

1 + �U�2 + �V�2
= 0,

iVt − iVx −
V − �U

1 + �U�2 + �V�2
= 0. �6�

n either system, Eqs. (5) or (6), we assume that U and V
re amplitudes of two independent waves, with the total
ntensity of light approximated by �U�2+ �V�2, as commonly
dopted in various settings [26,32–34]. This is a differ-
nce from the BG model in the Kerr medium, based on
qs. (1), where the relevant combination of the nonlinear

erms has �=1/2 [nevertheless, exact soliton solutions of
qs. (1) are available for any � [4], including �=1, which

orresponds to combination �U�2+ �V�2]. Note also that, un-
ike Eqs. (1), the coupling constant � (which is propor-
ional to the Bragg reflectivity of the corresponding grat-
ng) cannot be scaled out (set equal to 1) in Eqs. (5) and
6).

The dispersion relation of the linearized version of Eqs.
5) or (6), obtained by the substitution of U ,V�eiqx−i�t

with arbitrary wavenumber q), coincides with that of
qs. (1), except for the frequency offset by ��=1,

� = 1 ± ��2 + q2 �7�

in fact, the choice of ��=1 fixes the normalization
dopted in Eqs. (5) and (6)]. As follows from Eq. (7), the
andgap in the linear spectrum of either model is

1 − � � � � 1 + � �8�

by definition, we set ��0).
Proceeding to physical realization of the models intro-

uced above, the coupled-mode equations (5) can be
mplemented in a straightforward way if one assumes a
lanar waveguide, based on a slab of a photorefractive
aterial (without any built-in lattice), which is sand-
iched between two cladding layers (made of an ordinary
ptical material). Each layer carries a permanent longitu-
inal BG, i.e., one written (on the layer) parallel to the
ropagation direction. Since the objective is to predict
patial solitons in this setting [hence t in Eqs. (5) is to be
ealized as the propagation distance and x as the trans-
erse coordinate in the plane of the waveguide], the me-
ium can be described by 1D equations if the thickness of
he photorefractive layer, d�, is smaller than a typical
ransverse width, W�, of the 2D spatial soliton in photo-
efractive crystals. As predicted in theoretical analysis
35], and confirmed by experimental observations in
early isotropic, [strontium barium niobate (SBN)] [36]
nd strongly anisotropic �KNbO3� [37] crystals, the
oliton-forming beam with the power in the microwatt
ange gives rise to spatial solitons with W� taking values
n the range of 10–30 	m. Thus, the 1D approximation

ay be well justified for d�
10 	m. If the thickness of
he cladding layers, in which the grating is written, is
2 	m (a natural size of the cladding), the effective

trength of the grating (i.e., the Bragg reflectivity), aver-
ged in the transverse direction, will be �50% of its ac-
ual strength in the cladding. The latter characteristic
ay be defined as the inverse reflection length; usually, it
s 1/ lrefl
�Bragg��1 mm−1, for weak gratings [1]. Since the

ropagation length necessary for the formation and detec-
ion of gap solitons amounts to several lrefl

�Bragg� [3], the typi-
al longitudinal size of available waveguides, several cen-
imeters, will be quite sufficient for experiments with the
patial BG solitons in this setting.

Note that Eqs. (5) and (6) neglect the bulk diffraction.
o estimate conditions that justify this approximation, we
otice that, if the Poynting vectors of the two electromag-
etic waves reflected into each other by the grating make
ngles ±� with the propagation axis (i.e., with the longi-
udinal grating itself), then, in the unnormalized form,
he combinations of derivatives appear in Eqs. (5) [or Eqs.
6)] as

ik��cos ��
�U

�z
+ �sin ��

�U

�x �, ik��cos ��
�V

�z
− �sin ��

�V

�x �
�9�

z is the propagation distance, which is replaced by t in
he normalized equations, and k=2� /� is the wavenum-
er corresponding to carrier wavelength �). As mentioned
bove, a typical transverse width of spatial solitons in
hotorefractive media is W��10–30 	m. Assuming the
arrier wavelength �1 	m, one concludes that the diffrac-
ion, represented by the second derivatives, �1/2��2U /�x2

nd �1/2��2V /�x2, is negligible provided that ��1°.
The alternative model, based on Eqs. (6), may be re-

ated to a different setting, with a bulk photoinduced lon-
itudinal lattice (rather than the material one, perma-
ently written in the cladding). However, in that case
MEs [Eqs. (6)] may only be considered as providing for a
henomenological description of the setting, as a consis-
ent derivation may lead to more complex equations; see
31]. Nevertheless, we will consider the system [Eq. (6)]
oo, which will help us to distinguish between more gen-
ral findings and model-specific ones.

Both models conserve the total norm of the field (alias
he total power, in terms of the spatial-domain transmis-
ion),

E =	
−


+



�U�x��2 + �V�x��2�dx. �10�

n addition, Eqs. (5) admit the Hamiltonian representa-
ion in the ordinary form, iUt=�H /�U*, iVt=�H /�V*,
here the asterisk stands for the complex conjugate, and

he Hamiltonian, which is another dynamical invariant of
qs. (5), is

H =
1

2	−


+



i�UUx
* − VVx

*� + ln�1 + �U�2 + �V�2� − 2�U*V�dx

+ c.c.,

ith c.c. standing for the complex conjugate expression.
quations (5) also conserve the total momentum,

P = i	
−


+


�UUx
* + VVx

*�dx. �11�

n the other hand, a Hamiltonian representation of phe-
omenological equations (6), as well as their accurate
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hysical derivation, is not obvious; that is why the latter
ME system was called “more formal” above.
To conclude the introduction of the models, we note

hat, if the nonlinearity is weak, the expansion of the
aturable nonlinearity in all the above-mentioned CME
ystems, Eqs. (3)–(6), generates cubic SPM and XPM
erms in the lowest approximation, and various quintic
erms as first corrections to it. In this connection, it is rel-
vant to mention that gap solitons in the coupled-mode
G equations, including self-focusing cubic and self-
efocusing quintic terms, were studied in [38]. Two differ-
nt types of gap solitons were identified in that work,
amely, regular and “two-tiered” ones, dominated by the
ubic and quintic nonlinearity, respectively. Stability re-
ions for these soliton species are separated, similar to
he above-mentioned property of the stability region for
olitons in Eqs. (4). A principal difference between models
ith the cubic–quintic and full saturable nonlinearity is

hat the amplitude of soliton solutions is bounded in the
ormer case, whereas it may be arbitrarily large in the
atter one (in particular, in the models considered in this
ork; see below). The latter feature is explained by the

act that the saturable nonlinearity does not imply the
ompetition between self-focusing and self-defocusing
erms.

The rest of the paper is organized as follows. In Section
, we present families of fundamental solitons (including
oving and tilted ones) in the first model, based on Eqs.

5). These solutions are obtained by means of numerical
ethods, but the cutoff point, at which the families ter-
inate inside the bandgap, and power indices that deter-
ine the divergence of the solutions near the cutoff, are

ound analytically. In Section 3, we report, in a more brief
orm, similar results for the second (phenomenological)
odel, which is based on Eqs. (6). In that case, the cutoff

oint and divergence powers are found in an analytical
orm, too. Dynamical results, which illustrate stability of
he solitons, are presented in Section 4. That section also
emonstrates the existence of two-soliton bound states in
he model based on Eqs. (5). However, the bound states
re unstable and transform themselves into robust
reathers, with little radiation loss [Eqs. (6) do not give

ig. 1. (Color online) Typical examples of stable straight (zero-ve
aturation. The solitons are obtained as numerical solutions of E
olitons located, respectively, close to the upper edge and center
isplay, for the sake of comparison, exact solutions for the gap so
onlinearity [to make them as close as possible to Eqs. (5), we set
ubstitution of �→�−1, see Eq. (7).
ise to bound states]. Results for collisions between mov-
ng (tilted) solitons are reported in Section 4, too. It is
hown that the collisions, in both CME systems [Eqs. (5)
nd (6)], are quasi-elastic, thus being essentially different
rom what was found in the standard model, based on
qs. (1), where the collisions may be strongly inelastic

39]. Section 5 concludes the paper.

. FAMILIES OF BRAGG-GRATING
OLITONS IN THE MODEL WITH
ATURABLE NONLINEARITY
. Straight (Zero-Velocity) Solitons
e start the analysis by looking for stationary solutions

f Eqs. (5) for quiescent solitons (i.e., ones with zero ve-
ocity, which correspond to zero tilt in the spatial domain),
n the ordinary form,

�U,V
 = �u�x�,v�x�
exp�− i�t�. �12�

he substitution of this expression in Eqs. (5) leads to a
ystem of stationary equations. Similar to zero-velocity
oliton solutions of Eqs. (1), the solutions in the present
ase obey a constraint compatible with the equations, v
−u*, which reduces the stationary system to a single
quation:

�u + i
du

dx
−

u

1 + 2�u�2
− �u* = 0. �13�

First, we report numerically obtained soliton solutions
f Eq. (13), whose generic examples are displayed in Fig.
. For comparison, the figure also includes, for the same
alues of parameters, well-known exact solutions of the
tandard CMEs [Eqs. (1)], that were found in [4,5]. Figure
(a) presents solitons located close to the upper edge of
he gap, where they are similar to their counterparts in
he standard BG model (which, in this limit, is itself close
o the ordinary nonlinear Schrödinger equation [40]), and
ig. 1(b) displays an example taken near the cutoff point,
=� [see Eq. (14)], where the newly found solitons are
rastically different from the exact solutions of the stan-
ard model. In the latter case, we observe a real compo-

solitons found in the Bragg-grating model with the nonlinearity
) with �=1. (a) and (b) correspond to �=1.8 and 1.1, i.e., to the
bandgap. Here and in Figs. 3 and 5, profiles marked by “cubic”
in the standard model, which is based on Eqs. (1) with the cubic

Eqs. (1)]. The latter solutions were taken also for �=1, with the
locity)
q. (13
of the
litons
�=1 in



n
p
t
m

a
o
i
s
i
(
o

i
o
t

c
(
a
c
p
o
R
w

w
r
q
a
t
a
n

w

s
g
�
i

�
t
m

B
S
c
i
=
E

w
n
d

t

F
(
v
i
�
t
1
f
w
i

F
�
f

1462 J. Opt. Soc. Am. B/Vol. 24, No. 7 /July 2007 Merhasin et al.
ent u�x�, which is much larger than both the imaginary
art of the same solution, and real and imaginary parts of
he corresponding gap-soliton solution of the standard BG
odel with the cubic nonlinearity.
Collecting results of the numerical solution of Eq. (13)

t different values of �, it is possible to construct a family
f gap-soliton solutions for given �. As a global character-
stic of the family, in Fig. 2 we have plotted (for �=1.5) the
oliton’s norm, defined by Eq. (10), versus �. A conclusion
s that for all values of the coupling constant considered
we analyzed in detail the situation for ��1), the family
f gap-soliton solutions to Eq. (13) fills out a stripe,

� � � � 1 + �, �14�

nside the bandgap given by Eq. (8); in the remaining part
f the gap, 1−����� (which does not exist for ��1/2),
he solutions could not be found.

To explain these results, it is necessary to take into ac-
ount the peculiarities of the gap-soliton solutions to Eq.
13) highlighted above, in connection to Fig. 1(a). Indeed,
pproaching the cutoff point, �=�, where the solutions
ease to exist, we observe broad solitons with a large real
art of u�x�, and bounded Im
u�x��. Analyzing Eq. (13),
ne easily concludes that, at �−�→0, the amplitude of
e
u�x��, A, diverges simultaneously with the soliton’s
idth, W, as

A � W � �� − ��−1/2, �15�

hile the amplitude of Im
u�x�� remains finite (the satu-
able nonlinearity, unlike the above-mentioned cubic–
uintic one [38], admits solitons with an arbitrarily large
mplitude). Simultaneously, the soliton is much broader
han its counterpart in the standard model. This entails
n estimate for the respective divergence of the soliton
orm,

E � A2W � �� − ��−3/2, �16�

hich agrees with the numerical results shown in Fig. 2.
As mentioned above, the existence region for the gap

olitons given by Eq. (14) actually covers the entire band-
ap [see Eq. (8)], at small values of the coupling constant,
�0.5. While we did not study this case in detail, assum-

ng that the systems with relatively strong coupling,

ig. 3. (Color online) Examples of stable tilted (moving) solitons
=1.8 (a) and �=1.1 (b), i.e., respectively, close to the upper edg

or the moving solitons found, at the same parameters, in the st
�1, are of major interest, we assume that, for small �,
he gap-soliton family is similar to that in the standard
odel based on Eqs. (1).

. Tilted (Moving) Solitons
olutions to Eqs. (5) for solitons moving at velocity c (re-
all they appertain to tilted beams, in the spatial-domain
nterpretation of the model) were looked for as �U ,V

�u�x−ct� ,v�x−ct�
exp�−i�t�. The substitution of this in
qs. (5) leads to a system of stationary equations,

�u + �1 − c�i
du

d�
−

u

1 + �u�2 + �v�2
+ �v = 0,

�v − �1 + c�i
dv

d�
−

v

1 + �v�2 + �u�2
+ �u = 0, �17�

here ��x−ct. Unlike the case of c=0, these equations do
ot admit reduction v=−u*, hence Eqs. (17) cannot be re-
uced to a single equation, such as Eq. (13).
Because the linearization of Eqs. (17) is identical to

hat of standard CMEs [Eqs. (1)], the interval of the ve-

ig. 2. (Color online) Norm of the soliton, defined as per Eq.
10), versus � for the family of numerically found straight (zero-
elocity) soliton solutions to Eq. (13), with �=1.5. The family ex-
sts in interval 1.5���2.5, which corresponds to Eq. (14). For
−1.5→0, the norm diverges, as the amplitude of the real part of

he solution and its width tend to become infinitely large; see Fig.
(b). For the sake of comparison, a curve showing the norm of the
amily of exact solitons in the standard model, based on Eqs. (1)
ith �=1, multiplied by 10 (otherwise, it would be almost invis-

ble) is included too.

e BG model with the saturable nonlinearity, for �=1, c=0.1, and
enter of the bandgap, cf. Fig. 1. For comparison, exact solutions
model based on Eqs. (1), with �=1, are included too.
in th
e and c
andard
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ocities in which the solitons may exist in the present
odel is the same as in the standard one, i.e., −1�c�
1 (it is found as an interval of values of c for which the

inearization of the equations in the moving coordinates
till yields a finite bandgap).

Shapes of the moving solitons were found from a nu-
erical solution of Eqs. (17). Typical examples of moving

olitons and comparison with their counterparts in the
tandard BG model are given in Fig. 3.

As well as the straight (zero-velocity) solutions, their
ounterparts for the tilted (moving) solitons fill out only a
art of the available bandgap. Indeed, a straightforward
nalysis shows that soliton solutions to Eqs. (17) can only
e found for ��� (i.e., the cutoff point, �=�, does not de-
end on the velocity, as corroborated by numerical solu-
ions for the moving solitons), and estimates [Eqs. (15)
nd (16)] that were derived above for the straight (zero-
elocity) solitons, remain valid for the tilted (moving)
nes as well. Note that the soliton existence region, �
�, covers the entire bandgap in the comoving reference

rame at ��1/ �1+�1−c2�; cf. the above-mentioned condi-
ion, ��1/2, for the straight (zero-velocity) solitons.

For given values of �, the family of moving solitons is
haracterized by the dependence of the momentum on the
elocity, P�c�, with P defined by Eq. (11). Typical examples
f this dependence are displayed in Fig. 4.

ig. 4. (Color online) Momentum of the moving (tilted) solitons, f
requency of the solitons is fixed at (a) �=1.8 and (b) �=1.1. The P
1), with �=1, are included for the comparison.

ig. 5. (Color online) Examples of stable straight (zero-velocity)
qs. (6) with �=1: (a) �=0.18; (b) �=1.8. For comparison, soliton
ponding values of parameters (in particular, �=1), are shown to
. SOLITON FAMILIES IN THE MODEL
ITH THE SATURATION OF THE
ONLINEARITY AND COUPLING

roceeding to the analysis of solitons in the phenomeno-
ogical model based on Eqs. (6), which includes the satu-
ation of the intermode coupling, we start with the
traight (zero-velocity) solutions, in the form of Eq. (12).
ubstituting it in Eqs. (6) and using the above-mentioned
onstraint, v=−u*, we reduce the stationary equations to
single one [cf. Eq. (13)],

�u + i
du

dx
−

u + �u*

1 + 2�u�2
= 0. �18�

he analysis of Eq. (18) readily demonstrates that, in this
odel, the cutoff point is �=0 „if it belongs to the band-

ap [Eq. (8)], i.e., if ��1…, with the solitons filling the re-
ion of

0 � � � 1 + �. �19�

ote that this region is broader than its counterpart in
he previously considered model, which was given by Eq.
14). In the limit of �→ +0, analysis of Eq. (18) predicts
he following divergence scalings for the soliton’s ampli-
ude, width, and norm [cf. Eqs. (15) and (16)]:

s per Eq. (11), plotted versus their velocity, for �=1. The intrinsic
endences for exact solitons in the standard model, based on Eqs.

s found in the BG model with the coupling saturation, based on
e standard BG model, based on Eqs. (1) and found at the corre-
ound a
�c� dep
soliton
s in th
o.
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A � �−1/2, W � �−1, E � �−2. �20�

Typical examples of solitons produced by numerical so-
ution of Eq. (18) are displayed in Fig. 5 [together with
heir counterparts found in the standard model based on
qs. (1)], and the E��� dependence for the family is shown

n Fig. 6. Solutions for moving (tilted) solitons have also
een found in this model, in the entire region of velocities
here they are expected to exist, −1�c� +1. Examples of

he moving solitons are given in Fig. 7.

. DYNAMICAL PROBLEMS: STABILITY OF
HE SOLITONS, BOUND STATES, AND
OLLISIONS
. Stability Analysis
he next step in the study of the present models is to con-
ider stability of the solitons. To this end, we note, first of
ll, that the E��� dependences displayed in Figs. 2 and 6
atisfy the Vakhitov–Kolokolov (VK) criterion, dE /d��0,
ccording to which solitons cannot be unstable against
erturbation eigenmodes with purely real instability
rowth rates [41]. However, the VK criterion ignores per-
urbations with complex growth rates. In particular, it is
ell known that, while all soliton solutions in the BG
odel with the cubic nonlinearity, based on Eqs. (1), meet

he condition of dE /d��0, only half of them are truly
table [6–8].

To analyze the stability of zero-velocity solutions in the
odel with the saturable nonlinearity in a consistent way,
e employ the linearization of Eqs. (5). To this end, we

ake a perturbed solution as

�U�x,t�

V�x,t�� = ��u0�x�

v0�x�� + �u1�x�

v1�x��ei�t�e−i�t,

here u0�x� and v0�x� are components of the unperturbed
olution, and functions u1�x� and v1�x� constitute an
igenmode of small perturbations with a (generally
peaking, complex) instability growth rate �. Upon the
ubstitution of this in Eqs. (5) and linearization, we arrive
t coupled equations for the components of the perturba-
ion eigenmode (if the unperturbed soliton is straight, i.e.,
t has zero velocity),

ig. 7. (Color online) Examples of stable moving (tilted) soliton
0.5, �=1.8 and (b) c=0.2, �=0.18, i.e., near the upper and lower
re also exact solutions for the moving solitons (at the correspond
ith �=1.
�� + i
d

dx�u1 −
u1

1 + �u0�2 + �v0�2

+
�u1u0

* + u0u1
*� + v1v0

* + v0v1
*

�1 + �u0�2 + �v0�2�2 u0 + �v1 = �u1,

�� − i
d

dx�v1 −
v1

1 + �v0�2 + �u0�2

+
�v1v0

* + v0v1
*� + u1u0

* + u0u1
*

�1 + �v0�2 + �u0�2�2 v0 + �u1 = �v1.

The eigenvalue problem based on these equations (com-
lex conjugates of the equations were used to close the
inear system) was solved numerically. The obtained re-
ults show that, within the numerical accuracy available,
he instability growth rate for the straight (zero-velocity)
olitons is zero, in the entire region where they exist. We
tress that this result was obtained for the model with �
1, when the existence region, given by Eq. (14), occupies

ig. 6. (Color online) Norm of the soliton defined as per Eq. (10),
s plotted versus � for the family of numerically found straight
zero-velocity-) soliton solutions of Eq. (18), with �=1. The family
xists in the interval [Eq. (19)], which, in the present case, is 0
��2, coinciding with the entire bandgap [Eq. (8)] (for ��1, the

xistence interval is smaller than the bandgap; see text). For �
0, the norm, amplitude and width of the soliton diverge in ac-

ordance with analytical predictions [Eq. (20)]. For comparison, a
urve showing the norm of the family of exact solitons in the
tandard model, based on Eqs. (1) with �=1 and �=1, multiplied
y 10 (to make it visible), is included too, cf. Fig. 2.

he model with the saturation of the nonlinearity, for �=1: (a) c
of the bandgap, respectively; cf. Fig. 3. For comparison, included
lues of the parameters) in the standard model based on Eqs. (1),
s in t
edge

ing va
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ess than a half of the entire bandgap, see Eq. (8). On the
ther hand, in the standard BG model, with the cubic
onlinearity, an approximate analytical consideration [6]
nd accurate numerical analysis [7,8] of Eqs. (1) reveal
hat only the solitons from the upper-half bandgap, 0

���, are stable, while the remaining half, −����0, is
ccupied by unstable solitons (as mentioned above). A pos-
ible explanation to the complete stability of the gap-
oliton family in the present model is that a part of the
andgap where unstable solitons could be found is actu-
lly empty.
The stability of the solitons has also been verified by di-

ect simulations of the evolution of perturbed solitons in
he framework of the underlying Eqs. (5). A typical ex-
mple attesting to the stability of the solitons, with the
nitial perturbation amplitude at a 2% level, is shown in
ig. 8.
The stability of tilted (moving) solitons has also been

nalyzed, by computing eigenvalues determined by the
inearization of Eqs. (5) in the reference frame moving
long with the unperturbed soliton and also by means of
irect simulations of perturbed solitons. It has been con-
luded that, as well as their zero-velocity (straight) coun-
erparts, the moving (tilted) solitons do not give rise to
nstable eigenvalues, within the framework of the avail-
ble numerical accuracy. Direct simulations of Eqs. (5)
onfirm the stability of the moving solitons. Examples, ob-
ained by adding a perturbation to the moving solitons at

ig. 8. (Color online) Evolution of a perturbed straight (zero-
elocity) soliton in the model based on Eqs. (5), for �=1 and �
1.8, i.e., when the unperturbed soliton is the same as in Fig. 1.

n this figure and in other figures that present results of direct
imulations (see below) only the U component is displayed, as the
volution of its V counterpart seems quite similar, in all cases.

ig. 9. (Color online) Evolution of the tilted (moving) solitons fro
he amplitude level of 2%, are displayed in Fig. 9; cf.
ig. 8.
A similar analysis has been performed for the solitons

n the model based on Eqs. (6), which includes the satu-
ation of the linear coupling. The results are similar too,
emonstrating the stability of the solitons, as determined
y the computation of the eigenvalues and verified in di-
ect simulations. Moving solitons in this model are also
table.

. Bound States of Solitons
ome other models based on the linear coupling between
aves induced by the Bragg reflection feature double-
ump (DH) stationary solitons, in addition to the funda-
ental single-hump (SH) ones. Examples are three-wave

14] and four-wave [42,43] systems with quadratic nonlin-
arity. Similar states were also found in a model with
aturable nonlinearity, but without the BG-induced cou-
ling [44].
Besides the fundamental solitons reported above, nu-
erical solution of the stationary equation, which deter-
ines zero-velocity solitons in the model with the nonlin-

arity saturation, Eq. (13), gives rise to DH solitons in
his model, too; they may be realized as in-phase bound
tates of the fundamental solitons; see an example in Fig.
0. This result, by itself, is nontrivial, as no such states
re known in the standard BG model based on Eqs. (1),

. 3(a) and 3(b), to which a 2% amplitude perturbation was added.

ig. 10. (Color online) Typical example of a DH stationary pat-
ern found from Eq. (13) at �=3.4 and �=2.5. For comparison, a
undamental (SH) soliton, found at the same values of param-
ters, is shown too.
m Figs
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nd numerical solution of the other coupled-mode system
ntroduced above, viz., the one based on Eqs. (6), have not
evealed any bound states either. However, direct simula-
ions of Eqs. (5), with the DH solitons taken as initial con-
itions, demonstrate that they are unstable. A typical ex-
mple displayed in Fig. 11 shows that the instability
nitiates repeated collisions of two solitons that originally
orm the bound state. Eventually, they merge into quite a
obust breather, that features indefinitely long quasi-
egular vibrations. The transformation of the unstable
ound state into the breather gives rise to little radiation
oss: in the case shown in Fig. 11, the relative difference of
he norm [Eq. (10)] between the initial and final localized
tates is 5%.

Barring numerical problems with solutions for very
road solitons, a conclusion is that the bound states of two
undamental solitons, which transform themselves into
reathers due to the instability, can be found at all values
f � at which the fundamental solitons themselves exist.
t is also relevant to mention that no stable or unstable
ound states formed by three (or more) solitons have been
ound in Eqs. (5).

. Collisions between Moving Solitons
he existence of stable moving solitons suggests a possi-
ility to simulate collisions between them. In the stan-
ard BG model with the cubic nonlinearity, based on Eqs.
1) with �=0.5, collisions were systematically investi-

ig. 11. (Color online) Transformation of the unstable bound
tate of two in-phase solitons into a breather, at �=2.5 and �
3.4 (the initial bound state is the same as in Fig. 10).

ig. 12. (Color online) Examples of collisions between identica
roduced by simulations of the standard BG model, based on E
0.1, revealed by simulations of Eqs. (5). In both cases, the equ

requencies (a) �=0.6675 and (b) �=1.8.
ated in [39]. It was found that identical solitons moving
ith velocities ±c collide quasi-elastically (passing

hrough each other, with some loss and excitation of in-
rinsic oscillations) if c exceeds 0.2; at c�0.2, the slowly
oving solitons could merge into a single pulse; see an ex-

mple of the latter outcome of the collision in Fig. 12(a).
We have performed systematic simulations of the colli-

ions in the two models introduced in this work, i.e., ones
ased on Eqs. (5) and (6). In either system, the collisions
lways appear to be quasi-elastic, i.e., the solitons sepa-
ate after the collision, featuring some intrinsic perturba-
ions. A typical example of the quasi-elastic collision of
low solitons, with velocities c= ±0.1, is shown in Fig.
2(b).

. CONCLUSION
n this work, we have introduced two coupled-mode sys-
ems describing the copropagation of two waves coupled
y the resonant Bragg reflection in a medium with satu-
able nonlinearity. The main model, based on coupled-
ode equations in the form of Eqs. (5), combines the ra-

ional nonlinearity and ordinary (linear) coupling. It may
e realized in the spatial domain, considering a planar
aveguide made of a photorefractive material, with the

ongitudinal diffraction lattice written in its cladding,
hich is made of an ordinary optical material. We have
emonstrated analytically and confirmed by numerical
esults that, unless the coupling is too weak, there is a
utoff point ��=�� inside the system’s bandgap, with gap
olitons existing to the right of it. The powers that deter-
ine the divergence of the soliton’s amplitude, width and
orm close to the cutoff point were predicted in the ana-

ytical form and corroborated by numerical computations.
he computation of the stability eigenvalues for small
erturbations and direct simulations demonstrate that
he solitons existing between the cutoff point and the up-
er edge of the bandgap are stable, which pertains to
traight (zero-velocity) and tilted (moving) solitons alike.
n-phase bound states of two fundamental solitons have
een found too, but they are unstable, and eventually
erge into robust breathers, with little radiation loss at

he transient stage.

ons moving at velocities ±c: (a) the inelastic collision at c=0.1,
with �=0.5; (b) quasi-elastic collision at the same velocities, c
were taken with �=1, and the colliding solitons had intrinsic
l solit
qs. (1)
ations
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The second model introduced in this work, based on
qs. (6), is a phenomenological one. It assumes a bulk
hotoinduced grating, therefore this model features the
aturation of the intermode coupling, in addition to the
onlinearity saturation. In that case, the cutoff point, �
0, and the law of divergence of the soliton solutions close

o it were also found analytically and confirmed numeri-
ally. The solitons are stable in this model too, while it
oes not give rise to two-soliton bound states, stable or
nstable ones.
Collisions between solitons in the present models were

xplored by means of direct simulations. It was concluded
hat, on the contrary to the standard Bragg-grating
odel, the collisions are always quasi-elastic in both sys-

ems of the CMEs introduced in this work.
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