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A fractal analysis of effective thermal conductivity for unsaturated fractal porous media is presented
based on the thermal-electrical analogy and statistical self-similarity of porous media. Here, we
derive a dimensionless expression of effective thermal conductivity without any empirical constant.
The effects of the parameters of fractal porous media on the dimensionless effective thermal
conductivity are discussed. From this study, it is shown that, when the thermal conductivity of solid
phase and wet phase are greater than that of the gas phase �viz., ks /kg�1, kw /kg�1�, the
dimensionless effective thermal conductivity of unsaturated fractal porous media decreases with
decreasing degree of saturation �Sw� and increasing fractal dimension for pore area �Df�, fractal
dimension for tortuosity �Dt�, and porosity ���; when the thermal conductivities of solid phase and
wet phase are lower than that of the gas phase �viz., ks /kg�1, kw /kg�1�, the trends were just
opposite. Our model was validated by comparing the model prediction with existing experimental
data. Excellent agreement was found except for the cases at very low level of saturation. © 2009
American Institute of Physics. �doi:10.1063/1.3204479�

I. INTRODUCTION

As a transport property, effective thermal conductivity of
porous media has received much attention due to its wide
applications in many fields, including chemical engineering,
soil science, engineering, oil production, polymer composite
molding, etc. The microstructures of porous media are usu-
ally disordered and extremely complicated in nature, which
makes it very difficult to obtain an analytical expression for
the thermal conductivity, especially for the natural unsatur-
ated �or multiphase� porous media.

In the past, the thermal conductivity of porous media has
been studied by many investigators1–8 through different ap-
proaches, including numerical solutions, theoretical ap-
proaches, and experiments. Nozad et al.9 used transient
method to determine effective thermal conductivities for two
phase and extended to three-phase systems. They made an
experimental investigation with three fluids �air, glycerol,
and water� and five solids �glass, stainless steel, bronze, urea
formaldehyde, and aluminum�. They found that the measured
values of the effective thermal conductivity for three-phase
systems were generally higher than the theoretical values.
Singh et al.10 performed an experimental investigation by
using dune sand and brick sandsamples to determine the
thermal conductivity of three-phase �unsaturated� porous me-
dia. They tested different types of soils saturated with differ-
ent liquids having variations in liquid content and tempera-
ture. Zhang et al.11 applied a randomly mixed model to

calculate the effective thermal conductivity of a multiphase
system. The model was based on the assumption that the
smallest part of the phases is a cube, and all the cubes were
randomly dispersed in the space. The effective thermal con-
ductivity was calculated numerically from thermal conduc-
tivities and volume fractions of the components, using the
principle of heat conduction in anisotropic media. The pre-
diction did not depend on empirical parameters and the al-
gorithm was easy to perform in a personal computer. The
model was validated by several types of moist porous media
with various porosities and degrees of the degree of satura-
tion. Vermats et al.12 conducted an experimental investiga-
tion to determine the thermal conductivity of three-phase un-
saturated porous media with differential temperature sensor
method. Their results were in good agreement with the val-
ues predicted by the geometry dependent resistor model de-
veloped for the three-phase system.

The porous media have been proven to be fractal objects
in nature.13–18 This means that the fractal theory may be used
to predict properties of porous media. Yu and Cheng19 devel-
oped a fractal thermal conductivity model for bidispersed
�saturated� porous media based on the fractal characteristics
of unit cell of the media, and this fractal model is also ap-
plicable for analyzing the permeability of porous media. Al-
though Yu’s model does not contain any empirical constant
and good agreement was found between the model predic-
tions and experimental data, it is not applicable to unsatur-
ated porous media. The saturated porous medium is, in fact,
only the special case of the unsaturated porous medium. It is
therefore meaningful to develop an analytical solution for the
thermal conductivity of unsaturated �or multiphase� porous
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media. With one-dimensional heat flow assumption, Ma et
al.20 derived a fractal geometry model for the effective ther-
mal conductivity of three-phase unsaturated porous media
based on the method of thermal-electrical analogy and exact
self-similar Sierpinski carpet. The effective thermal conduc-
tivity of fractal geometry model was expressed as a function
of porosity �related to stage n of Sierpinski carpet�, ratio of
areas, ratio of component thermal conductivities, and the de-
gree of saturation. However, Ma’s model has an important
practical limitation, as it only applies to exactly self-similar
porous media, yet real porous media, like many objects
found in nature, are not exactly self-similar, but statistically
self-similar. Such a statistically self-similar porous media
can be called as the fractal porous media.

The objective of the present work is to develop an ana-
lytical method and a fractal model for predicting the effec-
tive thermal conductivity of three-phase �unsaturated� porous
media based on the available evidence that porous media in
nature are fractal objects.13–18 In Sec. II, we give the detailed
description of the fractal characteristics of microstructures of
fractal porous media, and in Sec. III, we present fractal
analysis of effective thermal conductivity for three-phase
�unsaturated� porous media. Results and discussion are pre-
sented in Sec. IV. Lastly, some concluding remarks are given
in Sec. V.

II. THE FRACTAL DESCRIPTION OF POROUS MEDIA

An object measurement is related to its dimension and is
invariant with the unit of measurement used. In general, or-
dered objects such as points, lines, surfaces and cubes can be
described by Euclidean geometry using integer dimension 0,
1, 2 and 3, respectively. Howerver, it is found that numerous
objects are irregular and disordered in nature such as rough
surfaces, mountains, coastlines, lacks, rivers and islands.
They can not use the Euclidean description. These objects
are called fractals, and the dimensions of such objects are
non-integral and defined as fractal dimensions. The measure
of a fractal object M�L� is related to the length scale L by the
following scaling law form21

M�L� � LDf , �1�

where M can be the length of a line or the area of a surface
or the volume of a cube or the mass of an object and Df is
the fractal dimension of an object. In fractal geometry, there
are two kinds of self-similar sets: one is exactly self-similar
fractals such as Sierpinski carpet, Sierpinski gasket, and
Koch curve, the other is statistically self-similar such as real
porous medium. Exact self-similar fractals are rare in nature.
It has been shown that the size distribution of pores in porous
media follows the fractal power law,18,22

N�L � �min� = ��max

�
�Df

, �2�

where Df is the pore area fractal dimension, 0�Df �2 in
two dimensions, and �, �min, and �max are the pore size,
minimum pore size, and maximum pore size, respectively.
Differentiating Eq. �2� with respect to � results in the number

of pores whose sizes are within the infinitesimal range � to
�+d�,22

− dN = Df�max
Df �−�1+Df�d� . �3�

The negative sign in Eq. �3� expresses that the island or pore
number decreases with the increase in island or pore size and
−dN�0. Equation �3� describes the scaling relationship of
the cumulative pore population. The total number of pores or
islands from the smallest diameter �min to the largest diam-
eter �max, can be obtained from Eq. �2� as24

Nt�L � �min� = ��max

�min
�Df

. �4�

Dividing Eq. �3� by Eq. �4� gives

−
dN

Nt
= Df�min

Df �−�1+Df�d� = f���d� , �5�

where f���=Df�min
Df �−�1+Df��0 is the probability density

function and the pore area fractal dimension Df is deter-
mined by18

Df = d +
ln �

ln
�max

�min

, �6�

where d is the Euclidean dimension and d=2 and 3 repre-
sents the two and three dimensional spaces, respectively.
With probability theory, the probability density function f���
should satisfy the following relationship24:

�
0

�

f���d� = �
�min

�max

f���d� = 1 − � �min

�max
�Df

	 1. �7�

It is clear that Eq. �7� holds if and only if22

�min

�max

 0 �8�

is satisfied. Equation �8� implies that �min��max must be
satisfied for fractal analysis of porous media, otherwise the
porous media are nonfractal media. For example, if �min

=�max, Eqs. �6�–�8� do not hold. Equation �8� can thus be
considered as a criterion to judge whether a porous media
can be characterized by the fractal theory and technique. This
means that if Eq. �8� does not hold, the porous media are
nonfractal media, and the fractal theory and technique are not
applicable to the media. Fortunately, in general, �min /�max

=10−2 or �10−2 in porous media, thus Eq. �8� holds for
porous media.24 Thus, the fractal theory and technique can be
used to analyze the characters of porous media.

A porous media having various pore sizes that can be
considered as a bundle of tortuous capillary tubes with vari-
able cross sectional areas, with diameter and tortuous length
�actual length� being � and Lt���, respectively. Due to the
tortuous nature of capillary, the tortuous length Lt��� is
greater than or equal to the straight length L0. Wheatcraft and
Tyler23 showed that a fractal path travelled of a particle
through a heterogeneous porous medium can be described as
Lt���=�1−DtL0

Dt �where Lt��� is the actual length and the � is
the pore size�. Based on this, Yu et al.24 argued that the
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diameter of capillaries is analogous to the length scale � and
extended the fractal scaling relationship between the diam-
eter and length of capillaries,

Lt��� = �1−DtL0
Dt, �9�

where 1�Dt�2 is the fractal dimension for tortuosity in
two dimensions. Dt=1 represents a straight capillary, a
higher value of Dt corresponds to a highly tortuous capillary,
and Dt=2 corresponds to a highly tortuous line that fills
whole space.

On the basis of the porous media characteristics, the
thermal conductivity of porous media can be expressed in
terms of an aggregation of parallel and serial layers consist-
ing of solid �s�, water �w�, and gas �g� �see Fig. 1�. The pores
in a cross section can be considered as circles with different
diameters �,26 a simplified model for the cross section of a
capillary tube partially filled with water and gas as shown in
Fig. 1�b�. The total pore area in the cross section Ap can be
obtained as

Ap = − �
�min

�max

	��/2�2dN =
	Df�max�1 − ��

4�2 − Df�
. �10�

So the total cross sectional area A can be obtained as

A =
Ap

�
=

	Df�max�1 − ��
4�2 − Df��

, �11�

where � is the effective porosity of porous media. The fron-
tal part presents a complete description of the fractal charac-
ters of porous media and our fractal porous media model.

III. EFFECTIVE THERMAL CONDUCTIVITY FOR
UNSATURATED POROUS MEDIA

In this section, the effective thermal conductivity is de-
rived based on the thermal-electrical analogy. Under the as-
sumption of one-dimensional heat flow, the thermal-
electrical analogy technique had been successfully applied to
analyze the effective thermal conductivity of heterogeneous
media such as porous media by many researchers.3,19,20 Ac-
cording to the Fourier’s law, the thermal resistance of a
single channel r can be expressed as

r��� =
Lt���
A���k

=
4Lt���
	�2k

, �12�

where the k is thermal conductivity. The thermal resistance
of a single channel of the nonwetting phase �or gas� rg can be
expressed as

rg =
4Lt���
	�2kg

, �13�

where the kg is the thermal conductivity of nonwetting phase.
The thermal resistance of the nonwetting phase �or gas� rg

can be considered to be in parallel. In the interval of � and
�+d�, there are �−dN� parallel pores that satisfy Eq. �3�. The
thermal resistance of a pore is −dN /rg and the total thermal
resistance �Rg� of nonwetting phase can be expressed as25,26

1

Rg
= − �

�min,g

�max,g 1

rg
dN = − �

�min,g

�max,g 	�2kg

4Lt���
dN . �14�

Inserting Eqs. �3� and �9� into Eq. �14�, we obtain the ther-
mal resistance of nonwetting phase of porous media as fol-
low:

Rg =
4L0

Dt�Dt − Df ,g + 1�
	kgDf ,g�max,g

Dt+1 �1 − ��min,g/�max,g�Dt−Df ,g+1�
, �15�

where �max,g and �min,g are the maximum and minimum
equivalent diameters of the pores in nonwetting phase �such
gas� and Df ,g is the fractal dimension for nonwetting phase in
porous media, 1�Df ,g�2 in two dimensions. These expres-
sions are27

�max,g = �max
�1 − Sw, �16�

�min,g = �min
�1 − Sw, �17�

Df ,g = 2 +
ln��1 − Sw���

ln
�max

�min

= 2 −
ln��1 − Sw���

ln
�min

�1 − Sw

�max
�1 − Sw

= 2

−
ln �w

ln
�min,g

�max,g

, �18�

where Sw and �w are the degree of saturation and ratio of the
wetting phase, respectively.

Similarly, the thermal resistance expression for the wet-
ting phase �or water� phase in unsaturated porous medium
can be obtained as

Rw =
4L0

Dt�Dt − Df ,w + 1�
	kwDf ,w�max,w

Dt+1 �1 − ��min,w/�max,w�Dt−Df ,w+1�
, �19�

where the kw is the thermal conductivity of the wetting
phase, �max,w and �min,w are the largest and the minimum
equivalent diameter for wetting phase �such water�, and Df ,w

is the fractal dimension for wetting phase in porous media
and 1�Df ,w�2 in two dimensions. These expressions are27

�max,w = �max
�Sw, �20�

FIG. 1. �Color online� �a� A schematic diagram of porous media for heat
transfer and �b� a schematic of the cross section of porous media filled with
wetting phase �water� and nonwetting phase �gas�.
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�min,w = �min
�Sw, �21�

Df ,w = 2 +
ln�Sw��

ln
�max

�min

= 2 −
ln�Sw��

ln
�min

�Sw

�max
�Sw

= 2 −
ln �w

ln
�min,w

�max,w

.

�22�

For the solid phase of porous media, the thermal resis-
tance �Rs� can be obtained as

Rs =
L0

�1 − ��Aks
. �23�

The effective thermal conductivity of the porous media
�ke� can be expressed as

ke =
1

Rt

L0

A
=

L0

A
� 1

Rg
+

1

Rw
+

1

Rs
� , �24�

where Rt is total thermal resistance.
Inserting Eqs. �11�, �15�, �19�, and �23� into Eq. �24�, the

dimensionless effective thermal conductivity of porous me-
dium can be expressed as

k+ =
ke

kg
=

Df ,g�2 − Df���max,g
Dt+1 �1 − ��min,g/�max,g�Dt−Df ,g+1�

DfL0
Dt−1�max

2 �Dt − Df ,g + 1��1 − ��

+
Df ,w�2 − Df���max,w

Dt+1 �1 − ��min,w/�max,w�Dt−Df ,w+1�
DfL0

Dt−1�max
2 �Dt − Df ,w + 1��1 − ��

kw

kg

+ �1 − ��
ks

kg
. �25�

It is evident that the dimensionless thermal conductivity k+ is
a function of the degree of saturation Sw, fractal dimensions
Df, Dt, and Df ,w �or Df ,g�, and there is not any empirical
constant in this fractal thermal conductivity model.

IV. RESULTS AND DISCUSSION

Figure 2 plots the pore area fractal dimension Df, the
phase fractal dimensions Df ,g and Df ,w versus the porosity �
at different degrees of saturations Sw. It is seen from Fig. 2
that the pore area fractal dimension Df, and the phase fractal
dimensions Df ,g and Df ,w increase with porosity �, and as
porosity approaches to 1, the fractal dimension Df is close to
2. This is understandable as higher porosity implies larger
pore area, which leads to higher fractal dimension. In the
special case of porosity approaching to 1, the unit cell of the
media becomes completely void, which has the fractal di-
mension of 2. Another important phenomenon, which can be
observed from Fig. 2, is that the curve of the wetting phase is
close to the curve of the pore area fractal dimension, and the
curve of the nonwetting phase �such gas� reaches the maxi-
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FIG. 2. �Color online� Fractal dimension: pore area fractal dimension Df,
gas �nonwetting� phase fractal dimension Df ,g, and water �wetting� phase
fractal dimension Df ,w vs porosity under different degrees of saturations.
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FIG. 3. �Color online� Dimensionless effective thermal conductivity of the present model vs saturation in different porosities and ks /kg, kw /kg.
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mum value of 1 as the degree of saturation increases. It
should be noted that as the degree of saturation approaches
to zero, viz., the media are fully filled with a nonwetting
fluid �i.e., gas�, the fractal dimension becomes exactly the
same as that for the saturated porous medium. One interpre-
tation for this is that, higher the degree of saturation implies
larger proportion of wetting phase, leading to higher fractal
dimension Df ,w, the same is true for fractal dimension Df ,g.

Figure 3 plots the dimensionless thermal conductivity
against the degree of saturation under different porosities.
From Fig. 3�a�, we can see that the thermal conductivity
increases as the porosity decreases when ks /kg�1 and
kw /kg�1. This can be explained by the fact that a higher
porosity implies smaller solid volume fraction of higher ther-
mal conductivity, leading to a reduction in the effective ther-
mal conductivity. However, it is found that, when ks /kg�1
and kw /kg�1, the opposite phenomenon is observed, the
thermal conductivity increases with the increase in porosity.
The reason is that when ks /kg�1 and kw /kg�1, the matrix
space having higher thermal conductivity dominates the ef-
fective thermal conductivity, resulting in a higher effective
thermal conductivity at a higher porosity.

Figure 4 plots the dimensionless effective thermal con-
ductivity k+ versus the degree of saturation at different pore
area fractal dimensions Df and at a given tortuosity fractal
dimension Dt=1.1. It is seen that the effective thermal con-
ductivity increases with the increase in the degree of satura-
tion at ks /kg=167.5, kw /kg=110, and fixed tortuosity fractal
dimension Dt. This can be explained as, when the degree of
saturation increases, the wetting �water� phase volume frac-

tion with higher thermal conductivity increases, leading to
the increase in the effective thermal conductivity. It can also
be observed that the thermal conductivity decreases as Df

increases. This is understandable as porosity increases with
the increase of Df and higher porosity leads to the reduction
in thermal conductivity.

The effect of fractal dimensions of tortuosity on the di-
mensionless thermal conductivity is further investigated. Fig-
ure 5 plots the dimensionless thermal conductivity versus the
degree of saturation at different tortuous fractal dimensions
Dt and at given pore area fractal dimensions Df =1.7. From
Fig. 5, it can be shown that the thermal conductivity de-
creases with increasing tortuosity fractal dimensions Dt. The
decrease in thermal conductivity with the increase in Dt is
attributed to the increased heat resistance due to the higher
the tortuosity dimension. The higher the tortuosity dimension
implies longer distance of heat transport through more tortu-
ous channels, leading to the increase in resistance and the
decrease in the effective thermal conductivity.

Figure 6 compares the present model predictions of ther-
mal conductivity of ks=3.35 and ks=2.85 W m−1 K−1 with
the available experimental data10 reported in Table I. In gen-
eral, very good agreement is found between the present
model predictions and the available experimental data, ex-
cept for the data at the very low degree of saturation.

Figure 7 compares the predictions of the present model
with the more recent experimental data by Kohout.28 The
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FIG. 6. �Color online� Comparison between the model prediction and existing experimental data.

TABLE I. The experimental conditions �Refs. 10 and 20� of Nonwetting
�gas� kg=0.02 W m−1 K−1 and wetting �water� kw=2.2 W m−1 K−1, at tem-
perature of 20 °C, and here ke

+=ke /kg.

Saturation Sw

ke

�W m−1 K−1�
ke

+

�W m−1 K−1�

ks=3.35 W m−1 K−1 0.00 0.176 8.80
0.03 0.294 14.70
0.23 0.752 37.60
0.52 1.137 56.85
0.72 1.438 71.90

ks=2.85 W m−1 K−1 0.00 0.12 6.00
0.08 0.36 18.00
0.22 0.50 25.00
0.46 0.71 35.50
0.63 0.92 46.00
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experimental parameters are ks=0.8 W m−1 K−1, kw

=0.61 W m−1 K−1, and kg=0.025 W m−1 K−1. Again, there is
very good agreement between the model prediction and the
experimental data, when Sw is larger than 0.2. The greater
discrepancy at the low level of saturation may be due to the
fact that at the low saturation, majority of the water is not in
the free form, but absorbed by the solid materials.29–32 Nev-
ertheless, the present model treats the wet phase and solid
phase separately, i.e., no moisture sorption or desorption
takes place.

Although, the general relationship between the thermal
conductivity and the parameters of the fractal porous media
has been established in the present model, it must be noted
that the model is derived under a number of assumptions,
including one dimensional heat flow, no sorption or desorp-
tion, no phase change, and no flow of gas phase and wetting
phase. Heat flow in real porous media may be more
complex,29–32 involving multidimensional heat flow, phase
change, flow of wetting phase and gas phase, etc. The micro-
or nanostructures of the solid phase may also have significant
effects.

V. CONCLUSIONS

In this paper, based on the assumption of one-
dimensional heat transfer, we derived a steady state fractal
model for the prediction of thermal conductivity of unsatur-
ated porous media by applying thermal-electrical analogy
and statistical self-similarity. We first defined a dimension-
less effective thermal conductivity of unsaturated fractal po-
rous media and investigated the relationship between the di-
mensionless effective thermal conductivity and the
geometrical parameters of the unsaturated fractal porous me-
dia. From this investigation, it is shown that, when the ther-
mal conductivity of solid phase and wet phase are greater
than that of the gas phase �viz., ks /kg�1, kw /kg�1�, the
dimensionless effective thermal conductivity of unsaturated
fractal porous media decreases with decreasing degree of
saturation �Sw� and increasing fractal dimension for pore area
�Df�, fractal dimension for tortuosity �Dt�, and porosity ���;

when the thermal conductivities of solid phase and wet phase
are lower than that of the gas phase �viz., ks /kg�1, kw /kg

�1�, the trends were just opposite. The predictions of the
model are compared with available experimental data and
showed very good agreement except for the cases at low
level of saturation, at which majority of the wetting phase
may be absorbed by the solid phase.
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