
Fast Gabor Texture Feature Extraction with

Separable Filters using GPU

Anonymous

Abstract
Gabor wavelet transform is one of the most ef-

fective texture feature extraction techniques and

has resulted in many successful practical appli-

cations. Real-time applications, however, can-

not enjoy this technique because of the high

computational cost arising from the large num-

ber of small-sized convolutions which require

over 10 minutes to process an image of 256 ×
256 pixels on a dual core CPU. As the Ga-

bor filtering computations are parallelizable, it

is promising to accelerate the feature extraction

process using GPU. Conventionally, this can be

achieved simply by accelerating 2D convolu-

tion directly, or by expediting the CPU-efficient

FFT-based 2D convolution. Indeed, the latter

approach, when implemented with small-sized

Gabor filters, cannot fully exploit the power of

GPU due to the architecture of graphics hard-

ware. This paper proposes a novel approach tai-

lored for GPU in accelerating texture feature ex-

traction algorithm with separable 1D Gabor fil-

ters used to approximate the non-separable Ga-

bor filter kernels. Experimental results indicate

significant improvement in timing performance

with minimal error introduced. The algorithm

is specifically designed and optimized for Com-

pute Unified Device Architecture (CUDA) and

achieves a speed of 16 fps. It is potentially ap-

plicable for real-time applications in areas such

as motion tracking and medical image analysis.

1 Introduction

Texture feature extraction is the basis of many

texture analysis techniques. Gabor feature ex-

traction, as a multiresolution filtering technique,

is one of the most important feature extraction

techniques and has been proved to be advan-

tageous for many applications. However, it is

not suitable for real-time applications because

of high computation complexity. Gabor filters

are usually defined by a set of scales and orien-

tations (e.g. 4 scales and 6 orientations). Con-

volution between each pixel of an image and

the 2D Gabor kernels in different directions and

orientations are required to extract the features.

Here, the number of multiplication and addition

operations required is proportional to the sec-

ond order of the kernel dimension. When fast

Fourier transform (FFT) is used to perform con-

volution, the complexity is log WH, where W

and H are the width and height of the image. To

tackle these problems, we propose to improve

the computational speed by approximating the

originally non-separable Gabor filter kernels to

separable ones, by which the number of oper-

ations required in Gabor filtering becomes lin-

early proportional to the kernel dimension. Fur-

thermore, the computations can then be imple-

mented on GPU to enjoy the benefit of hardware

acceleration.

In the proposed implementation, we attempt

to exploit and maximize the parallel computa-

tional power of GPU. First, all pixel windows

are processed for convolution with all Gabor

kernels simultaneously, as they are all indepen-

dent of each other. Second, the convolutions are

optimized to employ coalesced access or shared

memory in order to minimize memory access la-

tency.

We have carried out a series of experiments

to analyze the performance of the proposed ap-

proach on image segmentation in terms of speed

and quality. The results show that our approach

only introduces minor errors when compared

This is a post-peer-review, pre-copyedit version of an article published in Journal of Real-Time Image Processing. The final authenticated version is
available online at: https://doi.org/10.1007/s11554-013-0373-y.

This is the Pre-Published Version.

with the ground truth result, and their image

segmentation performance is on par with each

other. No significant difference can be found

visually in the result, while the computational

complexity is reduced and the speed is faster

than other possible implementations on GPU.

The acceleration provided by our method en-

ables high frame rate of 16 fps which is use-

ful for many real-time applications like motion

tracking and medical image analysis.

2 Related Work

There are several existing methods to extract

textural features, many of them are reported in

the literature and widely used in texture analysis

applications [1, 2, 3, 4, 5]. The extraction of

such features usually account for the invariant

characteristics of translation, rotation and scal-

ing of textures. As a result, high dimensionality

and high computational cost to obtain the texture

feature are expected.

The Gabor wavelet transform is one of the ro-

bust methods and extensively being used in tex-

ture classification and discriminations [6, 7].

Apart from the theory that Gabor filters resem-

ble responses of simple cells in visual cortex [8],

many of the experiments, like the one carried

by Ahmadian and Mostafa [9], proved that non-

separable Gabor wavelet transform outperforms

the classical dyadic wavelet transform for tex-

ture classifications. Nearly 7% better in classifi-

cation rate is achieved, and an even higher rate

of 13% for brightened textures.

There were several attempts to accelerate con-

volution with Gabor filters. Recursive filtering

of Gabor kernel proposed by Young et. al. [10]

can achieve a complexity of only O(N), how-

ever, it is obvious that recursive computation

on GPU is not recommended. Geusebroek et

al. [11] proposed a method to decompose an

anisotropic Gaussian filter, which is a critical

component in the Gabor wavelet formulation. In

their method, a 2D filtering is performed first

with a 1D Gaussian filter in x direction, fol-

lowed by another 1D Gaussian filter along a line

in particular orientation. The proposed method

achieved good acceleration and approximation

of arbitrary oriented Gaussian filter. However,

it requires a special shear filtering instead of the

standard horizontal and vertical filterings which

is difficult to program and does not fit well on

GPU. Similarly, the idea of separating Gabor fil-

ter kernels for performance boost is also sug-

gested by Areekul et al [12], but the proposed

method allowed only particular oriented Gabor

filters and lacks of generality and flexibility to

suit many applications.

A number of researches exploiting GPU for

image processing purposes emerged early this

decade. But until recently, Wang and Shi [13]

tried to accelerate Gabor filtering with GPU.

Their method decomposes the 2D filtering into

three 1D filterings in order to reduce compu-

tation complexity. However, the performance

is not very satisfactory, and it is not very clear

if the method is advantageous for texture fea-

ture extraction which involves computing simul-

taneously many small sized pixel windows. In-

spired by these previous works, we proposed a

novel approach turning Gabor filters into sepa-

rable ones which can then be implemented more

easily into current GPU architecture for acceler-

ated texture feature extraction.

The idea to decompose non-separable filters

into separable ones was first proposed by Tre-

itel and Shanks [14]. They provided a general

framework and idea of approximating filtering

with finite number of one-dimensional recursive

filterings and minimal error. Later, Kubota [15]

presented similar but improved method espe-

cially suitable for orientational filters. Our al-

gorithm is also closely related to these previous

work, while, we focus on the the application to a

specific filter, i.e. the Gabor filter. Moreover, the

massive computation of Gabor filtering on GPU

for the purpose of per-pixel computation of tex-

ture feature has not been studied previously in

the literature.

3 Method

The Gabor function g(x, y) is written as [7]

g(x, y) =
1

2πσxσy
exp

[

−
1

2

(

x2

σ2
x

+
y2

σ2
y

)

+ 2πjWx

]

.

(1)

The Gabor function form a complete but

nonorthogonal basis set. Gabor wavelets are a

class of self-similar functions derived form the

Gabor function. Dilation and rotation of the

Figure 1: Typical workflow of Gabor wavelet

feature extraction.

mother function g(x, y) generate the following

functions:

gm,n(x, y) = a−mg(x′, y′), a > 1,

x′ = a−m(xcosθ + ysinθ),

y′ = a−m(−xsinθ + ycosθ),

where m and n are integers, θ = nπ/K, K
is the total number of different orientations and

a−m is a scale factor which ensures the energy

is independent of m. To reduce the redundancy

of Gabor wavelets caused by the nonorthogonal

nature of the Gabor function, σx and σy are as-

signed appropriately as discussed in [7].

For an image I(x, y), its Gabor wavelet trans-

form is then defined to be

Wm,n(x, y) =

∫

I(x1, y1)gm,n(x− x1, y − y1)dx1dy1,

(2)

where · is the complex conjugate operation. As

local texture regions are assumed to be spa-

tially homogeneous, so the mean µm,n and

the standard deviation σm,n of the transform

coefficients’ magnitudes are used as the Ga-

bor wavelet features. For a 6 scales and 4

orientations texture feature, they are defined

as [µm,n, σm,n]m=1,··· ,6,n=1,··· ,4 in a per-pixel

manner:

µm,n =

∫ ∫

|Wm,n(x, y)| dxdy,

σm,n =

√

∫ ∫

(|Wm,n(x, y)| − µm,n)
2
dxdy.(3)

Throughout the paper, S and R are used to

represent respectively the total number of scales

and orientations. Figure 1 illustrated the ma-

jor procedures involved in Gabor wavelet-based

texture feature extraction. From the above for-

mulations, the most computation intensive part

occurs at equation 2, that is the convolutions be-

tween the image and several Gabor filter ker-

nels of different orientations and scales. When a

huge number of images or image windows is in-

volved, the computational cost is high and usu-

ally a bottleneck.

In the following subsections, we will in-

troduce various approaches of accelerating the

large number of Gabor filtering, discussing the

pros and cons, as well as introducing the imple-

mentation details on GPU using CUDA.

3.1 Gabor filtering with 2D convolution

The most straightforward method of performing

the Gabor filtering is by direct 2D spatial con-

volution. A direct convolution in spatial domain

with an M×M filter kernel requires a M2 mul-

tiplications and additions. Spatial convolution

can be easily parallelizable on GPU as each ker-

nel value multiplies independently. We, there-

fore, implemented a CUDA version of Gabor fil-

tering for experimental comparisons.

Suppose that the width and height of an im-

age I are W an H respectively. We will run

W blocks of CUDA kernels, and within each

block, H threads are launched to compute one

row of the image independently. For efficiency,

our implementation puts the image into shared

memory, while the filter kernels are left in global

memory.

To compute per-pixel texture feature, we will

compute all the features in parallel. Instead of

running H blocks, we run R×2×NUM by S×H

blocks of image window centered at every pixel.

Here, NUM is the total number of pixels in the

whole image.

The timing statistics of Gabor filtering using

2D spatial convolution are reported in Section 4,

the average run-time on GPU needs about 6.2s

per frame for an image size of 256×256, far

from real-time requirements.

3.2 Gabor filtering with FFT on CUDA

Convolution in frequency domain is another

standard approach for computing Gabor filter-

ing. FFT is usually preferred to achieve higher

efficiency. Thus, the convolution can be done by

first applying FFT to both the input data and the

convolution kernels, point-wise multiplying be-

tween them, and finally performing inverse FFT

to converts the result back into the spatial do-

main.

Many experiments have shown that FFT

based convolution is more efficient than 2D di-

rect spatial convolution implementation on CPU

when large kernel is used, as the complexity of

per-pixel multiplications and additions involved

is log WH. However, in our case, only small

or mediate sized windows are involved, and the

largest window is 128 × 128 pixels. This prob-

lem also occurs in the corresponding GPU ver-

sion. For example, the standard CUFFT algo-

rithm that parallelizes FFT in CUDA is most ef-

ficient for the cases where both the kernel and

the window size are large [16].

Apart from small sized windows, paralleliz-

ing FFT on GPU also faces the problem that

each Gabor filter scale and orientation as well as

each individual pixel window can only be pro-

cessed sequentially, and thus cannot fully capi-

talize the parallel processing power of GPU.

The timing statistics of Gabor convolutions

in frequency domain are reported in Section 4,

the average run-time on GPU is about 87.1s per

frame for an image size of 256×256, even worse

than the 2D convolution implementation.

3.3 Our approach

3.3.1 Gabor filtering using separated 1D

convolution

Another possible approach for 2D filtering is to

approximate the computation with two separa-

ble 1D convolutions, in which only requires 2M

multiplications and additions. This is signifi-

cantly smaller than the M2 operations in direct

2D convolution, and is comparable to log WH

depending on the filter and window sizes. How-

ever, this only applies to separable filters. Unfor-

tunately, some Gabor kernels are non-separable.

Separation of these filter kernels can only ap-

proximate the effect of the original filter, and in-

evitably introduces errors in the convolution re-

sults. In the following of this section, we will in-

troduce a method to best separate the filter and

minimize the convolution errors. We will dis-

cuss the details and advantages of using 1D fil-

ters in the GPU implementation.

The best way to separate a wavelet kernel

in the least square error sense can be accom-

plished by singular value decomposition (SVD)

of a wavelet kernel g:

UΛV T = svd(g). (4)

Here Λ is a diagonal matrix with all the eigen-

values. The decomposition of g forms a set of r
and c (i.e. the eigenvectors) which are ordered

based on the significance. As a result, the best

separation takes the first eigenvectors from the

matrix U and V as follows :

r1 = Λ(1, 1)
1

2 × uT1

c1 = Λ(1, 1)
1

2 × vT1 (5)

where Λ(1, 1) is the first element in matrix Λ, u1
and v1 are the first (left most) column vector in

matrix U and V respectively. In general, sepa-

rable kernels sets rz and cz can be formed using

the remaining eigenvectors and eigenvalues as

rz = Λ(z, z)
1

2 × uTz

cz = Λ(z, z)
1

2 × vTz (6)

where z ranges from 1 to the kernel size of

wavelet g. The introduction of the remaining

components in the SVD result improves the ac-

curacy of the convolution results.

The most significant separable kernel set r1
and c1 can then be applied one after another

by two 1D convolutions with the input image

I(x, y) to obtain the Gabor wavelet transform

W ′(x, y),

W ′(x, y) = I(x, y) ∗ r1 ∗ c
T
1 . (7)

where ∗ is convolution operator. Notice that the

computed W ′(x, y) is only an approximation of

the W (x, y).

3.3.2 CUDA implementation

Apart from the computational efficiency of 1D

convolution, a significant advantage of this ap-

proach is that it makes possible the best utiliza-

tion of the shared memory, which has low access

Figure 2: Memory access approach for 1D con-

volution on CUDA.

latency, in the computation. Our CUDA imple-

mentation of the 1D convolution approach is de-

signed to avoid too many data being transferred

to the global memory.

In our implementation, the image is first read

into global memory as a whole in row-wise man-

ner, as illustrated in Figure 2. N is the pixel

window size, E is the total number of pixels to

deal with, and L is the total number of kernels

whose scale s is the maximum scale number S

and orientation r the maximum orientation num-

ber R. Then, to deal with a single pixel location,

N blocks are assigned and each of them has 2N

threads. This is because each block will deal

with one row in the pixel window, both the real

part and the imaginary part, and so it is 2N in

total. As a result, each block computes elements

in the same row; each thread can deal with pix-

els in the same row simultaneously. This greatly

and efficiently exploits the parallelization capa-

bility in GPU.

Here, column convolution is first performed.

Each CUDA kernel is then working indepen-

dently to convolve a single pixel with the kernel

c, as shown in the pseudo code in Algorithm 1.

After that, the row convolution is performed in

a similar manner. Note that column-wise com-

putation is done between image data and column

kernel c in global memory, as shown in Figure 3.

Then, each block reads all columns needed from

global memory into shared memory for the fol-

lowing row-wise computation. The kernel r is

also loaded into shared memory, before the row

convolution takes place.

Our algorithm features simultaneous reading

of a large amount of data from GPU while the

operations in each thread involve light weight

computation. This fully utilizes the GPU band-

Algorithm 1 Pseudo code performing the col-

umn convolution in CUDA.
a is the index range, determined by threadID,

it takes values between [0, N]

input from global memory to share memory:

corresponding column vector

read in the index range a
for k=N-a to N, i=0 to a do

sum+ = filter[k]× img[i]
end for

store sum in share memory

Figure 3: CUDA implementation of 1D convo-

lution approach.

width and avoids potential bottleneck for the

whole process. Moreover, in column convolu-

tion, the memory access pattern in threads is de-

signed to be consecutive, so as to take advan-

tage of coalesced access which minimizes the

latency.

After the column and row convolutions with

all the filters, the coefficients are ready for com-

puting the texture features. In equation 3, the

features are extracted from the mean and stan-

dard deviation of each filtered results using dif-

ferent Gabor kernels. As the computation of

mean and standard deviation is a parallel reduc-

tion procedure in CUDA, the well-known meth-

ods suggested by Harris [17] is used to achieve

fast computation. As a result, two more CUDA

kernels are introduced for this purpose.

4 Results and Discussion

We carried out a number of experiments to eval-

uate the timing performance and feature extrac-

tion quality of our proposed method. All the

experiments are carried out on a PC equipped

Convolution approach

2D FFT 1D

C 2537 s 857 s 412 s

CUDA 6.2 s 87.1 s 0.032 s

Table 1: Timing performance of different convo-

lution approaches. 256×256 image and

32×32 window size are used.

with Intel dual core CPU 2.66Ghz, 3GB RAM,

and a nVidia GeForce 9800GTX graphics card

with 600MHz graphics clock, 1500MHz proces-

sor clock and 57.6GB/Sec bandwidth.

4.1 Timing statistics

First, we compare the three approaches men-

tioned in Section 3 (namely, 2D-conv, FFT, and

1D-conv). Both C and CUDA versions are

tested and the corresponding running times on

CPU and GPU are recorded. Table 1 shows

the results using a 256×256 image and 32×32

window size. Significant speed improvement is

found in Gabor wavelet based texture extrac-

tion using GPU when compared with that us-

ing CPU. CPU version takes more than 10 min-

utes to process, while the GPU implement ion

requires only 0.062s, approximately 16fps.

The effects of image size on the processing

time are also investigated. A window size of

64×64 pixels is used in this test. As we seen

from Table 2, computational times for image

size between 128×128 and 512×512 pixels are

all around 0.05 s; the increase with image size

is minor. However, a larger image of 768×728

pixels in size hits the limit of hardware, as evi-

dent from the drastic increase in computational

time (10 times longer). This is probably due to

the memory bandwidth limit.

The effects of different window sizes (equal

to the kernel size) on the timing performance of

our method are also analyzed. Table 3 shows

the test results using a image of 256×256 pixels.

The CPU implementation shows an exponential

increase in time with the window size. This is

anticipated because the computational complex-

ity is proportional to the number of elements

processed in single-window convolution and the

vector dimension in 1D convolution. The vector

dimension is related to the number of elements

involved in single element computation. How-

ever, such increase is not observed in the GPU

implementation. As seen in Table 3, window

size has a negligible effect on the GPU results

when compared to that running on CPU.

4.2 Feature quality

Finally, the error of the 1D separable kernel im-

plementation on CUDA is studied. The results

are also compared with that of 2D convolution

(ground truth). Table 4 shows the maximum and

mean errors of the Gabor wavelet features when

different kernel sizes are used. The error is mea-

sured by averaging (by length of the vector) the

Euclidean distance between the ground truth and

our Gabor wavelet feature vectors. Since ele-

ments of a Gabor wavelet feature can take arbi-

trary large value, the maximum value among the

feature vectors is also provided in the table for

reference. The maximum error is between 0.67

and 1.14, which is quite satisfactory comparing

to the maximum values that are as large as 105

or above.

We provide segmentation results of various

gray-scale images using our accelerated method

for visual evaluation in Figure 4. Most of the

testing images and textures are selected from

the Brodatz texture database [18] and the Berke-

ley Segmentation Dataset [19]. For the sake

of comparing the segmentation ability of tex-

ture features computed using our method and

the original FFT-based method, we obtain the

color-coded segments by the K-mean cluster-

ing algorithm. A 48 dimensional texture fea-

tures together with the 2 dimensional pixel lo-

cation form the attributes for clustering. The

textured mosaic image shown in Figure 4(a) is

used in our first experiment. The corresponding

segmentation results using our proposed method

and the original method by FFT are shown in the

middle and on the right respectively. The latter

serves as the ground truth for comparisons.

We can observe from the results that, with the

same segmentation method, nearly the same re-

sults are obtained. This shows that the proposed

approach does not affect the segmentation qual-

ity of the computed features. Figures 4 (b) to

(f) show a few more sets of segmentation results

demonstrating that the same conclusion also ap-

plies to natural images or even textured cartoons

Image size

128×128 256×256 512×512 768×728

C 328 s 1321 s 5371 s 12634 s

CUDA 0.042 s s 0.047 s 0.062 s 0.67 s

Table 2: Timing performance of 1D convolution approach using 64×64 Gabor kernel for images with

different size.

Window size

16×16 32×32 64×64

C 112 s 412 s 1322 s

CUDA 0.029 s 0.032 s 0.047 s

Table 3: Timing performance of 1D convolution

approach using windows with different

size.

illustrations. We should focus on the ability of

grouping texturally similar regions in all these

images, for example the dot patterns in (b), the

tree branches in (d), the rocks in (e). These re-

sults are difficult to be achieved without the in-

volvement of texture features in segmentation.

5 Conclusion

In the paper, we propose to accelerate Gabor

texture feature extraction using separable fil-

ters and to develop an effective approach to

implement the computations on GPU. The ex-

periments on image segmentation give promis-

ing results. The approximation only introduces

minor errors which are not noticeable visually

while the computational speed is significantly

increased, attaining near real-time performance.

Research will be carried out to optimize the al-

gorithms to further capitalize and utilize the par-

allel processing power of GPU and the memory

bandwidth. In the meantime, experiments will

be conducted to use the Gabor texture feature

Max Mean Max

Kernel size Error Error Value

16×16 1.14 0.86 105.22

32×32 1.89 1.49 116.61

64×64 0.67 0.55 121.79

Table 4: Error of Gabor texture feature at differ-

ent kernel sizes.

extraction technique in motion tracking so as to

demonstrate its feasibility for real-time applica-

tions.

6 Acknowledgements

The work is supported in part by some grants (to

be advised, anonymized for blinded review).

References

[1] L Van Gool, P Dewaele, and A Ooster-

linck. Texture analysis anno 1983. Com-

puter Vision, Graphics, and Image Pro-

cessing, 29:336–357, 1985.

[2] Todd R. Reed and J. M. Hans du Buf. A

review of recent texture segmentation and

feature extraction techniques. CVGIP: Im-

age Understanding, 57(3):359–372, 1993.

[3] M. Tuceryan and A. K. Jain. Texture anal-

ysis, handbook of pattern recognition and

vision. pages 235–276.

[4] Robert M. Haralick, K. Shanmugam, and

Its’Hak Dinstein. Textural features for im-

age classification. IEEE Transactions on

Systems, Man and Cybernetics, 3(6):610–

621, Nov. 1973.

[5] R. Haralick. Statistical and structural ap-

proaches to textures. In Proceedings of the

IEEE, volume 67, pages 786–804. IEEE,

1979.

[6] M R Turner. Texture discrimination by

gabor functions. Biological Cybernetics,

55(2-3):71–82, 1986.

[7] B S Manjunath and W Y Ma. Texture fea-

tures for browsing and retrieval of image

data. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 18(8):837–

842, 1996.

[8] J. Daugman. Two-dimensional spectral

analysis of cortical receptive field profiles.

Vision Research, 20(10):847–856, 1980.

[9] A. Ahmadian and A. Mostafa. In Pro-

ceedings of the 25th Annual International

Conference of the IEEE Engineering in

Medicine and Biology Society, 2003., vol-

ume 1, pages 930–933, New York, NY,

USA, Sept 2003.

[10] I.T. Young, L.J. van Vliet, and M. van

Ginkel. Recursive gabor filtering. IEEE

Transactions on Signal Processing,

50(11):2798 – 2805, November 2002.

[11] J.-M. Geusebroek, A.W.M. Smeulders,

and J. van de Weijer. Fast anisotropic gauss

filtering. Image Processing, IEEE Trans-

actions on, 12(8):938 – 943, aug. 2003.

[12] Vutipong Areekul, Ukrit Watchareeruetai,

and Sawasd Tantaratana. Fast separable

gabor filter for fingerprint enhancement. In

Biometric Authentication, volume 3072 of

Lecture Notes in Computer Science, pages

1–42. Springer Berlin / Heidelberg, 2004.

[13] XinXin Wang and B.E. Shi. Gpu im-

plemention of fast gabor filters. In Pro-

ceedings of 2010 IEEE International Sym-

posium on Circuits and Systems (ISCAS),

pages 373 –376, 2010.

[14] S. Treitel and J.L. Shanks. The design of

multistage separable planar filters. Geo-

science Electronics, IEEE Transactions

on, 9(1):10–27, 1971.

[15] T. Kubota. Orientational Filters For Real-

Time Computer Vision Problems. PhD the-

sis, Georgia Institute of Technology, 1995.

[16] Ondrej Fialka and Martin Cadik. Fft and

convolution performance in image filtering

on gpu. In Proceedings of the conference

on Information Visualization 2006, pages

609–614. IEEE Computer Society Press,

2006.

[17] Mark Harris. Optimizing parallel reduc-

tion in cuda. NVIDIA Developer Technol-

ogy, 2008.

[18] P. Brodatz. Textures: A Photographic Al-

bum for Artists and Designers. Dover,

New York, 1996.

[19] D. Martin, C. Fowlkes, D. Tal, and J. Ma-

lik. A database of human segmented nat-

ural images and its application to evaluat-

ing segmentation algorithms and measur-

ing ecological statistics. In Proc. 8th Int’l

Conf. Computer Vision, volume 2, pages

416–423, July 2001.

Input image Our result Ground truth (by FFT)

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4: Segmentation results of various images containing rich textures. (a) and (b) are with size

200×200, while (c) to (f) are with size of 481×321. All the segmentations are obtained

using K-mean clustering algorithm with K=5.

