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Spectral characterization of a color scanner by
adaptive estimation
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A new method of spectral characterization for color scanners by the use of adaptive estimation is proposed. It
deals with estimation of high-dimensional reflectance vectors from low-dimensional scanner response vectors
when the scanner departs from linearity. We first investigate the spectral linearity of the scanner, and then
estimate the spectral reflectance adaptively based on the local statistics of a set of neighboring training
samples. As the proposed characterization method does not utilize the mathematically recovered spectral re-
sponsivity, its inherent inaccuracy is not critical to the spectral characterization. Experimental results
showed significant advantage of adaptive estimation when compared with other methods. © 2004 Optical So-
ciety of America

OCIS codes: 330.1710, 330.1730.
1. INTRODUCTION
With the rapid development of computer-based image pro-
cessing techniques, color images are widely used in visu-
alization, communication, and reproduction.1 It is
known that different color devices have their own charac-
teristics, which makes color communication and repro-
duction difficult. To record and process color images
faithfully, techniques of device characterization need to be
applied to minimize the impact of device limitations and
differences, and preserve color information during the
communication of the images between devices.

Device characterization techniques can be classified
into two categories: colorimetric and spectral. Colori-
metric characterization transforms the imaging device re-
sponses, or RGB values, into device-independent CIE tri-
stimulus values.2–7 Typical techniques used for
colorimetric characterization are least-squares-based
polynomial regression,2,3 lookup table with interpolation
and extrapolation,4,5 and artificial neural networks.6,7

Although these techniques work well, they all suffer from
a problem of metamerism. As a consequence, they are
constrained to a specific illuminant and observer. To
overcome this problem, spectral characterization, which
recovers the spectral reflectance from imaging device re-
sponses, has received considerable attention recently.8–13

The spectral sensitivity (or responsivity) of the imaging
device plays an important role in spectral characteriza-
tion. As it is impractical and expensive to measure the
sensitivity of a camera or a scanner, some researchers
have tried to estimate it mathematically by using various
methods such as principal eigenvector analysis,8,9 set
theoretic estimation,8,10 quadratic programming,11

Wiener estimation,12 and parametric model fitting.13

Based on the recovered spectral sensitivity of a color scan-
ner, Shi and Healey14 proposed a characterization method
that uses a high-dimensional linear reflectance model
(LRM) and found that it significantly outperformed the
colorimetric polynomial regression method. DiCarlo and
1084-7529/2004/071125-06$15.00 ©
Wandell15 introduced absolute- and relative-scale sub-
manifold estimation methods to improve further the spec-
tral characterization results when the training color
sample set systematically deviates from a normal distri-
bution. Haneishi et al.16 estimated the spectral reflec-
tance of art paintings by taking into account the noise dis-
tribution and the subdivision of sensor response space.
Imai and Berns17 comparatively investigated the accu-
racy of spectral reflectance in various spaces by use of
principal component analysis. In almost all these
techniques14–17 it was assumed that the spectral sensi-
tivities of the imaging system were measured or math-
ematically recovered accurately. However, for a real
scanner, as the spectral sensitivity may depart consider-
ably from the linear reflectance model,9 one cannot ensure
that these techniques work in spectral characterization
when the mathematically recovered sensitivity is not ac-
curate enough.

This paper proposes a new technique to estimate high-
dimensional spectral reflectance from low-dimensional
scanner responses based on adaptive estimation (AE). In
this study, we first investigate scanner linearity by recov-
ering the scanner spectral responsivity with a con-
strained, linear, least-squares method. Then we calcu-
late the global transform matrix based on the minimum-
mean-square-error criterion. Finally, we calculate the
local statistics by use of a subset of the neighboring
samples and estimate the spectral reflectance. As the re-
covered scanner spectral responsivity is not used in the
proposed AE, the characterization performance will not be
affected by its accuracy. Experimental results are also
given to evaluate the performance of the proposed tech-
nique quantitatively in comparison with other methods.

2. INVESTIGATION OF SCANNER
LINEARITY BY RECOVERY OF SPECTRAL
RESPONSIVITY
If a color scanner behaves linearly in electronic imaging,
the response of the kth (k 5 1, 2, 3 for three-color-
2004 Optical Society of America
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channel scanners) sensor at a pixel can be given as18

nk 5 E
lL

lH

fk~l!d~l!r~l!ls~l!dl 1 nk

5 E
lL

lH

mk~l!r~l!dl 1 nk , (1)

where fk(l) is the spectral transmittance of the kth color
filter, d(l) is the spectral sensitivity of the detector in the
measurement, r(l) is the spectral reflectance of the object
being scanned, ls(l) is the spectral radiance of the scan-
ner illuminant, and nk is a constant bias response. The
low and high limits lL and lH are the wavelength limits
beyond which the spectral response of the sensor is zero.
As the filter transmittance, sensor sensitivity, and illumi-
nant radiance are unknown for a common scanner, it is
convenient to group them into one quantity mk(l)
5 fk(l)d(l)ls(l), which we refer to as scanner spectral
responsivity in this study. In Eq. (1), the indices express-
ing spatial coordinates are omitted for simplicity.

For practical computation, the continuous functions
may be replaced by their sampled counterparts to obtain
summation as numerical approximations to integral. If
N uniformly spaced samples are used over the spectrum
range @lL , lH#, Eq. (1) can be rewritten with matrix vec-
tor notation as

v 5 Mr 1 n, (2)

where v is the 3 3 1 vector of scanner responses, M is the
3 3 N matrix of mk(l), r is the 3 3 1 vector of object re-
flectance, and n is the 3 3 1 vector of nk .

Equations (1) and (2) assume that the scanner behaves
linearly. However, as pointed out by Vora et al.12 the ac-
tual response of each channel rk may be subject to an
input–output nonlinearity that can be represented by an
optoelectronic conversion function Fk( • ). Then Eq. (2)
becomes

r 5 Fk~v! 5 Fk~Mr 1 n!, (3)

where r is the 3 3 1 vector of the actual nonlinear re-
sponse rk .

In this study, the color scanner Epson GT-100001 was
used for characterization; the color targets used were
GretagMacBeth ColorChecker Chart (MCC), GretagMac-
Beth ColorChecker DC (CDC), Kodak Gray Scale Q-14
(Q14), and Kodak Q60 photographic standard (IT8).
These four color targets were sequentially scanned at a
resolution of 72 dots per inch. The reflectance data of the
colors on targets MCC, CDC, and Q14 were measured by
a GretagMacbeth Spectrophotometer 7000A in the visible
spectrum of 400 to 700 nm with sampling interval of 10
nm. The reflectance data of color target IT8 were ob-
tained from ftp://ftp.ece.uci.edu/pub/mshi/, which were
the same used in the study by Shi and Healey.14 We
clipped the provided IT8 reflectance data from the spec-
trum range 380–730 nm to 400–700 nm to keep it the
same as those of the other color targets.

To examine Fk( • ) the mean scanner responses of each
gray patch on MCC, CDC, and Q14 were calculated in a
center 40 3 80-pixel area. The mean reflectance values
of these color patches were calculated in the spectrum
range 440–700 nm because the reflectance in the range
400–430 nm is not very flat. The inverse optoelectronic
conversion function Fk

21( • ) can be regarded as the mono-
tonically increasing nonlinear curve between the actual
nonlinear response of the scanner and the mean reflec-
tance values of those gray patches. The functions Fk

21

( • ) of the blue channel for the color targets MCC, CDC,
and Q14 are shown in Fig. 1. The relationships of the
red and green channels are quite similar to that of the
blue channel. It is noted that the relationships for differ-
ent color targets are slightly different from each other.
This is due mainly to the fact that these color targets are
made of materials of different reflection properties. This
characteristic is considered by the factor n in Eq. (3).

After the introduction of the optoelectronic conversion
function Fk( • ), we then investigated whether the LRM
of Eq. (2) can accurately describe the behavior of the scan-
ner. Because of the difficulty in instrumental measure-
ment of the spectral responsivity, we tried to recover it
mathematically. In this study, 24 colors on MCC were
used to recover the spectral responsivity, and the Q14 was
used to obtain nonlinear function Fk

21( • ). In the calcu-
lation of M, constraints of smoothness, posivitity, and re-
sponse accuracy were used according to the following in-
equalities [(4)–(6)]:

u2Mk~i ! 2 Mk~i 2 1 ! 2 Mk~i 1 1 !u < e, (4)

Fig. 1. Reverse nonlinear functions between the sensor re-
sponse and the mean reflectance of the blue channel for color tar-
gets MCC, CDC, and Q14. The relationships of the red and
green channels are similar.

Fig. 2. Recovered spectral responsivity of the scanner using col-
ors on MCC.
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Table 1. Comparison of the Actual Linear Responses nk and Predicted Ones n̂k by Use of Mathematically
Recovered Spectral Responsivitya

Error

MCC CDC

Red Green Blue Red Green Blue

Mean error (%) 0.80 0.75 1.41 1.88 1.66 2.78
Maximum error (%) 1.90 1.56 4.65 4.70 5.05 9.69

a The error of a color is calculated by using unk 2 n̂ku/nk max 3 100%, where nk max is the maximum linear response of the kth channel of the white patch
of MCC.
Mk > 0, (5)

unk 2 Mkru < d, (6)

where e and d are predetermined values, Mk is the kth
(k 5 1, 2, 3) 1 3 N vector of matrix M, and Mk(i) is the
ith element of vector Mk . This problem can be regarded
as that of the constrained-linear-least-squares and can be
solved using standard mathematical methods, such as the
routine lsqlin in MATLAB. The solved spectral respon-
sivity is shown in Fig. 2, and the calculated n
5 @2.03, 2.41, 1.51#T (T denotes transpose) when e
5 1.0 and d 5 0.01 were adopted. As can be seen in Fig.
2, the spectral responsivity at some wavelengths is
slightly below 0, which conflicts with relation (5). This is
due to the overstringent constraints with the inequalities
(4)–(6) for the scanner used, and the spectral responsivity
shown in Fig. 2 is the optimal solution under these con-
straints. Nevertheless, the shape of the responsivity
seems quite reasonable. To check the accuracy and gen-
erality of responsivity matrix M, the colors on MCC and
CDC—except the dark ones (A2, A5, A8, A11, etc.) and the
glossy ones (S1-T12) of the CDC target—were used in
testing the accuracy of simulated linear scanner response
from the measured r and the recovered M shown in Eq.
(2). The errors between the actual and simulated linear
responses are given in Table 1.

As shown in Table 1, the simulation errors of MCC are
reasonably low. The errors of the blue channel are
slightly larger than those of the red and green channels.
However, the mean and standard deviation of the abso-
lute errors of the test target CDC are approximately 2
times larger than those of MCC. This clearly indicates
that the recovered spectral responsivity is actually data
dependent. It is also considered that the scanner departs
from the LRM as the errors for some colors are relatively
high.

3. CHARACTERIZATION OF COLOR
SCANNER USING ADAPTIVE ESTIMATION
After the mathematical recovery of the spectral respon-
sivity matrix M, the factor n is also known. If we let u
5 v 2 n, Eq. (2) can be rewritten as

u 5 Mr. (7)

The convenient solution to spectral characterization is to
estimate the reflectance vector r̂ from the linear response
vector u by an N 3 3 matrix W, such that

r̂ 5 Wu. (8)
The estimation of spectral reflectance from linear re-
sponse can be regarded as determining the linear trans-
form matrix W in Eq. (8) such that r̂ is a close replica of r
in minimum-mean-squares-error sense. Thus with

J 5 E$i r̂ 2 ri2%, (9)

where E denotes the statistical expectation operator, the
problem is to determine the W that minimizes J. By dif-
ferentiation of J with respect to W, we get the Wiener–
Hopf equation19

W 5 RruRr
21, (10)

where

Rru 5 E$ruT%, (11)

Rr 5 E$rrT%, (12)

are the cross- and autocorrelation matrices, respectively.
An alternative approach to solving W is to employ the or-
thogonality principle in the minimization of the mean-
squares error; the transform matrix then becomes20

W 5 KrMT~MKrMT!21, (13)

where Kr 5 E$(r 2 E$r%)(r 2 E$r%)T% is the covariance
matrix of r. Equation (13) was usually used in previous
studies on multispectral imaging and spectral
characterization.16,17,21 An implicit assumption of this
equation is that the spectral responsivity is accurate
enough. However, as discussed above, the behavior of a
real scanner may depart from the LRM considerably.
Therefore, we consider Eq. (10) is much more appropriate
as it does not explicitly incorporate the spectral respon-
sivity.

The most straightforward way for estimation of the ma-
trix W is to use the statistics (correlation matrix) of a
large number of training samples. However, the statis-
tics is also inconsistent for individual training samples,15

especially when a real scanner departs from the LRM.
Therefore, in this study, we consider estimating the sta-
tistics adaptively according to the candidate color sample
for characterization. One possible way is to divide the
scanner sensor space into several blocks and estimate the
correlation statistics from the data within each block.
The drawback of this method is that the estimated trans-
form matrix may fail to describe the statistics of the can-
didate samples lying at block boundaries. In this study,
we propose an AE method consisting of the following
steps:
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1. Calculate the correlation matrices Rr and Rru by
using all the training samples and estimating the global
transform matrix W0 according to Eq. (10).

2. For a candidate color sample with known linear re-
sponse ui , calculate its reflectance ri0 using the esti-
mated W0 , and then search L neighboring samples (ex-
cept the candidate sample itself) of ri0 in terms of
Euclidean distance in the reflectance space.

3. Estimate the adaptive transform matrix Wi by us-
ing these selected L neighboring training samples and
calculating the final reflectance ri from the candidate
sample ui .

As the selected L neighboring samples in step (2) are
close to the candidate sample ui , the estimated Wi will
describe its statistics more accurately than W0 does. An
important issue in this method is to decide the value of L,
or equivalently, how many training samples are appropri-
ate for the estimation of Wi . It is noted that in deciding
the suitable value of L, we always assume that the candi-
date sample itself is not included in the training samples
for the AE.

Fig. 3. Relationship between the training sample number L and
mean (top), standard deviation (middle), and maximum (bottom)
of color difference DE94* of CDC.
CIE 1994 color difference DE94* under standard illumi-
nant D65 was used to calculate testing results for each
color in the CDC target when different L numbers were
used. The mean, standard deviation, and maximum of
DE94* are plotted in Fig. 3. It is found that the mean of
the color difference slowly increases with increase in
training sample number L. From Fig. 3, we consider L
5 20 is appropriate for the adaptive estimation for target
CDC. We note that the value of L is color-target related.
For example, we found L 5 10 to be appropriate for IT8.

4. EXPERIMENTAL RESULTS
Color targets CDC and IT8 were used for the spectral
characterization of the Epson color scanner. For the
CDC, we obtain the linear scanner response u after the
recovery of spectral responsivity M shown in Fig. 2. The
reflectance data of IT8 were measured by Gretag Spec-
troscan and Spectrolino spectrophotometers.14 Because
there may be instrumental disagreement between these
two different spectrophotometers, we used the reflectance
data of IT8 to obtain the linear response vector u in esti-
mating the reflectance vector of IT8.

In the quantitative evaluation of the proposed AE
method, in addition to DE94* , we used the term of rms er-
ror defined in the reflectance as

rms error 5 F ~r 2 r̂!T~r 2 r̂!

N G1/2

, (14)

where N is the sampling number in the visible spectrum
and r and r̂ are measured and estimated spectral reflec-
tance, respectively.

To evaluate the characterization performance of the
proposed AE method, we also determined the character-
ization results by use of the LRM14 for comparison. A
brief description of that method is given in Appendix A for
reference. For the LRM, two cases are used for compari-
son. We assume the candidate is included in the training
samples for the first case, while excluded for the second
case. We thought the second case would be more realistic
for real characterization problems. The nonadaptive es-
timation (NAE) by Eq. (10) was also conducted for com-
parison. The comparative evaluation results of these
methods are shown in Tables 2 and 3 for color targets
CDC and IT8, respectively. Although the performance of
the LRM method (candidate sample included) was
slightly better than the proposed method, it was thought
that, for a realistic characterization problem, it would
rarely be the case that the candidate sample itself were in
the training sample database. Therefore, it was consid-
ered that the proposed AE method significantly outper-
formed the LRM and NAE methods in terms of both color
difference and rms error. For both targets of CDC and
IT8, the mean color difference is lower than 1.7DE94*
units, which is considered to be sufficient for many appli-
cations.

5. CONCLUSIONS
Spectral characterization consists of calculation of high-
dimensional reflectance vectors from low-dimensional re-
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Table 2. Mean, Standard Deviation (Std.), and Maximum (Max.) of Color Difference DE94* and Rms Error
for the LRM Method in Candidate Included (In.) Case and Candidate Excluded (Ex.) Case, NAE,

and the Proposed AE for Target CDC

Method

DE94* Rms Error

Mean Std. Max. Mean Std. Max.

LRM (In.) 1.49 0.97 7.05 0.0130 0.0090 0.0784
LRM (Ex.) 3.11 2.41 13.90 0.0331 0.0227 0.1157
NAE 2.78 2.17 14.82 0.0293 0.0212 0.1488
AE 1.63 1.35 6.59 0.0179 0.0164 0.0931

Table 3. Mean, Standard Deviation (Std.), and Maximum (Max.) of Color Difference DE94* and Rms Error
for the LRM Method in Candidate Included (In.) Case and Candidate Excluded (Ex.) Case, NAE,

and the Proposed AE for Target IT8

Method

DE94* Rms Error

Mean Std. Max. Mean Std. Max.

LRM (In.) 2.13 1.46 7.29 0.0081 0.0043 0.0267
LRM (Ex.) 2.87 1.98 11.41 0.0138 0.0089 0.0647
NAE 3.05 1.93 8.92 0.0137 0.0072 0.0440
AE 1.44 1.01 5.81 0.0066 0.0047 0.0266
sponse vectors. Although several techniques have been
presented for the characterization of imaging devices
such as digital cameras and scanners in previous studies,
they all assume that the spectral sensitivity (or respon-
sivity) can be accurately measured or recovered math-
ematically. However, a real scanner may depart consid-
erably from the presumed linear reflectance model. To
account for this problem, we have proposed an AE tech-
nique to characterize a color scanner. The proposed
method first mathematically recovers the spectral respon-
sivity, then adaptively estimates the local statistics of the
candidate color sample by searching appropriate training
samples. Experimental evaluation indicates that the
spectral-characterization-based AE significantly outper-
forms that based on the LRM in terms of both color dif-
ference and rms error. The proposed method has poten-
tial applications such as textile quality control and art
painting recording where high color accuracy is required.

APPENDIX A: SCANNER
CHARACTERIZATION USING LINEAR
REFLECTANCE MODEL
According to its relative smoothness, the spectral reflec-
tance r can be accurately approximated using a series of
coefficients ai and basis functions bi as

r 5 (
i51

K

aibi 5 Ba, (A1)

where K is the number of basis functions, a
5 @a1 , a2 ,..., aK#T, and B 5 @b1 , b22 ,..., bK#. With
the recovered spectral responsivity of the scanner, the lin-
ear response can be represented by

u 5 Mr 5 MBa 5 MB1a1 1 MB2a2 , (A2)

where
B1 5 @b1 , b1 , ¯ , bK23#, B2 5 @bK22 , bK21 , bK#,

a1 5 @a1 , a2 , ¯ , aK23#T, a2 5 @aK22 , aK21 , aK#T.

We can represent a2 in terms of a1 by rearranging Eq.
(A2) into

a2 5 ~MB2!21~u 2 MB1a1!. (A3)

Therefore the reflectance becomes

r 5 B1a1 1 B2~MB2!21~u 2 MB1a1!. (A4)

The solution r is now constrained by the three-
dimensional sensor responses u. By varying the K-3 el-
ement of a1 , we obtain a set Sr of reflectance vectors that
are consistent with u and the LRM. The objective is to
find the r in the set Sr that is the most similar in Euclid-
ean distance to a training reflectance vector. For a given
training ri , the reflectance r* of Sr that minimizes
ir 2 rii is the solution of a linear least-squares problem:

ri* 5 B1a1* 1 B2~MB2!21~u 2 MB1a1* !, (A5)

where

a1* 5 @B1 2 B2~MB2!21MB1#1@ri 2 B2~MB2!21u#,
(A6)

and where the superscript 1 represents pseudoinverse.
The error can be calculated as

Di* 5 iri* 2 rii . (A7)

The overall minimization of r* is given by the ri* corre-
sponding to the minimum Di* in all the training samples
in the case.
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