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Methodology for the evaluation of yield strength and hardening behavior
of metallic materials by indentation with spherical tip
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This article presents a methodology for evaluating the yield strength and hardening behavior of
metallic materials by spherical indentation. Two types of assumed material behaviors with a pure
elastic-Hollomon’s power law hardening and a pure elastic-linear hardening were considered
separately in the models of spherical indentation. The numerical relationships between the material
properties and indentation responses were established on the basis of dimensional and finite element
analysis. As the first approximation to the real plastic flow properties, the yield strengths and
hardening behaviors determined from the spherical indentation loading curve and the numerical
relationships were used to derive the intersecting points between Hollomon’s power law hardening
curve and linear hardening line. Through proceeding the three parameter’s regression analysis with
Swift’'s power law function for the intersecting points determined at different maximum indentation
depths, the final yield strength and hardening behavior of tested material can be obtained. The
validation of this method was examined by investigating three groups of materials with near linear
hardening behavior, near Hollomon’s power law hardening behavior, and initial yield plateau. It is
concluded that the proposed method is applicable to a wide variety of materials which exhibit
separate hardening behaviors. 2003 American Institute of PhysicgDOI: 10.1063/1.1579862

I. INTRODUCTION geometrical topography of the strain fields beneath a spheri-
. ] ] ) cal indenter tip would change all the way with increasing

~ Indentation  experiments  with ~ continuous  load- jqentation depth. Correspondingly, more information on the
displacement curves measured by depth-sensing 'ndentat'(mastic flow properties of material can be reflected in the

techr_nque have _been widely _used for determ|_n|ng th_e Meihdentation responses, and this provides the possibility to
chanical properties of materials with small dimenstoh. deduce therd

Both self-similar sharp indenter tifike Vickers and Berk- A key to fulfill the aim of identifying the plastic flow

ovich tip9 and spherical indenter tip can be employed forgroperties is to establish the relationship between spherical

this purpose. Generally, a sharp indenter tip is appreciabl dentati d the elastoplasti " y
for the measurement of hardness, while a spherical one f§ entation responses and the elastoplastic properties ot in-

favorable for the evaluation of the plastic flow properties,dentéd material. To do this, the functional type of the

such as the yield strength and hardening behavior. The reiniaxial stress—strain relation of indented material has to be
son for the difference is associated with the different straiffSSumed, and it is usually taken as linear elasticity combined
fields under these two kinds of indenters. The strain fielddvith Hollomon’s power law hardening. Based on the hypoth-

produced by a sharp indenter tip at different depths are sel€sis, the methods for determining the plastic flow properties
similar, so the load-displacement curves with different depth®f metallic materials have been proposed in recent y€ats.

are not able to reflect the plastic flow properties correspondThe advantage of these methods lies in their simplicity, how-
ing to different regions of the stress—strain relationship of sever, a large error in evaluation for the mechanical proper-
material. This makes it difficult to identify them from the ties, especially for the yield strength, may appear when the
continuous load-displacement cuf/@©n the contrary, the material is far from the assumed Hollomon’s power law

hardening behavior. This means that for the material to be

dAuthor to whom correspondence should be addressed; electronic mair.neasured Wlth_ unknown hardenlng behavpr, the y|e|d_
apacwong@inet.polyu.edu.hk strength determined by the reported methods is quite unreli-
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able. Thus, developing an approach to be applicable to wid@ABLE I. Values or ranges of parameters used in finite element calcula-
materials showing very different hardening behaviors is crul'°"s:
cial and also the aim of this work. E R oy oroy n K E h,

In this article, both Hollomon’s power law and linear (GPa) (um)  (MPa) (MPa)  (GPa)  (um)
hardening behaviors are considered in the models of spheué—
cal indentation. Dimensional analysis and finite element cal-
culations are applied to investigate the numerical relation-
ships between spherical indentation responses and the
material properties. By determining the first approximate . . . .
yield strengths and hardening beha?/iors as We”F;F; the chay-© fun_ctlons. Co_rrespondl_ng o the two d|fferenF kinds of
acteristic points defined in this article from the spherical in- ardening behaviors mentioned above, the function® ff

dentation loading curve and the numerical relationships, thélndX can be expressed respectively as:

100 30-800 0-0.375 0-6000 70-1120 1-5

final estimation on yield strength and hardening behavior  P.=P.(E, oy, N, E;, R, hy), (4)
Wlth small error for very different material behavior can be X=Xu(E, oy, N, Ei, R, hiy) (5)
achieved.
and
Il. ANALYSIS OF SPHERICAL INDENTATION Pm=Pm(E, oy, K, E;, R, hy), (6)
Indentation is a complicated nonlinear process, which  X=X.(E, oy, K, Ej, R, hp). (7)

deals with elastoplastic material behavior, large strains angy applying IT theorem of dimensional analysis, functions
rotation, and variable contact condition. No analytical solu-(4)_(7) can be rewritten in dimensionless form:

tion for indentation response is available. So numerical

analysis appears to be necessary. In this study, finite element Pm/(ER?)=®y(a,n/E, n, E//E, hy/R), (8)
method (FEM) was employed to simulate the spherical in- X=W¥y(oyy/E,n, E/E, hy/R) 9
dentation process. It is assumed that the spherical indenterziisnd

elastic. The contact interface between the indenter and in-

dented material is free of friction. The tested material be- Pm/(ERZ)ZCIDL(o-yL/E, K/E, E;/E, h,/R) (10
haves as an isotropic and rate-independent solid, and obeys X=W (oy. /E,KIE,E/E,hy/R). (11)

\Von Mises yield criterion and pure isotropic hardening rule. o »
In particular, two types of uniaxial stress—strain relations are  FOf definite quantitiesry,y, oy, n, K, E E;, R and

2 . - .
assumed separately as material properties. The first one fan+ Pm/(ER?) andX can be determined from finite element
elastic-Hollomon's power law hardening relation: calculations based on the commercial code ABAQ®IBur-

thermore, the functiond, ¥, ® , and¥ can be evalu-

Ee E=eyy ated through fixing= andR, and changingry, oy, n, K,
T=) ayn(eleg)” e>eyn (1)  E;, andh,,. Table | lists the values or ranges for these pa-
rameters used in numerical calculations. Figuré® and

whereE is the Young's modulusy ande are the true stress 1(b) show the finite element mesh used in this analysis. It
and true straing,, ande, .= o,y /E are the yield stress and CONSISts of 6500 four-node axisymmetric elements. Accord-

yield strain, anch is the strain hardening exponent. The sec-iNg to sensitivity evaluation, the mesh can adequately meet

Ond ohe iS e|astic_|inear hardening relation: the requirement fOI’ Simulating the behaViOI’ Of a Semi-infinite
_ solid indented by a spherical indenter. Figuréa) 2nd Zb)
Ee E=¢8yL and 3a) and 3b) show the functional relations @b, ¥,
=) oy tK(e—ey) e>ey, ) ®_, and ¥, respectively, with the condition of;/E
=373.3/70 anch,,/R=5/100.

where oy and e, =0, /E are corresponding yield stress Considering the Young’s modulus of tested material
and yield strain, an& is the strain hardening modulus. can be determined directly from the unloading curve of in-

As the important experimental data directly measured bylentation test&,in this researclE as well asE;, R, andh,
depth-sensing indentation technique, the relationship of inare taken as known quantities. As the first approximation to
dentation loadP) and depth(h) in loading process can be true yield strength and hardening behavior, stregs and
regressed by using the following expression: hardening exponemtor stressr,, and hardening modulus

P=P_(h/h )X 3 can be determined from the combination of functi¢8sand

m m’ o (9) or (10) and (11), provided that quantitie®,, and X cor-

whereh,, is the maximum indentation deptR,, the fitting  responding to an indentation deptl}, have been obtained
maximum load corresponding tg,,, andX the fitting expo-  from an indentation test. It is obvious that for the same in-
nent. In general, botlP,, and X should be functions of the dented materialP,, and X depend orh,,, sooyy, n, oy,
elastoplastic propertieE, oy, nor E, oy, K) of tested andK also depend oh,,. Here, three indentation depths are
material, the Young's modulugx() and radiugR) of spheri-  selected. They arb,,=0.01R, 0.02%, and 0.0R, and rep-
cal indenter, and the maximum indentation defth)( Here  resented by symbdhﬁr? (i=1,2,and 3). Correspondingly,
the Poisson’s ratios of indented material and indenter aréhe fitting load and exponent are representedy and
assumed as constants of 0.3 and 0.2, so they do not appearifi) (i=1, 2, and 3), and the first approximate yield stresses
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FIG. 2. (8 oy /E andn dependence d?,,/(ER?), atE;/E=373.3/70 and
h,/R=5/100; (b) oy /E andn dependence oX, at E;/E=373.3/70 and
hy,/R=5/100.

situations, i.e., the Hollomon’s power law hardening and lin-
ear hardening mentioned in Sec. Il. First, if the true harden-
ing behavior of tested material obeys the former, the param-
eters ol)y and n®(i=1,2,and3) determined from
experimental dat®(}) andX® (i=1, 2, and 3) for three dif-
(b) ferent depth$1fT'1) (i=1,2,and 3) should be the same, while
the parameterso) and K®(i=1,2,and 3) determined
FIG. 1. (a) Overall finite element mesh) detailed finite element mesh from the same experiment should be different. The reason
near the contact zone. can be explained on the basis of the following fact. For the
same tested material, the maximum equivalent plastic strain
. W () () induced in the material depends on the maximum indentation
and hardening parameters are representadyﬁy n, oyl . .
Q) (i . . depth, and the deeper the indentation depth, the larger the
andK'’ (i=1, 2, and 3). These data will be used to achieve . : ) .

: S . aximum equivalent plastic strain. In other words, the effec-
the final and better estimation on the yield strength and harc{-ﬁ . : . . :
ening behavior ive strain range in the stress—strain relation that influences

’ the indentation response is different for different indentation
Il METHODOLOGY OF DETERMINING YIELD depth. Therefore, in order to make linear hardening behavior
: equivalent to Hollomon’s power law or{¢hat is, the same
STRENGTH AND HARDENING BEHAVIOR values ofP!) and X (i=1, 2, and 3) can be obtained on

In order to make the proposed method applicable to wideghe basis of the two different hardening behavjdes differ-

material hardening behaviors, we consider the two typicaknt effective strain range, the parameterrg‘,'ﬂ and

Downloaded 01 Apr 2011 to 158.132.161.9. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



J. Appl. Phys., Vol. 94, No. 1, 1 July 2003 Ma et al. 291

0.010 1200
(a) X (a) e
X g 1000 | L LY e
0.008 | « X . HN=H@=H®
b% ]
X o 8 ~ 800 |
~ 0.006 x 5 8 o’
c& X x s
w X x ° g -
= X5 § o+ KIE=0/70000 B 600 | A
o 0004 | XX of o K/E=500/70000 4
X A brd
xxs g8 » K/E=1000/70000 & 400
0002 |X o8 o KIE=2000/70000
’ o Bo X KIE=4000/70000
a0  K/E=6000/70000 200
0.000 P ‘ - -
0000 0002 0004 0006 0.008 0.010 0012 0
B 0 0.04 0.08 0.12 0.16 0.2
g yL .
y Strain
1.40
X 1200
X x (b) « (b) Lag @2 @)
1.30 xx Xxxx x x X x
=9 Xx X A 1000 |
A
0
o] [=]
120 |4 700, 8 : ~ 800 |
A4 44 g0 ° o
b9 o o o =
oo o o KIE=0/70000 ® 600 |
110 + o o KIE=500/70000 & '
¢ 4 KIE=1000/70000 B 400
100 | o o KIE=2000/70000
x KIE=4000/70000
% KIE=6000/70000 200
0.90 . ‘ ' ‘ —
0000 0.002 0004 0006 0.008 0010 0.0 0
e 0 0.04 0.08 0.12 0.16 0.2
gyt Strain

FIG. 3. (& o, /E and K/E dependence ofP,,/(ER?), at E;/E
=373.3/70 andh,/R=5/100; (b) o, /E and K/E dependence oK, at
E; /E=373.3/70 anch,,/R=5/100.

FIG. 4. (a) Generation of characteristic points by assuming a material to
have pure elastic-Hollomon'’s power law hardening behaylmrgeneration

of characteristic points by assuming a material to have pure elastic-linear
hardening behavior.

KO (i=1,2,and3) need to take different values. The
stress—strain relations for both elastic Hollomon’s power lawHollomon’s power law. In fact, all of the six point§;; (i
hardening with the same parameterg?, and n®(i ~ =1,2,and3j=1and2) lie on the same Hollomon's
=1, 2, and 3) and elastic-linear hardening with different pafpower law hardening curve. Additionally, the yield strength
rameterso) andK® (i=1, 2, and 3) are illustrated in Fig. determined by the combination of E(12) and equatiorr
4(a), where the intersecting points between the linear hard=Ee should approach the true one. Therefore, the character-
ening linesL® (i=1, 2, and 3) and Hollomon’s power law istic points combined with equatiom=Ee and regression
hardening curve# ) (i=1, 2, and 3) determined at same analysis using Swift's power law hardening functid®) can
indentation depth are defined as the characteristic point§€e applied to obtain the true yield strength and hardening
which are represented bg;;. Here, the first indexi ~ behavior of Hollomon’s hardening material.
=1, 2,and 3 corresponds to the three indentation depths Second, if the tested material obeys the linear hardening
h{), and the second index=1 and 2 indicates the two in- behavior, the parametess)) andK " (i=1, 2, and 3) deter-
tersecting points corresponding to the same maximum indermined from experimental data}) and X" (i=1,2, and 3)
tation depth. If the following power law function for three different depthb{)) (i=1, 2, and 3) should be the

3 5 same, while the parametes§), andn® (i=1, 2, and 3) de-

o=a(e+egp) (12 i i i
termined from the same experiment should be different, and

with three parametera, ¢¢, and g, i.e., Swift's power law the reason is similar to that explained for the first situation.
hardening function is used to regress these six characteristitigure 4b) shows the related stress—strain relations and the
points C;; (i=1, 2, and 3;j=1 and 2), the finally deter- characteristic pointsC;; (i=1,2,and 3j=1and2) deter-
mined hardening curve should approach the true one, i.emined by the definition. Because these characteristic points
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FIG. 5. Determination of stress—strain curve for the cases whgte0, FIG. 6. Indentation loading curves of material S48%&f. 14 in dimension-
corresponding to materials having an initial yield plateau. less scales.

lie on the same one linear hardening Iine,' the true yiellotor e, =e=e,+|egl; and (i) o=a(e+eg)?, for
strength and hardening behavior can be obtained by applying> ¢, +||e|. Functions of this type are applicable to the
the strategy used in the analysis for first situation. As a conmaterials with initial yield plateau.
sequence, both Hollomon’s power law hardening behavior
and linear hardening behavior are identified by the same
strategy. Therefore, to determine the yield strength and har Y NUMERICAE VERIFICATIONSORSTHE
. . . . . . ETHODOLOGY
ening behavior of wide materials with unknown hardening
mode, it is natural to take the strategy as a general method- Three groups of materials with known uniaxial stress—
ology, which consists of the following steps: . strain relations are selected to examine the proposed method.
(1) Selecting three indentation depthshﬁ?(i They are near linear hardening materials, near Hollomon’s
=1, 2,and 3) to make the ratidé;’/R(i =1,2,and 3) of power law hardening materials, and the materials with initial
0.01, 0.025, 0.05, respectively. _ yield plateau. If the Young’s modulus and Poisson’s ratio of
(2) Determining the values ofP{) and XM (i  all these materials take the same value€ef210 GPa and
=1, 2,and 3) by applying expressidB) to fit indentation »=0.3, respectively, and those of the spherical indenter take
loading curve of spherical indentation test with three indenthe values ofE;=1120 GPa andv;=0.2, respectively, the
tation depthshﬁr? (i=1,2,and 3). _ indentation loading curves for all of these materials can be
(3) Determining the first approximate yield stres$,)4 obtained from finite element simulations. One of them is
and hardening exponem’) (i=1, 2, and 3) by combining shown in Fig. 6, where both the calculated and fitting curves
functions(8) and(9) based on the elastic-Hollomon'’s power corresponding to three maximum indentation depths are de-
law hardening behavior, as well as the first approximate yielgicted in dimensionless scales. Applying the methodology
stress<r§'ﬂ and hardening modulug® (i=1, 2, and 3) by described in Sec. Ill, the yield strengths and hardening be-
combining functiong10) and(11) based on the elastic-linear haviors of all examined materials can be determined. The
hardening behavior. results together with the actual stress—strain relations and
(4) Calculating the coordinates of characteristic pointsthose evaluated under the conditionhpf/R= h$§>/R=o.01
Cijj(i=1,2,and 3j=1 and 2) according to the definition by the reported methotf, which has the material behavior
of characteristic points and the parametef,%,, n, a(y'ﬁ, assumption of Hollomon's power law hardening, are all
andK® (i=1, 2, and 3). shown in Figs. 7a)-7(f). In addition, the relative errors of
(5) Evaluating the parametets 3, ande, by regression the yield strengths determined by the two methods are given
analysis to the characteristic poinG;; (i=1, 2, and 3] in Table 11, in whicho+ stands for the actual yield strength,

=1 and 2) with the functiorf12). oyp the estimated one by the present method, afjy (i
(6) Determining the final estimate of the yield strength=1, 2, and 3) the estimated ones by the reported method
oy and hardening behavior according to two cases: under the condition of different maximum indentation depths

Case 1: Ifeq=0, o is determined by combining the Eq. th?lR=0.01, 0.025, and 0.05 for=1, 2, and 3. From the
(12) and equationr=Eg, and the hardening behavior is ex- figures and table, it is evident that the proposed method can
pressed byo = a(e+g,)?, for e=gy=o,/E. give good estimates of the yield strengths and hardening be-

Case 2: Ife(<<0, as shown in Fig. 57 is assigned to be haviors of a broad variety of materials, covering those with
the ordinate of the intersecting point between the curve linear and Hollomon's power law hardening behaviors.
=ae? and o=Ee. The stress strain relation is divided Moreover, although some errors are observed when applying
into three regions:(i) o=Ee, for e<ey; (i) o=oy, the method to the materials which exhibits an initial yield
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FIG. 7. (a) Estimated and actual stress-strain curves of SUS304 stainless(R&fell5 with near linear-hardening behaviofy) estimated and actual
stress—strain curves of high Mn stéBlef. 16 with near linear-hardening behavidc) estimated and actual stress—strain curves of XC65 &l 10 with
near Hollomon’s power law hardening behavi@d) estimated and actual stress—strain curves of 35CN15 @e¢l 10 with near Hollomon’s power law
hardening behavioKg) estimated and actual stress—strain curves of S45C(&e€l14 with initial yield plateau;f) estimated and actual stress—strain curves
of S20C steelRef. 17 with initial yield plateau.
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TABLE Il. Relative errors of yield strengths estimated by the present method and the reported foeihod stress: MPa

Materials oyt Oyp ag,ﬂ 05,",3 0'5,:3 (oyr—0ayp)loyp (oy1— 0'5,]}'_?)/0';}4) (oyr— Ugﬂ)/ag,a (oyr— Uﬁ?)/aﬁ)
SUS304 301 307 236 236 218 —2% 28% 28% 38%

Mn steel 400 403 338 319 288 —1% 18% 25% 39%
XC65 345 358 349 347 347 —4% —1% —-1% -1%
35CN15 790 786 775 765 772 1% 2% 3% 2%
S45C 337 305 222 230 244 10% 52% 47% 38%
S20C 279 245 184 198 201 14% 52% 41% 39%

plateau, the deviations are reasonably small and acceptable According to the finite element analysis of spherical in-
from the engineering point of view. On the contrary, thedentation performed by Mesarovic and Flécie friction
abovementioned previously reported method is effective onlypetween the indenter and the indented material has a negli-
for the near Hollomon’'s power law hardening materials.gible effect on the load-displacement relationship for a shal-
Considerably great errors could appear if it is applied to eslow indentation oth,,/R=0.05. Therefore, the validity of the
timate the yield strengths for the materials not obeying ideapresent method would not be affected by the level of inter-
Hollomon'’s power law hardening behavior. Actually, consid- facial friction.

ering the material hardening behavior assumptions underly-

ing the methods, the results are not unexpected.
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