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The critical behavior of a multilayered system of alternating ferroelectric and ferromagnetic thin
films on a substrate of finite thickness is studied. A thermodynamic approach via the Ginzburg–
Landau formulation is followed. Our interest is in the magnetoelectric effects exhibited in the
critical behavior of the multilayer system, caused by the interlayer elastic interaction. The system is
characterized by two bifurcation points. The system exhibits the strongest magnetoelectric effect
near the second bifurcation. © 2008 American Institute of Physics. �DOI: 10.1063/1.2939580�

I. INTRODUCTION

Multiferroic material or material systems are character-
ized by their interacting ferroelectric, ferromagnetic, and fer-
roelastic properties derived from the coupling of two or more
of the electric, magnetic, and structural order parameters.
These systems are of interest to both the academic and engi-
neering communities due to their attractive and unique prop-
erties, which make them useful in information storage, mul-
tifunctional electronic devices, etc.

The magnetoelectric effect was predicted by Curie in
1894, and subsequently observed by Astrov1 in Cr2O3 in
1960. Recent progress in thin-film growth and other sample
preparation techniques made the fabrication of the next-
generation multifunctional devices possible and contributed
considerably to their renaissance. Despite active research,
there is only a limited choice of single-phase materials ex-
hibiting coexistence of strong ferro-/ferrimagnetism and
ferroelectricity.2,3 van Suchtelen4 proposed that composites
of piezoelectric and magnetostrictive phases can be magne-
toelectrically coupled. Recent development focuses on vari-
ous multiferroic composites with large ferroelectromagnetic
material constants.5,6 Wang et al.7 investigated heteroepitaxi-
ally constrained thin films of the ferroelectromagnet,
BiFeO3, and they found a significant enhancement of mag-
netization and polarization in the thin film. Zheng et al.8

investigated the coupling between ferroelectric and ferro-
magnetic order parameters in a nanostructured
BaTiO3–CoFe2O ferroelectromagnetic composite. They
found that the magnetoelectric coupling in such nanostruc-
ture can be understood on the basis of the strong elastic
interactions between the two phases. Efremov et al.9 pro-
posed a new route to utilize the coupling between magnetic
and charge ordering to obtain ferroelectric magnets. Fiebig
et al.10 reported spatial maps of coupled antiferromagnetic
and ferroelectric domains in YMnO3, obtained by imaging
with optical second harmonic generations. Recently, the first-

principles simulation was used to predict ferroelectric and
ferromagnetic couplings in multiferroic materials.11–13 Muru-
gavel et al.14,15 used the pulse-laser deposition technique to
fabricate a series of superlattices and trilayers composed of
ferromagnetic and ferroelectric layers and investigated their
properties. Nan and co-workers16,17 found giant megneto-
electric responses in multiferroic polymer-based composites.

The foregoing suggests that electric and magnetic effects
can be strongly coupled via the interacting elastic stresses
introduced through piezoelectric and piezomagnetic proper-
ties in multiferroic material systems. The resulting magneto-
electric coupling will most likely manifest itself through the
highly sensitive critical phenomena. The purpose of the
present paper is to investigate the critical behavior of a mul-
tilayered system of alternating ferroelectric and ferromag-
netic thin films on a finite substrate along this line of
thought. The dynamics of the system is formulated and ana-
lyzed via a thermodynamic approach using the Ginzburg–
Landau free energies of the bulk ferroelectric and ferromag-
netic materials.

II. THERMODYNAMIC MODEL OF A MULTIFERROIC-
LAYERED THIN-FILM SYSTEM

We consider a multilayer thin-film system with alternat-
ing ferroelectric and ferromagnetic components of thick-
nesses he and hm, respectively, on substrates of finite thick-
ness H on both sides of the system, half of which is shown in
Fig. 1. We use self-polarization18,19 �i.e., the spontaneous po-
larization of a sample in the absence of any applied field—
electric, magnetic, and mechanical� in the ferroelectric layers
as an order parameter of the system to describe the dynamic
behavior of the para-/ferroelectric phases. Specifically, the
depolarization field is considered to be an applied field. The
rigorous thermodynamic origin of this formulation has been
the subject of Ref. 19, according to which the dynamics of
the total polarization �self + induced� in the presence of the
applied fields can be retrieved from that of the self-
polarization. Without loss of generality, we only consider thea�Electronic mail: wangbiao@mail.sysu.edu.cn.
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component of P of the self-polarization perpendicular to the
film surface, as in our previous work.18 The total free energy
f of the ferroelectric layers can be expressed in terms of a
sum of contributions fP, fe

el, and fe
�,

fe = fP + fe
el + fe

�,

where fe
el and fe

� are the elastic and surface contributions,
respectively. In terms of the Ginzburg–Landau model, the
contribution due to the self-polarization fp can be written as

fP = ne� �
Ve

� �Ae

2
�T − Tc0

e �P2 −
1

2
EdP +

Be

4
P4 +

Ce

6
P6

+
De

2
� �P

�z
�2	dv = ne�

−he/2

he/2 �Ae

2
�T − Tc0

e �P2 −
1

2
EdP

+
Be

4
P4 +

Ce

6
P6 +

De

2
� �P

�z
�2	dz , �1�

where Tc0
e is the critical temperature for the corresponding

bulk material, and Ae, Be, Ce, and De are the Ginsberg–
Landau expansion coefficients for the bulk material. ne is the
total number of ferroelectric layers, each of which has a unit
surface area and a volume Ve. Ed is the depolarization field.
Since the layer is assumed to be infinite along the x- and
y-directions, the polarization is only a function of z along the
thickness direction. In terms of the self-polarization, it can be
shown18,19 that Ed=−P /�, where � is the dielectric constant
of the ferroelectric layers. We note that Ed can also be ex-
pressed in terms of the total polarization by replacing � with
the vacuum dielectric constant �see Ref. 18�. To cover ferro-
electric materials that undergo first-order transitions, we have
added the term Ce /6P6 in the expansion.

Similarly, the dynamics of the ferromagnetic layers is
described using the self-magnetization M as an order param-
eter. Considering that the transformation strain is mainly
along the magnetization direction, we only consider the com-
ponent M along the x-direction in the film plane. This is in
contrast to the ferroelectric layers where materials such as
perovskites have their transformation strains mainly in the
transverse directions. With the spontaneous polarization
along the z-direction and the spontaneous magnetization
along the x- or y-direction, the most significant magnetoelec-
tric interactions can be produced through the elastic strains.
The assumption is also consistent with experimental obser-

vations. The total free energy fm of the ferromagnetic layers
can be expressed similarly to the ferroelectric layers,

fm = fM + fm
el + fm

� ,

where fm
el and fm

� are the elastic and the surface or interface
contributions. Our interest in this work concentrates on the
coupling of the ferromagnetic and the ferroelectric transi-
tions through their sizable transformation strains. We there-
fore neglect effects such as those due to the change in the
electronic structure near the interface, etc. Similar to the
ferroelectric layers, the contribution due to the self-
magnetization fM is also written in terms of the Ginzburg–
Landau functional as

fM = nm� �
Vm

� �Am

2
�T − Tc0

M�M2 +
Bm

4
M4

+
Dm

2
� �M

�z
�2	dv = nm�

−hm/2

hm/2 �Am

2
�T − Tc0

M�M2

+
Bm

4
M4 +

Dm

2
� �M

�z
�2	dz , �2�

where the parameters can be defined similarly as in Eq. �1�.
We only expand to Bm /4M4 in this case since most ferro-
magnetic transitions are second order.

The multilayer system we are considering is elastically
inhomogeneous. The elastic energy of the system must be
calculated, taking into account the mechanical equilibrium of
the system under the action of electrostrictive and magneto-
strictive forces and obeying the condition of total system
integrity, i.e., mechanical compatibility of the ferroelectric,
ferromagnetic, and substrate layers. The elastic contribution
fel to the total free energy is thus given by a sum of three
contributions from the ferroelectric and ferromagnetic thin
films and the substrate, respectively,

fel =
1

2
neC

E�
−he/2

he/2

��0E − �Et + �S�2dz

+
1

2
nmCM�

−hm/2

hm/2

��0M − �Mt + �S�2dz +
1

2
HC0��S�2,

�3�

where �0E and �0M are the misfit strains relative to the sub-
strate in the ferroelectric and ferromagnetic layers, respec-
tively. �S is the induced elastic strain in the substrate layer.
CE, CM, and C0 are the corresponding elastic moduli. �Et and
�Mt are the eigenstrains of ferroelectric and ferromagnetic
transformations, respectively, from which the electrostrictive
and magnetostrictive forces originate.

Denoting the nonzero components of the misfit strains
along the x- and y-directions by �11

0E, �22
0E and �11

0M, �22
0M, re-

spectively, and assuming that the multilayer system is grown
heteroepitaxially from a substrate, ���

0E and ���
0M can be ex-

pressed as usual in terms of the lattice constants of the films
a�

Ef and a�
Mf and substrate a�

s ,

FIG. 1. Schematic of a symmetric half of the multiferroic superlattice com-
posed of alternating ferroelectric and ferromagnetic layers.
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���
0E =

a�
s − a�

Ef

a�
Ef ,���

0M =
a�

s − a�
Mf

a�
Mf . �4�

In deriving Eq. �4�, we assume that the misfit strains are
uniform within each layer and the strains are equal in all
layers.

The transformation eigenstrains in Eq. �3� can be written
in terms of the order parameters P and M via the electros-
trictive and magnetostrictive �volumetric plus anisotropic�
coefficients Q and Qm, using the relations �Et�z�=QP2�z�
and εMt�z�=QmM2�z�, respectively.

We note that it is only when the substrate is infinitely
thick or rigid that the misfit and transformation strains within
each layer are exactly balanced by the elastic strains across
neighboring layers. Transformation strains cannot be trans-
mitted via misfit strains across neighboring layers in such
cases. In our case of a compliant substrate, however, the
constraint is much weakened, allowing transformations to
interact across neighboring layers. If the substrate disap-
pears, one should observe the strongest magnetoelectric cou-
pling.

A. Elastic coupling

The elastic strains of the substrate in Eq. �3� can be
calculated by adopting the Timoshenko and Gooier20 method
for thermal stresses. We recall that the configuration being
considered is symmetrical, with no bending. In the present
approach, the ferroelectric, ferromagnetic, and substrate lay-
ers interact via the conditions of mechanical equilibrium and
compatibility �sample integrity�. The assumption of uniform
strain is adopted, although in reality, the strain in each layer
of the inhomogeneous sample must be graded along the
thickness. Nevertheless, what is neglected is a higher order
contribution. The present treatment should suffice for our
purpose.

Thus, the compatibility condition of the multilayer sys-
tem requires stresses �ij

E =Cijkl
E ��kl

0E−�kl
Et� and �ij

M =Cijkl
M ��kl

0M

−�kl
Mt� on the ferroelectric and ferromagnetic layers, respec-

tively. These stresses create a resultant force at the ends of
the plates, given by

F� = ne�
−he/2

he/2

���
E dz + nm�

−hm/2

hm/2

���
M dz, � = 1,2. �5�

That is,

F = ne�
−he/2

he/2

�Edz + nm�
−hm/2

hm/2

�Mdz . �6�

For the entire substrate and film system to remain in equilib-
rium a force equal and opposite to F must be applied. If the
system is not symmetrical, the balancing force will introduce
a bending moment. To simplify our analysis, the system is
assumed to be symmetrical and the bending moment can be
neglected. �S is then the uniform strain produced in the sub-
strate by the balancing force. At final equilibrium the strain
εS will be applied to the entire system �i.e., including the
substrate�. Then, the corresponding balancing equation can
be written as

nehe�
Eb + nmhm�Mb + H�Sb = − F , �7�

with

�Eb = CE�S,�Mb = CM�S,�Sb = C0�S. �8�

In terms of �S, Eqs. �7� and �8� can be written as

�neheC
E + nmhmCM + HC0��S = − F �9�

from which �S is linearly related to F via a constant system
compliance �,

�S = − �F with � 
 �neheC
E + nmhmCM + HC0�−1.

�10�

If we define a force-constant matrix K by K��=neheC��
E

+nmhmC��
M +HC��

0 , both K and � are real and symmetric. As
an example, in the particular case of isotropic elasticity,

��1
S

�2
S� =

− 1

K� K11 − K12

− K12 K11
��F1

F2
� . �11�

Thus, from Eqs. �6� and �10�, we can write

�S = − ne��
−he/2

he/2

�Edz − nm��
−hm/2

hm/2

�Mdz

= − ne�CE

��
−he/2

he/2

��0E − �Et�dz − nm�CM�
−hm/2

hm/2

��0M

− �Mt�dz . �12�

The substitution of Eq. �12� into Eq. �3� yields an interaction
term between the ferroelectric and ferromagnetic layers
through the elastic strain induced in the substrate, which pro-
duces a magnetoelectric coupling. To derive the dynamic
equation of the system, we need to calculate the functional
variation of the elastic energy with respect to the polarization
and magnetization. Thus,

�Pfel = �
−he/2

he/2

�ne�
E��P2�,�M2��P�z� + ne�

EP3�z���Pdz ,

�13�

where �P2�=�−he/2
he/2 P2dz and �M2�=�−hm/2

hm/2 M2dz.
In Eq. �13�, �E and �E can be written in the form

�E��P2�,�M2�� 
 �0
E + �p

E�P2� + �m
E�M2� and �E


 2Cij
EQiQj , �14a�

with

�0
E = − 2QCE�0E + 2QCE�he�CE�0E + hm�CM�0M� ,

�14b�

and �p
E and �m

E are defined in the same way according to Eq.
�13�. Similarly, we can also obtain

�Mfel = �
−hm/2

hm/2

�nm�M��P2�,�M2��M�z�

+ nm�MM3�z���Mdz , �15�

where �M and �M for the magnetic layer are defined simi-
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larly to �E and �E in Eqs. �14a� and �14b� in terms of corre-
sponding constants �0

M, �p
M, and �m

M.
It is reasonable to assume that the different electronic

environment near the interfaces between the ferroelectric and
ferromagnetic layers may also induce an extra contribution
to the free energy. We assume that it can be expressed in
terms of material constants �e and �m as

f� =� �
S
� P2

2�e
+

M2

2�m
�ds , �16�

where S denotes the total area of the interfaces. We note that
in Eq. �16�, interactions of electronic nature between films
are not considered as we have mentioned earlier.

The first term in Eq. �16� has been used in the ferroelec-
tric phase transition theory. Such a formulism has been in-
troduced by de Gennes to empirically consider surface prob-
lems in superconductivity.21 Generally speaking, the change
in the density of states at the Fermi level on surfaces and
interfaces in ferromagnetic thin films22–24 also suggests that
there should also be a change in the magnetization on the
surfaces of the ferromagnetic thin films. It may therefore be
proper to introduce a similar parameter �m to account for the
interface effect on ferromagnetic phase transition.

Combining Eqs. �1�–�3� and �16�, the total free energy 	
of the system can be written as

	 = fP + fM + fel + f�. �17�

It is easy to see that as a result of the necessary condi-
tions of mechanical equilibrium and compatibility on the
multilayer system, an interaction of elastic origin must arise
between the ferroelectric and ferromagnetic layers due to fel

from Eqs. �13� and �15� via the coupling constants �E and
�M.

B. System dynamic equations

The dynamic equation of P can be derived from Eq. �17�
using Eqs. �1� and �13�. Thus,

�P

�t
= − 
e

�	

�P
= − 
e�AEP +

ne

�
P + BEP3 + neCeP

5

− neDe
�2P

�z2 	 . �18�

where 
e is the kinetic coefficient related to the ferroelectric
domain wall mobility and

AE = ne�Ae�T − Tc0
e � + �0

E + �p
E�P2� + �m

E�M2��BE

= ne�Be + �E� . �19�

Performing functional variation on the surface term in Eq.
�17� yields the boundary conditions

�P

�z
= �

P

�e
for z = �

he

2
. �20�

Similarly, the dynamic equation of the magnetization M in
the system as derived from Eq. �17� using Eqs. �2� and �15�
is

�M

�t
= − 
m

�	

�M
= − 
m�AMM + BMM3 − nmDm

�2M

�z2 	 ,

�21�

where 
m is the kinetic coefficient related to the magnetic
domain wall mobility and

�M

�t
= − 
m

�	

�M
= − 
m�AMM + BMM3 − nmDm

�2M

�z2 	 ,

�22�

Similarly, performing variation on the surface term in Eq.
�17� yields the boundary conditions

�M

�z
= �

M

�m
for z = �

hm

2
. �23�

Here we assume that the phase transition process is a slow
relaxation process, and we do not focus on the dynamic mag-
netic domain switching process.

It is clear that the polarization P and magnetization M in
Eqs. �19� and �22� are coupled through �E, �M, �E, and �M,
which represent the elastic interaction between the electros-
trictive and magnetostrictive effects from different layers.
This coupling is where the magnetoelectric effect in the
present system comes from. Equations �18� and �21� have
stationary solutions corresponding to stationary states P0 and
M0. For example, the trivial solutions P0=0=M0 correspond
to the stationary paraelectric and paramagnetic states. Fol-
lowing Wang and Woo,18 we determine the critical condi-
tions of the stability of the stationary states by performing a
linear stability analysis on the system of Eqs. �18� and �21�,
and we discuss the effects of the magnetoelectric coupling
strength, film thickness, etc.

We note that a local coordinate system has been used to
simplify the formulation, in which the midpoint of each layer
is chosen as the zero points of the z-axis.

III. PHASE STABILITY AND CRITICAL
CHARACTERISTICS

The stability of a stationary state �P0 ,M0� is probed by
the application of a small perturbation �e ,m�. Retaining
only terms linear in e ,m, we obtain from Eqs. �18� and
�21� the evolution equations of the perturbations given by

�e

�t
= − 
e����AE

�P
� P=P0

M=M0

P0 + AE +
ne

�
+ 3BEP0

2

+ ��BE

�P
� P=P0

M=M0

P0
3 + 6CEP0

5�e

+ ��AE

�M
� P=P0

M=M0

P0m + ��BE

�M
� P=P0

M=M0

P0
3m

− neDe
�2e

�z2 	 , �24�
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�m

�t
= − 
m����AM

�M
� P=P0

M=M0

M0 + AM + 3BMM0
2

+ ��BM

�M
� P=P0

M=M0

M0
3�m + ��AM

�P
� P=P0

M=M0

M0e

+ ��BM

�P
� P=P0

M=M0

M0
3e − nmDm

�2m

�z2 	 . �25�

Evaluating the variation derivatives from Eqs. �19� and �22�,
and taking into account that M0 and P0 are spatially segre-
gated so that M0P0
0, the evolution equation of �e ,m�
can be written as

�

�t
�e

m
� = −�Ue − 
eneDe

�2

�z2 0

0 Um − 
mnmDm
�2

�z2
�

��e

m
� , �26�

where

Ue = 
e�AE +
ne

�
+ �3BE + 2ne�p

E�P0
2 + 6CEP0

5	 ,

Um = 
m�AM + �3BM + 2nm�m
M�M0

2� . �27�

Equation �26� is subject to the boundary conditions on the
ferroelectric and ferromagnetic film surfaces �he and �hm,
that is,

�

�z
�e

m
� = − ���e

−1 0

0 ��m
−1 ��e

m
� . �28�

To solve for the temporal and spatial dependence of �e ,m�,
we separate the space and time coordinates by writing

�e

m
� = exp��t���e�z�

�m�z�
� . �29�

For a symmetric configuration, the condition de /dz
=0,dm /dz=0 at z=0 must also hold. Writing �e=cos�kez�
and �m=cos�kmz�, and substituting Eq. �29� into Eq. �26�, we
obtain the following determinantal equation for �:

�Ue + 
eneDeke
2 + � 0

0 Um + 
mnmDmkm
2 + �

� = 0, �30a�

which has the form

�� − ����� − ��� = 0, �30b�

where

�� = max��e�P0,M0�,�m�P0,M0�� and ��

= min��e�P0,M0�,�m�P0,M0�� , �30c�

with

�e�P0,M0� 
 − Ue − 
eneDeke
2 = − 
e�AE +

ne

�
+ �3BE

+ 2ne�p
E�P0

2 + 6CEP0
5 + neDeke

2	 ,

�m�P0,M0� 
 − Um − 
mnmDmkm
2 = − 
m�AM + �3BM

+ 2nm�m
M�M0

2 + nmDmkm
2 � . �31�

Note here that the coupling of P0 and M0 comes from AE and
AM �see Eqs. �19� and �22��. The constants ke and km are
determined from the following pair of transcendental equa-
tions derived from the boundary conditions in Eq. �27�:

tan� kehe

2
� =

1

ke�e
and tan� kmhm

2
� =

1

km�m
. �32�

Clearly, Eq. �30b� shows that the system has two bifur-
cation points with critical condition ��=0 or ��=0 for
phase changes to occur in the respective layers. Depending
on the initial stationary state �P0, M0�, and the direction of
heating/cooling, either one can occur first. For example, at a
sufficiently high temperature T, both �� and �� are negative
�see Eq. �31�� and the paraelectric and paramagnetic states
are both stable. As T decreases, ���0,0� first vanishes and
then turns positive at a critical temperature Tc1. At this point,
any small perturbation grows exponentially beyond all
bounds, and the system becomes unstable and bifurcates, un-
dergoing a phase transformation. Thus, when critical condi-
tions are met, the initially stable parastate �with a negative
��� transforms into a ferrostate.

To facilitate further discussion, we shall be specific and
assume, without loss of generality, that ���0,0�=�e�0,0�;
i.e., the ferroelectric transformation occurs at a higher tem-
perature. Then, after the first bifurcation, the system takes on
a new configuration, with ferroelectric layers that are electri-
cally polarized. Further cooling turns ��=�m�P�Tc2� ,0�
positive at some temperature Tc2�Tc1, and the correspond-
ing ferromagnetic transformation takes place. The critical
condition �e�0,0�=0 of the higher-temperature bifurcation
defines a relation among critical parameters for the ferroelec-
tric layers, such as supercooling transition temperature Tc1,
electric field, applied stress, and system geometry �thick-
nesses of the films and the substrate�. The critical condition
�m�P�Tc2� ,0�=0 then yields the critical properties of the
lower-temperature bifurcation, such as phase transition tem-
perature and Curie–Weiss relation of the ferromagnetic lay-
ers.

To evaluate the condition ��=0 for the lower-
temperature bifurcation from Eq. �31�, the stable state of the
system after the first bifurcation has to be defined as a func-
tion of environmental parameters such as temperature, ap-
plied stress, and electric or magnetic fields. It can be deter-
mined by solving the steady-state version of Eqs. �18� and
�21�. The conditions for the higher- and lower-temperature
bifurcations ��=0 and ��=0 thus determine the character-
istics of the supercooling phase transitions of the system,
such as the critical temperatures, critical thicknesses, and
Curie–Weiss relations. Similarly, the characteristics of the

124107-5 B. Wang and C. H. Woo J. Appl. Phys. 103, 124107 �2008�

Downloaded 28 Mar 2011 to 158.132.161.9. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



superheating phase transitions of the system is determined by
the first and second bifurcations ��=0 and ��=0, respec-
tively.

It is of practical interest to note that a system operating
near the second bifurcation exhibits the strongest magneto-
electric effect. For such a system, manipulation of the polar-
ization �magnetization� in the ferroelectric �ferromagnetic�
layers can be used to control the stability of the magnetic
�electric� state of the other component, thus allowing the
magnetization to respond to an electric �magnetic� input via
the Curie–Weiss law, and vice versa. The physical principle
underlying this statement is illustrated as follows: That the
Curie temperature in a ferromagnetic material depends on
the applied stress is well established as an inverse magneto-
strictive effect. At the same time, the application of an elec-
tric field on the ferroelectric layer can induce a sufficiently
large electrostrictive stress, which, when transmitted to the
ferromagnetic layer, can cause a shift in the ferromagnetic
Curie temperature Tc2. This can produce a significant change
in the magnetization according to the Currie–Weiss law, if
allowed to operate at a temperature near Tc2. This can be
easily seen from the high sensitivity of the magnetization
near the Curie temperature. In the specific case when the two
Curie temperatures are both close to the operating tempera-
tures, i.e., Tc1�Tc2, the effect discussed in the foregoing will
be even more magnified due to the Curie–Weiss law in the
susceptibilities of both layers. However, it is at the same time
much more complicated because of the coupling between the
phase transitions in the two layers.

In general, due to the large difference among the quan-
tities �m�0,0�, �m�0,M�, �m�P ,0�, and �m�P ,M� and
�e�0,0�, �e�0,M�, �e�P ,0�, and �e�P ,M�, the system be-
havior during heat-up and cool-down, or under an applied
oscillation field �elastic, electric, and magnetic� would be
very complex but, exactly because of that, very interesting.

Before finishing this section, we note that the bifurcation
conditions also depend on the thicknesses of the layers, par-
ticularly the substrate, via the values of ke and km from Eq.
�32�. On the other hand, the magnetoelectric effect due to the
coupled elastic interaction will change the phase transition
temperatures. ke and km, from Eq. �22�, can take on infinitely
many values. The meaningful solution is the one correspond-
ing to the smallest values of ke and km.

IV. CRITICAL TEMPERATURES FOR BATIO3/EUO

As a simple example to demonstrate the foregoing dis-
cussion, we consider a multilayer structure composed of al-
ternating layers �ten each� of ferroelectric BaTiO3 and ferro-
magnetic EuO on a SrTiO3 �001� substrate �Fig. 1�. The
material parameters used in the calculation are listed in Table
I. For the ferromagnetic layer, the parameters Am and �m are
obtained by fitting to the ab initio calculation.23 We note that
in the present model, the ferroelectric and ferromagnetic
phase transitions are decoupled if the substrate is rigid or
thick �H→��. Starting from an initial state in which all lay-
ers of the system are in the parastate, i.e., P0=0=M0, Figs. 2
and 3 show the respective ferroelectric and ferromagnetic
transition temperatures for different thicknesses of the sub-

strate in the absence of misfit stresses, the ferroelectric and
ferromagnetic layers being assumed to have equal thick-
nesses. We note that in this case, as the substrates get thinner,
the ferroelectric or ferromagnetic transformation occurs more
easily and at higher temperatures. It can be seen that the
former is higher than the latter in all cases under consider-
ation. Furthermore, it also shows that the transition tempera-
tures decrease as expected with decreasing film thicknesses.
In Fig. 4, we compare the critical temperatures of ferromag-
netic transition �treated as a second bifurcation� with and
without the misfit stresses. The 300% increase in the transi-
tion temperature clearly shows the strong effect of the cou-
pling of the misfit stresses presently considered. Figure 5
shows the magnetoelectric effect on the para-/ferromagnetic

TABLE I. Material data for model calculation �Refs. 25–27�.

BaTiO3
a

�cgs unit�
Ae�10−5 7.4

De�10−15 �cm2� 3.0
Tc0

E �K� 397
C11

E 17.55
C12

E �1011 8.46
�11

0E 0.02
Q �SI� −0.043

�e �nm� 4
Ps �esu/cm3� 78 000

EuOb

�cgs unit�
Am

� 0.034
Dm�10−14 �cm2� 5.15

Tc0
M �K� 69.15

C11
M �1012 1.79

C12
M �1012 0.77

�11
0M 0.02

��10−6 −20
Ms �emu /cm3� 1049

�m �nm� 8
SrTiO3

c

�cgs unit�
C11

0 �1012 3.16
C12

0 �1012 1.02

aReference 25.
bReference 26.
cReference 27.

FIG. 2. �Color online� Ferroelectric transition temperature vs the thickness
of the ferroelectric layer under different substrate thicknesses in the absence
of misfit stresses.
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transition temperature �the second bifurcation� when the po-
larization �78 000 esu /cm3� is turned on and off. The large
shift in the transition temperature will produce a large
change in the magnetic susceptibility via the Curie–Weiss
relation. The substrate thickness considered here is 50 nm.
We note that some of the material parameters used in this
calculation are only provisional, and the results obtained may
not represent very well the material system being considered.
Nevertheless, our aim to gain an insight into the magneto-
electric effect of the multiferroic-layered system we are con-
sidering seems to have been achieved.

V. CONCLUDING REMARKS

In this paper, the critical behavior of a multilayered sys-
tem of alternating ferroelectric and ferromagnetic thin films
on a compliant substrate is analytically modeled. A thermo-
dynamic approach is adopted based on a formulation using
the Ginzburg–Landau free energies of the bulk materials.
The magnetoelectric coupling due to the interlayer elastic
interaction on the critical behavior of the multilayer system
is demonstrated and is found to increase with the elastic
compliance of the substrate. The system is characterized by
two bifurcation points. The system is found to exhibit the

strongest magnetoelectric effect at the second bifurcation
�i.e., first and second bifurcations in the context of the order
of occurrence�.

As an example, a multilayer structure of
BaTiO3 /EuO /SrTiO3 is studied under the supercooling con-
ditions. Since its ferroelectric transition temperature is much
higher than the ferromagnetic transition temperature in this
case, only the effect of the ferroelectric transition on the
ferromagnetic transition is investigated. The significant effect
of the elastic coupling on the transition temperatures of the
ferromagnetic layers due to the ferroelectric transition is
shown.
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APPENDIX: DERIVATION OF EQUATIONS „18… AND
„21…

According to the definition of the variational derivative
of a functional,28 one knows if the variation of a functional

I�y�x��� =� �
V
� F�y�x��,y��x���dx� �A1�

can be written as

�I =� �
V
� g�x���y�x��dx� . �A2�

Then the functional derivative of I is

�I

�y�x��
= g�x�� . �A3�

The total energy of the system is given by Eq. �17� as fol-
lows:

FIG. 4. �Color online� Ferromagnetic transition temperature vs the thickness
of the ferroelectric layer with and without the misfit stresses.

FIG. 5. �Color online� Ferromagnetic transition temperature vs the thickness
of the ferroelectric layer with and without the ferroelectric transition.

FIG. 3. �Color online� Ferromagnetic transition temperature vs the thickness
of the ferroelectric layer under different substrate thicknesses in the absence
of misfit stresses.
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	 = fP + fM + fel + f�. �A4�

One needs to obtain the function g�x�� to derive the varia-
tional derivative. It is easy to get the first variation of fP, fM,
and f� from Eqs. �1�, �2�, and �16�, respectively. For the
elastic energy

fel =
1

2
neC

E�
−he/2

he/2

��0E − �Et + �S�2dz

+
1

2
nmCM�

−hm/2

hm/2

��0M − �Mt + �S�2dz +
1

2
HC0��S�2,

�A5�

one can derive

�Pfel = neC
E�

−he/2

he/2

��0E − �Et + �S��P��0E − �Et + �S�dz

+ nmCM�
−hm/2

hm/2

��0M − �Mt + �S��P��0M − �Mt

+ �S�dz + HC0�S�P�S. �A6�

The substitution of the expressions �0E, �0M, �Et, �Mt, and �S

of Eq. �12� into Eq. �A6� yields Eq. �13� as follows:

�P�s = 2neQ�CE�
−he/2

he/2

P�Pdz . �A7�

One can derive

�Pfel = neC
E�

−he/2

he/2

��0E − �Et + �s��P�− �Et + �s�dz

+ nmCM�
−hm/2

hm/2

��0M − �Mt + �s��P�sdz

+ HC0�s�P�s = − 2neQCE�
−he/2

he/2

��0E − �Et

+ �s�P�Pdz + 2neQ�CE�neC
E�

−he/2

he/2

��0E − �Et

+ �s�dz + nmCM �
−hm/2

hm/2

��0M − �Mt + �s�dz

+ HC0�s��−he/2

he/2

P�Pdz = �− 2neQCE�0E

+ 2neQCE�he�CE�0E

+ hm�CM�0M���
−he/2

he/2

P�Pdz

+ 2neQ
2CE�

−he/2

he/2

P3�Pdz

+ 2neQCE�ne�CEQ�P2�

+ nm�CMQM�M2���
−he/2

he/2

P�Pdz �A8�

by using the applied force

neC
E�

−he/2

he/2

��0E − �Et + �s�dz + nmCM�
−hm/2

hm/2

��0M − �Mt

+ �s�dz + HC0�s = 0.
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