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Abstract 

We theoretically study the transfer function of finite impulse response microwave photonic filter (FIR-MPF) system using multi-
wavelength multi-longitudinal-mode fiber laser source when taking into consideration the influence of longitudinal-modes. The 
full response function with an additional term, namely the response from longitudinal-mode taps, is obtained. Furthermore we 
discussed the influence of the mode profile, bandwidth, profile termination by the threshold, and mode spacing of the 
longitudinal-modes to the performance of MPF. The response function of the additional term is fully discussed and the 
contribution is compared with the response of the carrier suppression factor for double sideband (DSB) modulation. The analysis 
provides a clear guideline for designing incoherent FIR-MPF systems. 
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1. Introduction

Microwave photonic filter (MPF) is a powerful technique to process microwave signals directly in the optical
domain [1–10]. Compared with traditional electrical filter which is achieved by radio frequency (RF) circuits after a 
down-conversion operation, MPF offers the advantages of low loss, wide bandwidth, tunability, reconfigurability 
and immunity to electromagnetic interference (EMI) [1–5]. Based on the optical source used, MPFs can be divided 
into two categories: single-source based MPFs and multi-source based MPFs. The single-source MPF (SSMPF) 
requires that the coherent time of the light source is smaller than the minimum delay time of the system to ensure 
stable filter operation. Its performance is limited by phase induced intensity noise and the delay tuning can be 
difficult which limits the reconfigurability of the filter. The multi-source MPF (MSMPF) offers much promises, 
because the signals from different taps can be assumed to be always uncorrelated [6–8]. The optical source for a 
MSMPF could be a laser diode array [9, 10], spectrum slicing from a broadband source [11-13] or a Fabry–Pérot (F-
P) laser [14]. However, laser diode array is expensive when the number of taps is large. Spectrum slicing will 
introduce large amplitude noises. The variation of mode power distribution in the F-P laser will limit its usefulness 
in filter implementation. Thus, finding a suitable optical source for MPF has been a challenge. 
     In our previous work, we demonstrated for the first time to our knowledge the use of multi-wavelength erbium-
doped fiber laser (EDFL) as the optical source of a MPF and achieved the tunability of Q value [15]. Since then, 
many schemes of realizing MPFs based on multi-wavelength fiber laser source have been demonstrated [16–21]. 
But for a conventional multi-wavelength fiber laser, the cavity length is always more than 10 meters, which means 
the longitudinal-mode spacing is less than 20 MHz and plenty of longitudinal-modes exist in a single wavelength. 
However, conventional theories of incoherent finite impulse response (FIR) MPF consider the output of one 
wavelength to be single frequency and have not taken the influence of longitudinal-modes into account. Up till now, 
the influence of longitudinal-modes to the MPF has not discussed in detail. 
     In this paper, we theoretically study the response of FIR-MPF based on multi-wavelength laser source with 
multi-longitudinal-modes in each wavelength tap. The paper is organized as follows. In Section II, we deduce the 
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transfer function of the FIR-MPF with multi-wavelength multi-longitudinal-mode fiber laser source. In Section III, 
we discuss the transfer function and investigate the influence of the longitudinal-mode parameters. The comparison 
between the response of carrier suppression factor for double sideband (DSB) modulation and the response from 
longitudinal-mode taps are performed. Finally, the conclusions are summarized in Section IV. 

2. Theoretical model and transfer function of MPF
Compared with spectrum slicing in which most of the power is filtered out, the multi-wavelength fiber laser

works better in power efficiency for optical source. Moreover, the multi-wavelength fiber laser has a higher Signal 
to Noise Ratio and the wavelength spacing can be tuned [22]. Figure 1 shows the schematic of a dispersive fiber 
delay line based multi-wavelength incoherent FIR-MPF. The multi-wavelength optical carrier is intensity modulated 
by an intensity modulator driven by the input electrical signal. Each wavelength of the multi-wavelength optical 
carrier is referred as a wavelength tap. The modulated signal is injected into a dispersive fiber delay line which 
introduces different time delays for different wavelength taps. The optical signal is converted to electrical signal by 
a photo-detector. The electrical signals carried by different wavelength taps which show different time delays will 
interfere with each other to form the filtered output electrical signal. 
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Fig. 1. Schematic of a multi-source incoherent microwave photonic filter. 
     With a fiber based cavity, the multi-wavelength laser source will have a cavity resonant frequency, which is also 
the longitudinal-mode spacing, that varies from kHz to MHz. Limited by the finesse of the comb filter adopted in 
the laser cavity to set the lasing wavelengths, the lasing channels of the multi-wavelength laser normally have 
linewidth much larger than the longitudinal-mode spacing. All the longitudinal-modes confined in the comb line 
profile and with positive net gain will eventually lase and contribute to the output signal. Thus in the FIR-MPF with 
multi-wavelength fiber laser source, there will be multi-longitudinal-modes in each wavelength taps.  
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Fig. 2. The optical spectrum of a multi-wavelength multi-longitudinal-mode fiber laser. 

     In general, the amplitude of the output signal from such a multi-wavelength fiber laser can be defined as: 
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where 0kM p W Mk pω ω ω ω+ = + ∆ + ∆  and kM pφ +  are the angular frequency and initial phase of the p-th longitudinal-
mode in the k-th wavelength tap, respectively. The angular frequency 0ω  is the first longitudinal-mode in the 
spectrum. The longitudinal-mode spacing Mω∆  is determined by the length of the laser cavity and the angular 



   

frequency spacing Wω∆  is  the wavelength taps as shown in Fig.2. The number of longitudinal-modes M in each 
wavelength tap is defined by .W Mω ω∆ ∆  The number of wavelength taps N in the whole spectrum is determined 
by the multi-wavelength laser output spectrum. The initial phases kM mφ +  are randomly chosen from 0 to 2π for 
different longitudinal-modes which means the lasing modes are not phase locked. For simplicity, the amplitude 
profiles of the longitudinal-modes in each wavelength taps are assumed to be the same, which is determined by the 
distribution of Bp. The amplitude of the modes in k-th wavelength tap can be adjusted as a group by the amplitude 
factor Ak. 
     In general, the phases of the lasing modes from the multi-wavelength laser source are independent which means 

kM pφ +  can be assumed to be randomized [7] and 

 
( )exp 0, .a bi a bφ φ − − = ≠           (2) 

     To investigate the transfer function of the FIR-MPF system, first we consider an RF signal with angular 
frequency Ω  

0( ) cos ,MV t V t= Ω            (3) 
which will be applied to an intensity modulator to modulate the intensity of the multi-wavelength laser signal as 

( )( ) 1 cos ,M MWLI t I m t= + Ω          (4) 
where 1m    and 0m V∝  is the modulation depth and MWLI  is the intensity of the incoherent signal defined in (1) 
as 
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     It should be noted that the intensity modulation in (4) will generate double sidebands (DSB) in the optical 
spectrum. We only consider the DSB here because the single sideband (SSB) modulation can be considered as a 
linear combination of two DSB modulations with π/2 phase shift [7]. 
     After the modulator, the electrical field amplitude of the optical signal will be 
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The modulated signal is injected into a section of dispersive fiber which will introduce time delays between the 
optical signals with different frequencies. While the spectral bandwidth is finite and only the second order 
dispersion coefficient 2β  is considered, the output signal from the dispersive fiber is [7] 
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where L is the length of the dispersive fiber. 2M MLτ β ω∆ = ∆  and 2W W ML Mτ β ω τ∆ = ∆ = ∆  are the relative time 
delays between adjacent longitudinal-modes and adjacent wavelength taps respectively. Then the optical intensity 
detected by the photo detector is given by 
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where the cross terms are all zero because of the incoherency of different lasing modes and the high order terms 
with m2 are neglected. While Ω  is an arbitrary selected frequency, the transfer function of the FIR-MPF is given by 



  

2 1 1
2 22

0 0

( ) ( )( )
( ) ( )

cos ,
2

W M

PD PD

M M

N M
i k i p

k p
k p

V IH
V I

L A e B eτ τβ − −
− Ω ∆ − Ω ∆

= =

Ω Ω
Ω = = Γ

Ω Ω

 Ω
= Γ  

 
∑ ∑

       (9) 

where Γ  is the conversion factor determined by the responsivity of the photodiode and the intensity modulator. The 
transfer function can be separated as 
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     ( )DSBH Ω  is the carrier suppression factor for DSB modulation. ( )WH Ω  is the contribution to the transfer 
function of the wavelength taps. ( )MH Ω  is the response from the longitudinal-modes in each wavelength tap which 
is the focus of this paper. It should be noted that when M = 1, only one longitudinal-mode survives in each 
wavelength tap, the response ( )MH Ω  will be a constant 2

0B  which is 1 when a normalized profile is used to 
determine the distribution of 2

pB . Then the transfer function of the FIR-MPF is given by 
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which agrees with reported results in [7].  
     From (10), the response for wavelength taps ( )WH Ω  and longitudinal-modes ( )MH Ω  are the discrete Fourier 
transform of the intensity profile 2

kA  and 2
pB . 

3. Results and discussion 
     From (10), the multi-longitudinal-modes in each wavelength taps will introduce an extra factor ( )MH Ω  to the 
transfer function when compared with the single longitudinal-mode wavelength taps FIR-MPF. To investigate the 
influence of ( )MH Ω , we assume that all the wavelength taps have identical intensity, e.g. 2 1kA = . To clearly show 
the modulation detail of the response curve, the number of wavelength taps N is set to 7. In experiments, N depends 
on the bandwidth of the output spectrum and the FSR of the comb filter in the cavity used to set the lasing 
wavelength in the multi-wavelength laser source.  The number of lasing wavelengths can vary from less than 10 to 
more than 50 [22]. With 2 1kA = , the response function ( )WH Ω  will be the convolution of a Sinc function and a 
comb function with spacing of 2 /W WFSR π τ= ∆ . The Sinc function is the Fourier transform of the rectangular 
window function to set the wavelength taps number N. If other window functions or profiles are applied to the 
intensity distribution of the wavelength taps, then their Fourier transform will replace the Sinc function. The 
response curve of ( )WH Ω  is shown as the black curve in Fig. 3. The carrier suppression factor for DSB ( )DSBH Ω  
will generate a nonlinear modulation with the increase of Ω. The modulation period will decrease with the increase 
of Ω as shown by the blue curve in Fig. 3.  
     Once the longitudinal-mode number M and the mode spacing Mω∆  are given, the response of the longitudinal-
mode tap term ( )MH Ω  will depend on the distribution profile of 2

pB . As mentioned in Section II, the response from 
the longitudinal-mode tap ( )MH Ω  can be considered as the discrete Fourier transformation (DFT) of a series of 
discrete time domain signals 2

pB  with the sample interval being Mτ∆ : 
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Fig. 3. The transfer function ( )H Ω  (green lines), carrier suppression factor of DSB modulation ( )DSBH Ω (blue lines), the response from 

wavelength taps ( )WH Ω  (black) and the response from longitudinal-mode taps ( )MH Ω  (red lines). 
 
The distribution of 2

pB  can be defined by a profile function 

( )2 .p pB f ω=             (13) 
In experiments, normally the lineshape of the lasing modes can be approximated by a Gaussian profile. Another 
notable feature of the laser lineshape is the termination of the profile by the noise floor. In the laser spectrum, only 
those longitudinal-modes with sufficient gain to compensate the loss can survive, which will confine the number of 
lasing modes in a finite frequency window for every wavelength taps. We used a rectangular window to model the 
termination of the lineshape profile. As the effect of noise is not considered in this paper, we will set the intensities 
of all other modes outside the rectangular windows to zero. Then the lineshape profile function can be modelled as 
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where ωc is the center frequency of the lineshape and R is the width of the rectangular window that confine the 
lasing modes as shown in Fig.2 and 1 2

3 (4 ln 2)e dBσ σ −=  is the width of the Gaussian profile. Use (13) and (14) in 
(12) and consider the discretization of 2

pB , we will get the transfer function as 
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     Fig. 4 shows the response curves of the Sinc function, Gaussian function and their convolution. The convolution 
curve shows similar oscillation structure to the Sinc function but the periods are not identical. The bandwidth of the 
main lobe from the convolution is larger than both of the Sinc and Gaussian functions. The intensities of the side 
lobes are simultaneously suppressed. The response from the longitudinal-mode tap ( )MH Ω and the total response 

( )H Ω  are shown in Fig. 3 with colour red and black, respectively.  It is interesting that both ( )DSBH Ω  and ( )MH Ω  
show zero points which correspond to the deep notches on the response curve in log scale. Engineering the 
combination of such notches will enable us to suppress specific frequency response peaks to significantly increase 
the side mode suppression ratio. If the passing band located in low frequency region is desirable, the parameters of 
the longitudinal-mode structure can be engineered to enlarge the bandwidth of the main lobe of ( )MH Ω  and 
minimize the suppression to the response in the desirable frequency.  
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Fig. 4. The response from longitudinal-mode taps contributed by the Sinc function, Gaussian function and their convolution. 
 
There are two parameters that can be used to characterize the response of ( )MH Ω  as shown in Fig. 3. The 3dB 
bandwidth 3dB( )∆Ω  will indicate the suppression to the response of low frequency region. The frequency where the 
first notch appears on ( )MH Ω  indicates the maximum suppression to the response which can be defined as the 
bandwidth of the main lobe main lobe( )∆Ω . Thus, to engineer the performances of the MPF, we should investigate the 
variation of 3dB∆Ω  and main lobe∆Ω  with the parameters of the longitudinal-mode structure. 
     We should notice that the response from the wavelength taps ( )WH Ω  can also be analyzed with the DFT model. 
Only the details may be different. 
3.1 The influence of lineshape parameters to eσ . 
     In the response function (15), two independent parameters eσ  and R affect the lineshape. Since simultaneous 
variation of eσ  and R will not change the response curve shape but only change the scale, we can introduce a 
normalized window range ,er R σ=  namely the ratio of the window width to the linewidth as an independent 
factor. Then the normalized ( )MH Ω  can be describe by 
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     The comb function will not appear in (16) if the spacing of the Dirac Delta (δ) functions is much larger than the 
bandwidth of the response function. Then we will only focus on the frequency region 0 2 / .M MFSR π τ< Ω = ∆  
We will also introduce a normalized angular frequency 2ex Lσ β= Ω . Then the normalized frequency spectrum 

( )MH Ω  will be 
2( ) ( 2 ) exp( 4) .MH x Sinc r x xπ= ⋅ ⊗ −         (17) 

Then there will be only one parameter r  which will affect the shape of the response curve. From (17) we can obtain 
main lobe 0 2( L)ex σ β∆Ω =  and 3dB 1 2 2( L)ex σ β∆Ω =  by solving the normalized equations 

2

2

( ) ( )
0, 0M Md H x d H x
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= > , and ( ) 1 2MH x = ,      (18) 

respectively.  
3.1.1. The scaling of response curve with linewidth eσ . 
     The normalized response function (17) indicates that, if the value of r is given, the response function has only 
one variable x. If we vary the linewidth eσ  by a factor a as e eaσ σ′ = , the response function shape will remain the 



   

same if we scale the frequency as a′Ω = Ω . Fig. 5 shows the scaling of the response function while eσ  varies from 
1 to 3 with r = 3. The profiles of the response curves are similar but the scale on Ω is compressed.  
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Fig. 5. The response curves ( )MH Ω  with σe = 1, 2, 3. 
 
3.1.2. The influence of the lineshape parameter r. 
     The lineshape parameter r indicates the ratio of the bandwidth of the rectangular window R to the linewidth eσ . 
It is obvious that r will change the shape of ( )MH x  by scaling the Sinc function in (17). Fig. 6 shows the variation 
of the normalized response function when r varies from 1 to 5. When r = 1, which means the width of the 
rectangular window is equal to the linewidth eσ , the contribution from the Sinc function will be dominant in the 
response curve which remains large even in high frequency region.  When r increases, the Sinc function will be 
compressed on the x-axis. When r increases further, the Gaussian function becomes increasingly dominate since 
more and more of the Gaussian function is confined in the rectangular window. Thus the intensity of the side lobes 
will decrease. When r > 7, the main lobe will become insensitive to r and the side lobes are all suppressed.  
 

 
Fig. 6. Variation of the response function ( )MH x  with increasing  r. 
 
     Fig. 7(a) shows the variation of the main lobe bandwidth. The value of 1 2x  which indicates the 3-dB bandwidth 

decreases when r increases from 1 to 5 but remains almost unchanged for r > 5. When r → ∞ , the ( )Sinc r x⋅  
function will become the Dirac Delta function ( )xδ  which will be transparent in convolution. Then the response 



  

function will be just the Gaussian function and 1 2x will approach the value 1 2(4 ln 2)  which is the 3-dB bandwidth 

of the Gaussian function. The bandwidth of the main lobe is determined by the first minimum point 0x  on the 
response curve which shows more complex dynamics as shown by the blue circles in Fig. 7(a). Fig. 7(b) shows the 
response function dynamics for 1.5 6r< <  and 3 7x< < . From Fig. 7(b), it is clear that when r increases, the 
(2n−1)-th and 2n-th notch points, where n is a rational number, will attract each other and eventually merged. The 
(2n−1)-th and 2n-th notch points will then disappear after the merging. The response function will show a valley 
near the merging point and the valley will quickly be flattened when r increases. Once the valley is flattened, the 
bandwidth of the main lobe will show a sudden increase because the first minimum point will abruptly switch to the 
(2n+1)-th notch point.  
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Fig. 7. (a) The variation of 0x  and 1 2x  with the increasing of r. (b) The response ( )MH x  in the region 1.5 6r< <  and 3 7x< < . 

 
3.2 The influence of the mode spacing .Mω∆  
     In the previous section, we have assumed that the spacing of the Dirac Delta functions FSRM is much larger than 
the bandwidth of the response function so we only focus on the frequency region 0 2 /M MFSR π τ< Ω = ∆ . The 
spacing FSRM is determined by the time delay Mτ∆  which is proportional to the mode spacing .Mω∆  To investigate 
the variation of the response function to the mode spacing, we introduce a relative ratio e Mh σ ω= ∆  which 
measures the longitudinal-mode number included in the bandwidth of the Gaussian profile function. Using the 
normalized frequency x, the normalized response function becomes 
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     Fig. 8 shows the variation of the response function for different values of h. Here we use r = 6 as a typical value. 
If 1h  which means the longitudinal-mode spacing is much larger than the bandwidth of the wavelength taps, then 
there will be only one longitudinal-mode in each wavelength tap. The response contribution ˆ ( )MH x  will become a 
constant as shown in Fig. 8(a). This means it will be transparent in the total response function of the FIR-MPF. 
When h increases, modulation will appear on the response function. The modulation depth as well as the modulation 
period 2πh will increase as shown in Fig. 8(b)-(c). When the separation of the peaks at x = 2πnh increases, where 

0n ≥  is a rational number, the overlapping of the peaks will decrease but the profiles of each individual peak 
determined by ( )MH x  will remain unchanged. If h is sufficiently large, the peaks will be well separated and the 
overlapping will only slightly affect each other. The response will be totally suppressed in the regions outside the 
peaks at x = 2πnh.  
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Fig. 8. The response ˆ ( )MH x  when h varies from 0.01 to 10.24. 

 
3.3 Comparison of ( )MH Ω  and ( )DSBH Ω . 
     From (10), three terms contribute to the response of the FIR-MPF. The contribution from the wavelength taps 

( )WH Ω  generates fast modulations on the response curve and the other two terms ( )MH Ω  and ( )DSBH Ω  generate 
envelopes on the response curve. Normally, ( )MH Ω  and ( )DSBH Ω  show similar modulations and comparable 
bandwidth in the main lobes. We compare them in detail to understand the two effect and their differences.  
     If we use the normalized angular frequency x, the carrier suppression factor  ( )DSBH Ω  will be written as 

2

( ) cos ,
2DSB
xH x
χ

 
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 
          (20) 

where 2
2e Lχ σ β= . Fig. 9(a) shows the response curves of ( )DSBH x  with χ = 1 (red solid lines) and 2 (magenta solid 

lines), and ( )MH x  with r = 4 (blue dashed lines). All the side lobes of ( )MH x  drop to less than −20 dB and will be 



  

even lower for larger r.  The side lobes of ( )DSBH x  however remain at the peak value of 0 dB. The response of 
( )DSBH x  is flatter and larger than that of ( )MH x  in the low frequency region but it will drop faster than ( )MH x  

after the flat region. Even the side lobes of both curves of ( )DSBH x  appear earlier than the side lobes of ( )MH x , the 
3 dB loss points of the two curves are located on different sides of the 3 dB loss points of ( )MH x . The curve of 

( )DSBH x  with χ = 2 has smaller main lobe bandwidth which is defined by the minimum point than that of ( )MH x , 
but has larger 3 dB bandwidth than that of ( )MH x . The 3 dB loss point of ( )DSBH x  can be solved directly by 
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Fig. 9. (a) The carrier suppression factor for DSB modulation ( )DSBH x  with χ = 1(red solid line), χ = 2(magenta solid lines), and ( )MH x  with r 

= 4(blue dashed lines). (b) The carrier suppression factor for DSB modulation ( )DSBH x  with χ = 1(red solid lines), 6 ln 2χ π= (black solid 

lines), χ = 2(magenta solid lines), and ( )MH x  with r → ∞  (blue dashed lines). The black dashed horizontal lines indicate the −3 dB level. 

 
As for ( )MH x , the 3 dB loss point can be found analytically when .r → ∞ The solution is x = 2(ln2)1/2. So ( )MH x  
and ( )DSBH x  will have the same 3 dB bandwidth when 6 ln 2χ π= . Fig. 9(b) show the response curve of ( )MH x  
when r → ∞ (blue dashed lines), and the curves of ( )DSBH x  with χ = 1 (red solid lines), 6 ln 2χ π= (black solid 



   

lines) and χ = 2 (magenta solid lines) . It shows that the blue dashed curve cross the black solid curve at the point 
with response −3 dB. 
     In the realization of MPF, SSB can be adopted to eliminate the response penalty induced by the term ( )DSBH x . In 

the MPF system with SSB, the longitudinal-mode tap term ( )MH x  will dominate the penalty on the performance of 
the MPF system. 
3.4 Engineering the FIR-MPF response with ( )MH Ω . 
     By introducing the normalized frequency x and the relative rectangular window width r, we know the 
longitudinal-mode tapping will add extra modulation on the response function of the FIR-MPF. The longitudinal-
mode tapping provides another freedom to manage the response function of the FIR-MPF. For example, by 
engineering the parameters of the FIR-MPF, we can realize desirable filter response function with large side mode 
suppression ratio. As an illustration, we assume that the multi-wavelength laser generates 30 wavelength taps with a 
frequency spacing Wω∆  = 100 GHz and the longitudinal-mode spacing  Mω∆  = 1 MHz. If we want to realize a 
FIR-MPF response function with FSR = 20 GHz, which corresponding to Wτ∆  = 50 ps, the dispersion fiber length 
product 2Lβ should be selected as 500 ps2. Here we focus on the combination of the response from the wavelength 
taps and longitudinal taps. Fig. 10 shows the response curves of the wavelength taps (red lines), longitudinal 
taps(black) and the combined response (blue lines). The 3-dB width of the longitudinal-mode profile 3dBσ  is 11 
GHz and the threshold window ratio r is chosen as 4.  
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Fig. 10. The response curves of engineered wavelength taps (red lines), longitudinal-mode taps (black lines) and the combination of the two (blue 
lines) 
 
     As shown in Fig. 10, the 2-nd side lobe of the response curve is significantly suppressed. If we adopt a phase 
modulation in the system to suppress the peak at zero frequency [21], then we can realize a single bandpass FIR-
MPF. Actually, the carrier suppression factor for DSB modulation ( )DSBH Ω  will also show quasi-periodic 
modulation in the response which can be adopted to engineer the response. But the response ( )DSBH Ω  depends only 
on the fiber parameters including the dispersion and the fiber length which cannot be changed after the fabrication of 
the FIR-MPF system. The longitudinal-mode profile however can be engineered through engineering the laser 
source which is more flexible. 

4. Conclusion 
     We theoretically study the transfer function of multi-wavelength FIR-MPF when considering the effect of laser 
longitudinal-modes. The full response function including the contribution from the longitudinal-mode taps is 
obtained. We discussed the effects of the mode profile, bandwidth, termination by the threshold, and mode spacing 
of the longitudinal-modes to the performance of MPF. We studied the response function in detail and compared the 
contribution of the response of the carrier suppression factor for double sideband modulation.  



  

     The response function of the FIR-MPF with multi-longitudinal-modes is the convolution of three terms: the 
carrier suppression factor ( ),DSBH Ω  the contribution from wavelength taps ( ),WH Ω  and the contribution from the 
longitudinal-modes ( ).MH Ω  The contribution of ( )MH Ω  is determined by the mode profile of each wavelength tap, 
the dispersion of the fiber, and the fiber length. If the fiber used in the cavity is chosen, the mode profile will 
determine ( )MH Ω . The bandwidth of the mode profile will affect the bandwidth of the main lobe. When the 
termination to the gain profile is considered, the final mode profile shape will affect the amplitude of the side lobes 
and the bandwidth of the main lobe. If the mode spacing is very large such that only a few modes survive in a 
wavelength tap, the overlapping of the adjacent orders on the response curve ( )MH Ω  will maintain the amplitude 
on a high level in the whole range. A major difference between the response ( )MH Ω  and ( )DSBH Ω  is that the side 
lobes of ( )MH Ω  will drop to a low amplitude level but the side lobes of ( )DSBH Ω  will not drop. In some parameter 
regime, the bandwidth of ( )MH Ω  will be comparable to ( )DSBH Ω . 

     The analysis provides a clear guideline for designing incoherent FIR-MPF systems. 
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