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Methodology for the evaluation of yield strength and hardening behavior
of metallic materials by indentation with spherical tip
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This article presents a methodology for evaluating the yield strength and hardening behavior of
metallic materials by spherical indentation. Two types of assumed material behaviors with a pure
elastic-Hollomon’s power law hardening and a pure elastic-linear hardening were considered
separately in the models of spherical indentation. The numerical relationships between the material
properties and indentation responses were established on the basis of dimensional and finite element
analysis. As the first approximation to the real plastic flow properties, the yield strengths and
hardening behaviors determined from the spherical indentation loading curve and the numerical
relationships were used to derive the intersecting points between Hollomon’s power law hardening
curve and linear hardening line. Through proceeding the three parameter’s regression analysis with
Swift’s power law function for the intersecting points determined at different maximum indentation
depths, the final yield strength and hardening behavior of tested material can be obtained. The
validation of this method was examined by investigating three groups of materials with near linear
hardening behavior, near Hollomon’s power law hardening behavior, and initial yield plateau. It is
concluded that the proposed method is applicable to a wide variety of materials which exhibit
separate hardening behaviors. ©2003 American Institute of Physics.@DOI: 10.1063/1.1579862#
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I. INTRODUCTION

Indentation experiments with continuous loa
displacement curves measured by depth-sensing indent
technique have been widely used for determining the m
chanical properties of materials with small dimension.1–7

Both self-similar sharp indenter tip~like Vickers and Berk-
ovich tips! and spherical indenter tip can be employed
this purpose. Generally, a sharp indenter tip is apprecia
for the measurement of hardness, while a spherical on
favorable for the evaluation of the plastic flow propertie
such as the yield strength and hardening behavior. The
son for the difference is associated with the different str
fields under these two kinds of indenters. The strain fie
produced by a sharp indenter tip at different depths are s
similar, so the load-displacement curves with different dep
are not able to reflect the plastic flow properties correspo
ing to different regions of the stress–strain relationship o
material. This makes it difficult to identify them from th
continuous load-displacement curve.8 On the contrary, the
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geometrical topography of the strain fields beneath a sph
cal indenter tip would change all the way with increasi
indentation depth. Correspondingly, more information on
plastic flow properties of material can be reflected in t
indentation responses, and this provides the possibility
deduce them.9

A key to fulfill the aim of identifying the plastic flow
properties is to establish the relationship between sphe
indentation responses and the elastoplastic properties o
dented material. To do this, the functional type of t
uniaxial stress–strain relation of indented material has to
assumed, and it is usually taken as linear elasticity combi
with Hollomon’s power law hardening. Based on the hypo
esis, the methods for determining the plastic flow proper
of metallic materials have been proposed in recent years.10–12

The advantage of these methods lies in their simplicity, ho
ever, a large error in evaluation for the mechanical prop
ties, especially for the yield strength, may appear when
material is far from the assumed Hollomon’s power la
hardening behavior. This means that for the material to
measured with unknown hardening behavior, the yi
strength determined by the reported methods is quite un
il:
© 2003 American Institute of Physics
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able. Thus, developing an approach to be applicable to w
materials showing very different hardening behaviors is c
cial and also the aim of this work.

In this article, both Hollomon’s power law and linea
hardening behaviors are considered in the models of sph
cal indentation. Dimensional analysis and finite element c
culations are applied to investigate the numerical relati
ships between spherical indentation responses and
material properties. By determining the first approxima
yield strengths and hardening behaviors as well as the c
acteristic points defined in this article from the spherical
dentation loading curve and the numerical relationships,
final estimation on yield strength and hardening behav
with small error for very different material behavior can
achieved.

II. ANALYSIS OF SPHERICAL INDENTATION

Indentation is a complicated nonlinear process, wh
deals with elastoplastic material behavior, large strains
rotation, and variable contact condition. No analytical so
tion for indentation response is available. So numeri
analysis appears to be necessary. In this study, finite elem
method~FEM! was employed to simulate the spherical i
dentation process. It is assumed that the spherical indent
elastic. The contact interface between the indenter and
dented material is free of friction. The tested material b
haves as an isotropic and rate-independent solid, and o
Von Mises yield criterion and pure isotropic hardening ru
In particular, two types of uniaxial stress–strain relations
assumed separately as material properties. The first on
elastic-Hollomon’s power law hardening relation:

s5H E« «%«yH

syH~«/«yH!n «.«yH
~1!

whereE is the Young’s modulus,s and« are the true stres
and true strain,syH and«yH5syH /E are the yield stress an
yield strain, andn is the strain hardening exponent. The se
ond one is elastic-linear hardening relation:

s5H E« «%«yL

syL1K~«2«yL! «.«yL, ~2!

where syL and «yL5syL /E are corresponding yield stres
and yield strain, andK is the strain hardening modulus.

As the important experimental data directly measured
depth-sensing indentation technique, the relationship of
dentation load~P! and depth~h! in loading process can b
regressed by using the following expression:

P5Pm~h/hm!X, ~3!

wherehm is the maximum indentation depth,Pm the fitting
maximum load corresponding tohm , andX the fitting expo-
nent. In general, bothPm and X should be functions of the
elastoplastic properties~E, syH , n or E, syL , K! of tested
material, the Young’s modulus (Ei) and radius~R! of spheri-
cal indenter, and the maximum indentation depth (hm). Here
the Poisson’s ratios of indented material and indenter
assumed as constants of 0.3 and 0.2, so they do not appe
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the functions. Corresponding to the two different kinds
hardening behaviors mentioned above, the functions ofPm

andX can be expressed respectively as:

Pm5PmH~E, syH, n, Ei , R, hm!, ~4!

X5XH~E, syH, n, Ei , R, hm! ~5!

and

Pm5PmL~E, syL, K, Ei , R, hm!, ~6!

X5XL~E, syL, K, Ei , R, hm!. ~7!

By applying P theorem of dimensional analysis, function
~4!–~7! can be rewritten in dimensionless form:

Pm /~ER2!5FH~syH /E, n, Ei /E, hm /R!, ~8!

X5CH~syH /E, n, Ei /E, hm /R! ~9!

and

Pm /~ER2!5FL~syL /E, K/E, Ei /E, hm /R! ~10!

X5CL~syL /E, K/E, Ei /E, hm /R!. ~11!

For definite quantitiessyH , syL , n, K, E, Ei , R, and
hm , Pm /(ER2) andX can be determined from finite eleme
calculations based on the commercial code ABAQUS.13 Fur-
thermore, the functionsFH , CH , FL , andCL can be evalu-
ated through fixingE andR, and changingsyH , syL , n, K,
Ei , andhm . Table I lists the values or ranges for these p
rameters used in numerical calculations. Figures 1~a! and
1~b! show the finite element mesh used in this analysis
consists of 6500 four-node axisymmetric elements. Acco
ing to sensitivity evaluation, the mesh can adequately m
the requirement for simulating the behavior of a semi-infin
solid indented by a spherical indenter. Figures 2~a! and 2~b!
and 3~a! and 3~b! show the functional relations ofFH , CH ,
FL , and CL , respectively, with the condition ofEi /E
5373.3/70 andhm /R55/100.

Considering the Young’s modulusE of tested material
can be determined directly from the unloading curve of
dentation tests,2 in this researchE as well asEi , R, andhm

are taken as known quantities. As the first approximation
true yield strength and hardening behavior, stresssyH and
hardening exponentn or stresssyL and hardening modulusK
can be determined from the combination of functions~8! and
~9! or ~10! and ~11!, provided that quantitiesPm andX cor-
responding to an indentation depthhm have been obtained
from an indentation test. It is obvious that for the same
dented material,Pm andX depend onhm , so syH , n, syL ,
andK also depend onhm . Here, three indentation depths a
selected. They arehm50.01R, 0.025R, and 0.05R, and rep-
resented by symbolhm

( i ) ( i 51, 2, and 3). Correspondingly
the fitting load and exponent are represented byPm

( i ) and
X( i ) ( i 51, 2, and 3), and the first approximate yield stres

TABLE I. Values or ranges of parameters used in finite element calc
tions.

E
(GPa)

R
(mm)

syH or syL

(MPa)
n K

(MPa)
Ei

(GPa)
hm

(mm)

70 100 30–800 0–0.375 0–6000 70–1120 1–5
e or copyright; see http://jap.aip.org/about/rights_and_permissions
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and hardening parameters are represented bysyH
( i ) , n( i ), syL

( i ) ,
andK ( i ) ( i 51, 2, and 3). These data will be used to achie
the final and better estimation on the yield strength and h
ening behavior.

III. METHODOLOGY OF DETERMINING YIELD
STRENGTH AND HARDENING BEHAVIOR

In order to make the proposed method applicable to w
material hardening behaviors, we consider the two typ

FIG. 1. ~a! Overall finite element mesh;~b! detailed finite element mesh
near the contact zone.
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situations, i.e., the Hollomon’s power law hardening and l
ear hardening mentioned in Sec. II. First, if the true hard
ing behavior of tested material obeys the former, the para
eters syH

( i ) and n( i ) ( i 51, 2, and 3) determined from
experimental dataPm

( i ) andX( i ) ( i 51, 2, and 3) for three dif-
ferent depthshm

( i ) ( i 51, 2, and 3) should be the same, whi
the parameterssyL

( i ) and K ( i ) ( i 51, 2, and 3) determined
from the same experiment should be different. The rea
can be explained on the basis of the following fact. For
same tested material, the maximum equivalent plastic st
induced in the material depends on the maximum indenta
depth, and the deeper the indentation depth, the larger
maximum equivalent plastic strain. In other words, the eff
tive strain range in the stress–strain relation that influen
the indentation response is different for different indentat
depth. Therefore, in order to make linear hardening beha
equivalent to Hollomon’s power law one@that is, the same
values ofPm

( i ) and X( i ) ( i 51, 2, and 3) can be obtained o
the basis of the two different hardening behaviors# for differ-
ent effective strain range, the parameterssyL

( i ) and

FIG. 2. ~a! syH /E andn dependence ofPm /(ER2), atEi /E5373.3/70 and
hm /R55/100; ~b! syH /E and n dependence ofX, at Ei /E5373.3/70 and
hm /R55/100.
e or copyright; see http://jap.aip.org/about/rights_and_permissions
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K ( i ) ( i 51, 2, and 3) need to take different values. T
stress–strain relations for both elastic Hollomon’s power l
hardening with the same parameterssyH

( i ) and n( i ) ( i
51, 2, and 3) and elastic-linear hardening with different p
rameterssyL

( i ) andK ( i ) ( i 51, 2, and 3) are illustrated in Fig
4~a!, where the intersecting points between the linear ha
ening linesL ( i ) ( i 51, 2, and 3) and Hollomon’s power law
hardening curvesH ( i ) ( i 51, 2, and 3) determined at sam
indentation depth are defined as the characteristic po
which are represented byCi j . Here, the first indexi
51, 2, and 3 corresponds to the three indentation de
hm

( i ) , and the second indexj 51 and 2 indicates the two in
tersecting points corresponding to the same maximum ind
tation depth. If the following power law function

s5a~«1«0!b ~12!

with three parametersa, «0 , andb, i.e., Swift’s power law
hardening function is used to regress these six characte
points Ci j ( i 51, 2, and 3; j 51 and 2), the finally deter-
mined hardening curve should approach the true one,

FIG. 3. ~a! syL /E and K/E dependence ofPm /(ER2), at Ei /E
5373.3/70 andhm /R55/100; ~b! syL /E and K/E dependence ofX, at
Ei /E5373.3/70 andhm /R55/100.
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Hollomon’s power law. In fact, all of the six pointsCi j ( i
51, 2, and 3;j 51 and 2) lie on the same Hollomon’
power law hardening curve. Additionally, the yield streng
determined by the combination of Eq.~12! and equations
5E« should approach the true one. Therefore, the charac
istic points combined with equations5E« and regression
analysis using Swift’s power law hardening function~12! can
be applied to obtain the true yield strength and harden
behavior of Hollomon’s hardening material.

Second, if the tested material obeys the linear harden
behavior, the parameterssyL

( i ) andK ( i ) ( i 51, 2, and 3) deter-
mined from experimental dataPm

( i ) and X( i ) ( i 51,2, and 3)
for three different depthshm

( i ) ( i 51, 2, and 3) should be the
same, while the parameterssyH

( i ) andn( i ) ( i 51, 2, and 3) de-
termined from the same experiment should be different,
the reason is similar to that explained for the first situatio
Figure 4~b! shows the related stress–strain relations and
characteristic pointsCi j ( i 51, 2, and 3;j 51 and 2) deter-
mined by the definition. Because these characteristic po

FIG. 4. ~a! Generation of characteristic points by assuming a materia
have pure elastic-Hollomon’s power law hardening behavior;~b! generation
of characteristic points by assuming a material to have pure elastic-li
hardening behavior.
e or copyright; see http://jap.aip.org/about/rights_and_permissions
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lie on the same one linear hardening line, the true yi
strength and hardening behavior can be obtained by appl
the strategy used in the analysis for first situation. As a c
sequence, both Hollomon’s power law hardening behav
and linear hardening behavior are identified by the sa
strategy. Therefore, to determine the yield strength and h
ening behavior of wide materials with unknown hardeni
mode, it is natural to take the strategy as a general meth
ology, which consists of the following steps:

~1! Selecting three indentation depthshm
( i ) ( i

51, 2, and 3) to make the ratioshm
( i )/R ( i 51, 2, and 3) of

0.01, 0.025, 0.05, respectively.
~2! Determining the values ofPm

( i ) and X( i ) ( i
51, 2, and 3) by applying expression~3! to fit indentation
loading curve of spherical indentation test with three ind
tation depthshm

( i ) ( i 51, 2, and 3).
~3! Determining the first approximate yield stresssyH

( i )

and hardening exponentn( i ) ( i 51, 2, and 3) by combining
functions~8! and~9! based on the elastic-Hollomon’s pow
law hardening behavior, as well as the first approximate y
stresssyL

( i ) and hardening modulusK ( i ) ( i 51, 2, and 3) by
combining functions~10! and~11! based on the elastic-linea
hardening behavior.

~4! Calculating the coordinates of characteristic poi
Ci j ( i 51, 2, and 3;j 51 and 2) according to the definitio
of characteristic points and the parameterssyH

( i ) , n( i ), syL
( i ) ,

andK ( i ) ( i 51, 2, and 3).
~5! Evaluating the parametersa, b, and«0 by regression

analysis to the characteristic pointsCi j ( i 51, 2, and 3;j
51 and 2) with the function~12!.

~6! Determining the final estimate of the yield streng
sy and hardening behavior according to two cases:

Case 1: If«0^0, sy is determined by combining the Eq
~12! and equations5E«, and the hardening behavior is e
pressed by:s5a(«1«0)b, for «^«y5sy /E.

Case 2: If«0,0, as shown in Fig. 5,sy is assigned to be
the ordinate of the intersecting point between the curves
5a«b and s5E«. The stress strain relation is divide
into three regions:~i! s5E«, for «,«y ; ~ii ! s5sy ,

FIG. 5. Determination of stress–strain curve for the cases where«0,0,
corresponding to materials having an initial yield plateau.
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for «y%«%«y1i«0i ; and ~iii ! s5a(«1«0)b, for
«.«y1i«0i . Functions of this type are applicable to th
materials with initial yield plateau.

IV. NUMERICAL VERIFICATION OF THE
METHODOLOGY

Three groups of materials with known uniaxial stres
strain relations are selected to examine the proposed met
They are near linear hardening materials, near Hollomo
power law hardening materials, and the materials with ini
yield plateau. If the Young’s modulus and Poisson’s ratio
all these materials take the same values ofE5210 GPa and
n50.3, respectively, and those of the spherical indenter t
the values ofEi51120 GPa andn i50.2, respectively, the
indentation loading curves for all of these materials can
obtained from finite element simulations. One of them
shown in Fig. 6, where both the calculated and fitting curv
corresponding to three maximum indentation depths are
picted in dimensionless scales. Applying the methodolo
described in Sec. III, the yield strengths and hardening
haviors of all examined materials can be determined. T
results together with the actual stress–strain relations
those evaluated under the condition ofhm /R5hm

(1)/R50.01
by the reported method,10 which has the material behavio
assumption of Hollomon’s power law hardening, are
shown in Figs. 7~a!–7~f!. In addition, the relative errors o
the yield strengths determined by the two methods are gi
in Table II, in whichsyT stands for the actual yield strength
syP the estimated one by the present method, andsyH

( i ) ( i
51, 2, and 3) the estimated ones by the reported met
under the condition of different maximum indentation dep
hm

( i )/R50.01, 0.025, and 0.05 fori 51, 2, and 3. From the
figures and table, it is evident that the proposed method
give good estimates of the yield strengths and hardening
haviors of a broad variety of materials, covering those w
linear and Hollomon’s power law hardening behavio
Moreover, although some errors are observed when appl
the method to the materials which exhibits an initial yie

FIG. 6. Indentation loading curves of material S45C~Ref. 14! in dimension-
less scales.
e or copyright; see http://jap.aip.org/about/rights_and_permissions
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FIG. 7. ~a! Estimated and actual stress-strain curves of SUS304 stainless steel~Ref. 15! with near linear-hardening behavior;~b! estimated and actua
stress–strain curves of high Mn steel~Ref. 16! with near linear-hardening behavior;~c! estimated and actual stress–strain curves of XC65 steel~Ref. 10! with
near Hollomon’s power law hardening behavior;~d! estimated and actual stress–strain curves of 35CN15 steel~Ref. 10! with near Hollomon’s power law
hardening behavior;~e! estimated and actual stress–strain curves of S45C steel~Ref. 14! with initial yield plateau;~f! estimated and actual stress–strain curv
of S20C steel~Ref. 17! with initial yield plateau.
loaded 01 Apr 2011 to 158.132.161.9. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions
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TABLE II. Relative errors of yield strengths estimated by the present method and the reported method~unit of stress: MPa!

Materials syT syP syH
(1) syH

(2) syH
(3) (syT2syP)/syP (syT2syH

(1))/syH
(1) (syT2syH

(2))/syH
(2) (syT2syH

(3))/syH
(3)

SUS304 301 307 236 236 218 22% 28% 28% 38%
Mn steel 400 403 338 319 288 21% 18% 25% 39%
XC65 345 358 349 347 347 24% 21% 21% 21%
35CN15 790 786 775 765 772 1% 2% 3% 2%
S45C 337 305 222 230 244 10% 52% 47% 38%
S20C 279 245 184 198 201 14% 52% 41% 39%
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plateau, the deviations are reasonably small and accep
from the engineering point of view. On the contrary, t
abovementioned previously reported method is effective o
for the near Hollomon’s power law hardening materia
Considerably great errors could appear if it is applied to
timate the yield strengths for the materials not obeying id
Hollomon’s power law hardening behavior. Actually, cons
ering the material hardening behavior assumptions unde
ing the methods, the results are not unexpected.

V. CONCLUSIONS

A method for estimating yield strength and hardeni
behavior of metallic material from spherical indentation h
been presented. The method is based on the conceptio
characteristic points proposed in this article. There are
crucial parts included in the procedure to fulfill the metho
The first one is to determine the characteristic points co
sponding to different maximum indentation depths. This c
be achieved by determining the first approximate yi
strengths and hardening behaviors from the spherical ind
tation loading curve of tested material and the numer
relationships established to relate separate material har
ing properties and indentation responses by means of dim
sional and finite element analysis. The second one is to c
out the regression analysis to the characteristic points u
Swift’s power law function with three parameters. As a r
markable advantage, the utilization of the characteri
points makes the proposed method applicable to wide var
of materials exhibiting separate hardening behaviors. T
has been demonstrated by the examination to three grou
materials with near linear hardening behavior, near H
lomon’s power law hardening behavior, and initial yie
plateau.
loaded 01 Apr 2011 to 158.132.161.9. Redistribution subject to AIP licens
ble

ly
.
-
l

y-

s
of

o
.
-

n

n-
l

en-
n-
ry
ng
-
ic
ty
is
of

l-

According to the finite element analysis of spherical
dentation performed by Mesarovic and Fleck,9 the friction
between the indenter and the indented material has a n
gible effect on the load-displacement relationship for a sh
low indentation ofhm /R%0.05. Therefore, the validity of the
present method would not be affected by the level of int
facial friction.
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