Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 837963, 10 pages
http://dx.doi.org/10.1155/2014/837963

Research Article

Hindawi

Damage Localization of Cable-Supported Bridges Using Modal
Frequency Data and Probabilistic Neural Network

X.T.Zhou,' Y. Q. Ni,> and F. L. Zhang3

! The Second Jiaojiang Bridge Construction Headquarters, Jiaojiang, Zhejiang 318000, China
? Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom,

Kowloon, Hong Kong

? Research Institute of Structural Engineering and Disaster Reduction, College of Civil Engineering, Tongji University,

Shanghai 200092, China

Correspondence should be addressed to Y. Q. Ni; ceyqni@polyu.edu.hk

Received 4 February 2014; Accepted 12 May 2014; Published 2 June 2014

Academic Editor: Hua-Peng Chen

Copyright © 2014 X. T. Zhou et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents an investigation on using the probabilistic neural network (PNN) for damage localization in the suspension
Tsing Ma Bridge (TMB) and the cable-stayed Ting Kau Bridge (TKB) from simulated noisy modal data. Because the PNN approach
describes measurement data in a Bayesian probabilistic framework, it is promising for structural damage detection in noisy
conditions. For locating damage on the TMB deck, the main span of the TMB is divided into a number of segments, and damage to
the deck members in a segment is classified as one pattern class. The characteristic ensembles (training samples) for each pattern
class are obtained by computing the modal frequency change ratios from a 3D finite element model (FEM) when incurring damage
at different members of the same segment and then corrupting the analytical results with random noise. The testing samples for
damage localization are obtained in a similar way except that damage is generated at locations different from the training samples.
For damage region/type identification of the TKB, a series of pattern classes are defined to depict different scenarios with damage
occurring at different portions/components. Research efforts have been focused on evaluating the influence of measurement noise

level on the identification accuracy.

1. Introduction

With the aim of assessing the performance and condition
of built structures, damage identification has gained more
popularity and has been extensively studied in the past two
decades. Visual inspection is a traditional way. However, due
to some limitations, for example, inefficient and expensive, it
is difficult to be widely used in large-scale structures such as
cable-supported bridges [1]. Damage may be hidden inside a
structure or located in inaccessible zones which make it invis-
ible. Furthermore, some anthropogenic and subjective factors
may also result in a large variability in visual-based condition
assessment [2]. Consequently, a variety of methods based
on field monitoring data have been developed to perform
damage detection. Mehrjoo et al. [3] presented a method to
perform damage detection of joints in truss bridges using

a neural network based on backpropagation. Hua et al. [4]
developed a method by using the measured changes in cable
forces to detect the damage in cable-stayed bridges, which
is made by minimizing the cable force error between the
measurement results and analytical model predictions. Liu
and de Roeck [5] proposed a damage detection method
in composite bridges using a damage indicator based on
the local modal curvature and wavelet transform modulus
maxima. A Bayesian probabilistic approach was proposed by
Yin et al. [6] to perform damage characterization in plate
structures with uncertainty considered. Hilbert-Huang trans-
form (HHT) method has been applied in damage detection
by formulating a damage detection index [7]. Xia et al. [8]
proposed a reliability-based condition assessment method for
in-service bridges with the use of long-term monitoring data
of strain. Recently, Chen and Nagarajaiah [9] formulated a



detection-filter-based decentralized controller for structural
damage identification, where the genetic algorithm was used
to determine the observer gain.

Among the existing methods, neural network (NN)
method, which can simulate the human decision making and
draw conclusions even when presented with complex infor-
mation, has been attracting great attention since it is efficient
to look for the similarities among large bodies of data [10-
13]. As an important form of NN method, the probabilistic
neural network (PNN) can perform the Bayesian decision
analysis with the Parzen windows estimator cast into an
artificial neural network framework. Specht [14] presented a
detailed introduction of PNN. In the original PNN, a very
large network needs to be formed which leads to a high
requirement for the computation and an extensive storage
[15]. To make the method more practical and easy to realize,
several modified PNNs were developed [16-18]. In the past
several years, PNN has been applied in many related fields,
for example, eddying current flaw characterization in tubes
[19], evaluating seismic liquefaction potential [20], freeway
incident detection [21], reliability assessment of oil and gas
pipelines [15], diagnosis of prestressed concrete pile defects
[22], earthquake magnitude prediction [23], and so on. Since
the PNN approach describes measurement data in a Bayesian
probabilistic framework, it shows great promise for structural
damage detection in noisy conditions [24-27].

This paper presents an investigation on using the PNN for
damage localization in cable-supported bridges from noisy
measurement data. Because a cable-supported bridge com-
prises at least thousands of structural members, the conven-
tional damage detection methods based on optimization and
parameter identification is very difficult, if not impossible, to
be implemented for cable-supported bridges [28]. When the
PNN is applied to damage identification, it uses exemplars
from the undamaged and damaged structure to establish
whether a new measurement of unknown origin comes
from the undamaged class or the damaged class. In the
present study, the suspension Tsing Ma Bridge (TMB) and
the cable-stayed Ting Kau Bridge (TKB) in Hong Kong, both
being instrumented with online structural health monitoring
systems [29, 30], are considered as “testbeds” for simulation
studies of damage localization using the PNN technique.
Precise 3D finite element models (FEMs) of the two cable-
supported bridges are first established to perform modal
analysis and damage simulation. In recognizing relatively
high uncertainty in measured modal shapes, only modal
frequencies identified from noisy measurement data are used
to construct the input vector in the PNN. On the TMB, the
PNN is configured to identify the damaged segment on the
main span deck of the bridge through pattern classification.
On the TKB, the PNN is configured to consist of pattern
classes which are defined by assuming damage at the main
stay cables, longitudinal stabilizing cables, transverse stabi-
lizing cables, main girders, cross-girders, and bearings of the
bridge, respectively. Different numbers of modal frequencies
are considered to construct input vector to the PNN, and
the effect of different levels of measurement noise contained
in the modal frequencies on the identification accuracy is
studied.
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2. PNN for Structural Damage Identification

Cast into an artificial neural network, the PNN implements
the Bayesian decision rule by representing the probability
density functions (PDFs) of the known data sets with a
nonparametric estimator, then judges which set of known
data is the most likely source of the unknown datum [14].
Since it directly casts the PDFs of training samples in the
network, the network configuration of PNN is convenient for
dealing with the noisy and series measurement data when
applied for damage identification. A salient feature of PNN
is that it can explicitly accommodate the noise characteristic
as neuroweights in the trained network. The Bayes strategy
is a widely accepted norm for decision rules used to classify
patterns. For a multicategory classification problem with a
number of categories 6,,0,,...,0,,...,6,, the Bayes decision
rule to decide the state of nature 6 € 0, based on a set of
measurements represented by a p-dimensional vector X =
{x, %0500 X e es xp}T can be described as

dX) €0, ifhlf,(X)>hlfi(X), Vk#q, (1)
where d(X) is the decision on test vector X; hq, hy are the a
priori probabilities of the categories 6, and 6, respectively; [,
is the loss associated with misclassifying d(X) ¢ Gq when 0 €
0, and I, is the loss associated with misclassifying d(X) ¢ 0,
when 6 € 6;; f,(X) and f;(X) are the PDFs for categories 6,
and 0y, respectively.

For the damage detection problem, h and [ are usually
assumed to be equal for all categories. Therefore, the key to
using (1) is the ability to estimate PDFs based on training
patterns. Here, the method of Parzen windows is used to
estimate the PDFs in terms of kernel density estimators [31]:

T
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where X is the test vector to be classified; fq(X) is the value of
the PDF of category q at point X; n, is the number of training
vectors in category g; p is the dimensionality of the training
vectors; X; is the ith training vector for category g; o is the
smoothing parameter. Equation (2) implies that any smooth
density function can be expressed simply as the sum of small
multivariate Gaussian distributions. It is known from (2) that
it is not necessary to calculate the full PDF when using Parzen
windows for classification; all that is needed is its value at the
test vector point.

The PNN is designed to cast the Bayesian decision analy-
sis with the Parzen windows estimator into an artificial neural
network configuration. Figure 1 illustrates the architecture of
the PNN configured for damage localization. It consists of
three layers: input (distribution) layer, pattern layer, and sum-
mation layer. An input vector X = {x,x,,...,%;,.. .,xp}T
to be classified is applied to the neurons of the input layer
that just supply the same input values to all the pattern units.
In this study, the input vector is taken as the frequency
change ratios for p vibration modes of the structure before
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FIGURE 1: Architecture of a three-layer PNN.

and after damage. In the pattern layer, each neuron forms a
dot product of the pattern vector X with the weight vector
W; of a given class, z; = X - W;, and then performs a
nonlinear operation on z; before output to the summation
layer. Instead of the sigmoidal activation function commonly
used for backpropagation network, the activation function
used here is g(zj) = exp[(zj - 1)/0?]. Each neuron in the
summation layer receives all pattern layer outputs associated
with a given class. For instance, the output of the summation
layer neuron corresponding to the class g is

faX) = quj = Z €Xp o2 (3)
et =1

It can be readily proven that if the weight vector W,;
is taken as the training vector X ; corresponding to the
class g and both X and X_; are normalized with X - X =
X, - Xg; = L then the resulting output in the summation
layer neuron, (3), is the same form as (2). That is, the kernel
density estimators for PDFs have been cast into the PNN
by setting the weight vectors as the corresponding training
vectors. The smoothing parameter ¢ in (3) represents the
standard deviation of the Gaussian kernels [14]. It has been
shown that [31] with enough training data, the PNN network
is guaranteed to converge to a Bayesian classifier, despite of an
arbitrarily complex relationship between the training vectors
and the classification.

3. Finite Element Modeling and
Modal Analysis

3.1. Tsing Ma Bridge (TMB). 'The TMB as shown in Figure 2 is
a double deck suspension bridge with a main span of 1,377 m
and a total length of 2,160 m. It involves about twenty thou-
sand structural members, including the framed elements,
deck plates, tower beams and columns, main cables, hang-
ers, saddles, bearings, and anchorages. In recognizing that
the conventional modeling procedure for cable-supported
bridges by approximating the bridge deck as analogous con-
tinuous beams or grids is not applicable for accurate damage
simulation studies, a precise 3D FEM of the TMB has been
developed for the present study. This model has the following
features: (i) it is comprised of 17,677 elements and 7,375

TaBLE 1: Comparison between computed and measured modal
frequencies of Tsing Ma Bridge (TMB).

Mode type and Computed Measured Difference
order (Hz) (Hz) (%)
Predominantly
lateral mode
1st 0.0686 0.070 -2.00
2nd 0.1611 0.170 -5.24
3rd 0.2546 0.254 0.24
4th 0.2820 0.301 —6.34
Predominantly
vertical mode
1st 0.1154 0.114 1.23
2nd 0.1420 0.133 6.75
3rd 0.1836 0.187 -1.82
4th 0.2350 0.249 -5.62
Predominantly
torsional mode
1st 0.2584 0.270 -4.30
2nd 0.3014 0.324 -6.97
3rd 0.4942 0.486 1.69
4th 0.5660 0.587 -3.58

nodes, and the spatial configuration of the original structure
remains in the model; (ii) the geometric stiffness of cables
and hangers stemming from the large deflection has been
accurately accounted for in the model through a nonlinear
static iteration analysis; and (iii) the mass and stiffness con-
tribution of individual structural members is independently
described in the model, so the sensitivity of global and local
modal properties to any structural member can be evaluated
conveniently and accurately. Thus, damage to any structural
member can be directly and precisely simulated.

Modal analysis is then carried out with the formulated
FEM. Figure 3 shows the distribution of modal frequencies of
the TMB, which are found to be closely spaced. The predicted
modal frequencies of the first 67 modes are less than 1.0 Hz.
The vibration modes of the TMB include global and local
modes. Most of the global modes are three-dimensional
and have coupled components in three directions, especially
the lateral bending and torsional modes. The fundamental
modal frequency of the bridge is as low as 0.069 Hz which
corresponds to the first lateral bending mode with the mode
shape as a symmetric half-wave in the main span. The
first vertical bending mode, with a frequency of 0.115Hz,
is an antisymmetric integral wave in the main span. Table 1
provides a comparison between the predicted and measured
modal frequencies for the first four (predominantly) lateral,
vertical, and torsional modes, where the measurement data
were obtained by the structural health monitoring system
permanently installed on the bridge [28]. The maximum rel-
ative difference between the predicted and measured modal
frequencies for the 16 modes is 6.97%.
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FIGURE 2: Elevation of Tsing Ma Bridge (TMB).
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FIGURE 3: Distribution of modal frequencies of Tsing Ma Bridge
(TMB).

TaBLE 2: Comparison between computed and measured modal
frequencies of Ting Kau Bridge (TKB).

Mode type and Computed Measured Difference
order (Hz) (Hz) (%)
Predominantly
vertical mode
Ist 0.1632 0.1618 0.86
2nd 0.3002 0.3145 —4.55
3rd 0.3439 0.3527 -2.50
4th 0.3701 0.3727 -0.70
Predominantly
lateral mode
1st 0.1635 — —
2nd 0.2236 0.2264 -1.24
3rd 0.2425 0.2518 -3.69
4th 0.2477 0.2591 -4.40
Predominantly
torsional mode
1st 0.4587 0.4427 3.61
2nd 0.5137 0.4809 6.82
3rd 0.5201 0.5155 0.89
4th 0.5655 0.5345 5.80

3.2. Ting Kau Bridge (TKB). The TKB as shown in Figure 4
is a cable-stayed bridge with two main spans of 448 m and
475 m, respectively, and two side spans of 127 m each. The
TKB has three single-leg towers supporting the deck. The

critical problem of a multispan cable-stayed bridge is the
stabilization of the central tower. Therefore, longitudinal
stabilizing cables, with the length up to 464.6 m, are installed
to stabilize the central tower. To reduce the vibration of the
longitudinal stabilizing cables, damping devices are installed
adjacent to the lower supporting ends of the longitudinal
stabilizing cables. Transverse stabilizing cables are also used
to strengthen each tower in sway direction. The deck com-
prises two carriageways, which are connected by I-shape
cross-girders. Each carriageway grillage is composed of two
longitudinal girders and a series of transverse girders at 4.5 m
intervals. Girders have been topped by the precast concrete
deck panel. There are four main cable planes in the TKB in
supporting the carriageways.

A precise 3D FEM containing 5,581 elements and 2,901
nodes has been formulated for the TKB, in which the eight
longitudinal stabilizing cables are modeled by multielement
cable system, while the remaining 448 cables are modeled
by single-element cable system. Modal analysis is then con-
ducted with this model, from which it is found that the pre-
dicted modal frequencies of the first 125 modes are less than
1.05 Hz. The modal frequencies are closely spaced as shown
in Figure 5. The first mode with a frequency of 0.1632 Hz is
characterized by vertical motion of the deck, longitudinal
bending of the central tower, and in-plane vibration of the
longitudinal stabilizing cables. The vibration modes of the
TKB can be classified into five categories: (i) global vertical
bending modes, (ii) global lateral bending modes, (iii) global
torsional modes, (iv) cable local out-of-plane modes, and
(v) cable local in-plane modes. The first three categories
are global modes, and the latter two are local modes of the
longitudinal stabilizing cables. It is noted that all the global
modes are accompanied with local vibration components of
the cables to some extent. Table 2 provides a comparison
between the predicted and measured modal frequencies for
the first four (predominantly) vertical, lateral, and torsional
modes of the TKB. The maximum relative difference between
the predicted and measured modal frequencies for the 16
modes is 6.82%.

4. Damage Localization of
Tsing Ma Bridge (TMB)

4.1. Generation of Training and Testing Samples. Numerical
simulation study of damage localization using the PNN is first
made on the TMB deck. The bridge main span is composed
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TABLE 3: Training and testing samples for Tsing Ma Bridge (TMB).

Pattern class

1 2 3 4 5 6 7
number
Deck units

1-4
involved

5-9

Training samples

Location 2,4 7,8 10,12
Data length

Testing samples
Location 3 6 1 16 21

Data length 200 200 200 200 200

26 31
200 200

8 9 10 11 12

—

3 14 15 16

10-14 15-19 20-24 25-29 30-34 35-38 39-42 43-47 48-52 53-57 58-62 63-67 68-72 73-76

15,17 20,22 25,27 30,32 36,38 39,41 43,45 48,50 53,55 58,60 63,65 68,70 73,75
50x2 50%x2 50x2 50x2 50x250x250x250x250x250x250x250x250x250x250x2 50x2

37 40
200 200

44
200

49
200

54 59
200 200

64
200

69 74
200 200

Frequency (Hz)

120 180

Mode order

240

FIGURE 5: Distribution of modal frequencies of Ting Kau Bridge
(TKB).

of 76 deck units. To facilitate the damage localization, the
main span deck is divided into 16 segments (each including
4 or 5 deck units) as listed in Table 3. The damage to the
deck members within the same segment is classified as one
pattern class. As a result, there are totally 16 pattern classes;
that is, s = 16. Because the modal frequencies can be
easily and accurately measured, in this study each pattern
class is characterized by the modal frequency change ratios
between the undamaged and damaged states. That is, the
modal frequency change ratios are used as the entries of the
input vector X = {x;,%5,...,%},... ,xP}T. The input vector
is designed to comprise the modal frequency change ratios
for the first 20 modes; that is, p = 20. In order to obtain the

training vectors, for each pattern class two damage scenarios
with the damage at different units of the same segment (as
shown in Table 3) are introduced in the FEM respectively
and the modal properties are evaluated accordingly. For each
scenario, the damage is assumed to occur at deck members on
the same deck cross-section (for the damage incurred at deck
members, the maximum modal frequency change is about
0.71% among the 20 modes concerned). When the analytical
modal frequency change ratios for each damage scenario are
obtained, they are added with a random sequence to form the
training vectors

x;=x; X (1 +¢€R),

(4)

where x; is a component of the noise polluted training vec-
tors; x; is the analytically computed modal frequency change
ratio for a specific pattern class; R is a normally distributed
random variable with zero mean and unity variance; and ¢ is
an index representing the noise level.

50 sets of modal frequency change ratios are randomly
produced for each damage scenario. There are therefore 50 x
2 = 100 sets of training vectors for each pattern class; that
is,n;, = n, = --- = nyg = 100. The number of neurons in
the pattern layeris ) ;_, m, = 100 x 16 = 1600. After entering
the noise-polluted training vectors of all pattern classes to the
input layer, the PNN for damage localization is trained. When
presenting on them a new input vector (test vector) consisting
of measured modal frequency change ratios of unknown
source, the configured PNN outputs in the summation layer
the PDF estimates for each pattern class at the test vector
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TABLE 4: Summary of correct identification for Tsing Ma Bridge (TMB).

Pattern class

B 1 2003 4 5 6 7 8 9 10 W2 B M5 16 e

Testing sample 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

number

Number of correct

identification
£ =100% 23 193 27 49 68 0 6 106 42 65 8 7 31 69 38 31 26.28
£=90% 33 121 25 50 75 36 45 143 8 36 8 36 54 99 134 56 34.81
& =80% 55 161 70 62 91 100 68 156 8 55 55 0 55 84 130 21 38.88
& =70% 31 189 104 62 31 28 49 157 95 63 113 18 92 57 88 60 41.78
£=60% 50 200 8 97 98 75 105 174 126 60 103 110 8 135 79 80 52.19
£=50% 92 183 18 115 8 67 79 192 119 123 133 146 113 128 129 110 60.41
&= 40% 123 188 146 133 107 95 147 200 148 123 160 134 123 166 137 1l1 70.03
£=30% 164 199 181 164 139 143 183 200 169 170 180 186 180 193 125 1il 83.97
& =20% 186 200 199 198 192 179 197 200 196 189 198 198 192 198 142 173 94.91
£ =10% 200 200 200 200 200 200 200 200 200 200 200 200 200 200 181 197 99.31

TaBLE 5: Simulated damage cases for Ting Kau Bridge (TKB).

Damage  Pattern
type class  Description of damage
number  number
1 Damage of longitudinal stabilizing cables
] (Ting Kau main span)
) Damage of longitudinal stabilizing cables
(Tsing Yi main span)
3 Damage of main stay cables (Ting Kau
Region)
Damage of main stay cables (Central
2 4 Reoi
egion)
5 Damage of main stay cables (Tsing Yi
Region)
6 Damage of transverse stabilizing cables
(Ting Kau Region)
” Damage of transverse stabilizing cables
3 (Central Region)
3 Damage of transverse stabilizing cables
(Tsing Yi Region)
9 Damage of bearings (Ting Kau Region)
4 10 Damage of bearings (Central Region)
1 Damage of bearings (Tsing Yi Region)
12 Damage of main girders (Ting Kau Region)
5 13 Damage of main girders (Central Region)
14 Damage of main girders (Tsing Yi Region)
Damage of connecting cross-girders (Ting
15 .
Kau Region)
16 Damage of connecting cross-girders
6 (Central Region)
7 Damage of connecting cross-girders (Tsing

Yi Region)

point, and the damaged deck segment is identified by the
pattern class with the largest PDE

The test vectors for damage localization simulation study
are produced in a similar way to obtaining the training
samples. A total of 16 damage scenarios, with one for each
deck segment (pattern class), are examined in the simulated
testing. As shown in Table 3, the testing damage scenario
for each pattern class is incurred at a deck unit different
from the corresponding training damage scenarios. The
analytical modal frequency change ratios when incurring
damage at each deck segment in turn are calculated and then
polluted with random noise to obtain the “measured” test
vectors. The random noise sequences used to contaminate
the training samples and the testing samples are independent
but with identical level in statistical sense. For each testing
damage scenario, 200 sets of noise-corrupted test vectors are
produced. Therefore, a total of 200 x 16 = 3200 test vectors
are used in the damage localization testing.

4.2. Identification Results Using PNN. The configured PNN
is applied to the test vectors for damage localization of the
TMB. Because the PNN describes the data in a probabilistic
approach, the identification accuracy should be evaluated
in a statistical manner. Table 4 lists the number of correct
identification and the identification accuracy (IA) results for
the total 3200 testing samples by using the PNN. Here the
value of €, which represents the noise level, is taken from 0.1
to 1.0. The IA is defined as the ratio of the total number of
correct identification for all testing damage scenarios to the
total number of the testing samples (3200). It is seen from
Table 4 that when & < 0.2, the PNN can identify the damage
segment with relatively high confidence (IA > 90%).

5. Damage Localization of
Ting Kau Bridge (TKB)

5.1. Generation of Training and Testing Samples. Numerical
simulation study is then carried out on using the PNN to
identify damage type and region in the TKB. As listed in
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TABLE 6: Training and testing samples for Ting Kau Bridge (TKB).

Class number
Training scenarios (number of scenarios)

Description of damaged component

Testing scenarios (number of scenarios)

1 Each of two LSCs in Ting Kau main span (2) Each of the other two LSCs in Ting Kau main span (2)

2 Each of two LSCs in Tsing Yi main span (2) Each of the other two LSCs in Tsing Yi main span (2)

3 Each of three outermost MSCs at the two ends of Ting Each of three interior MSCs in the middle of Ting Kau
Kau Region (3) Region (3)

4 Each of five outermost MSCs at the two ends of Central Each of five interior MSCs in the middle of Central
Region (5) Region (5)

5 Each of four outermost MSCs at the two ends of Tsing Each of four interior MSCs in the middle of Tsing Yi
Yi Region (4) Region (4)

6 Each of two TSCs from Ting Kau Tower (2)
7 Each of two TSCs from Central Tower (2)

8 Each of two TSCs from Tsing Yi Tower (2)
9

One horizontal bearing at Ting Kau Tower (1)

Each of another two TSCs from Ting Kau Tower (2)
Each of another two TSCs from Central Tower (2)
Each of another two TSCs from Tsing Yi Tower (2)

Same as the training sample (1)

10 One horizontal bearing at Central Tower (1) Same as the training sample (1)

1 One horizontal bearing at Tsing Yi Tower (1) Same as the training sample (1)

12 Each of two damaged locations of a main girder at the Each of two damaged locations of another main girder
two ends of Ting Kau Region (2) in the middle of Ting Kau Region (2)

13 Each of two damaged locations of a main girder at the Each of two damaged locations of another main girder
two ends of Central Region (2) in the middle of Central Region (2)

14 Each of two damaged locations of a main girder at the Each of two damaged locations of another main girder
two ends of Tsing Yi Region (2) in the middle of Tsing Yi Region (2)

15 Each of three connecting cross-girders at the two ends Each of another three connecting cross-girders in the
of Ting Kau Region (3) middle of Ting Kau Region (3)

16 Each of three connecting cross-girders at the two ends Each of another three connecting cross-girders in the
of Central Region (3) middle of Central Region (3)

17 Each of three connecting cross-girders at the two ends Each of another three connecting cross-girders in the

of Tsing Yi Region (3)

middle of Tsing Yi Region (3)

Note: LSC-Longitudinal Stabilizing Cable; MSC-Main Stay Cable; TSC-Transverse Stabilizing Cable.

Table 5, six different damage types at a total of 17 locations
are introduced in the TKB. For all the cable damage cases,
the damage is simulated by a 20% reduction in tension force
of a cable; for the damage of main girders, a 75% loss of the
bending stiffness of a main girder at a connecting location is
assumed; for the damage of cross-girders, a 90% reduction
of the cross-sectional area, bending stiffness, and torsional
rigidity of a cross-girder is assumed; for the bearing damage
cases, the damage is simulated by a 90% deterioration in the
stiffness of a bearing. To facilitate the damage localization,
the bridge is roughly divided into three regions as shown in
Figure 4. In the present study, a total of 17 pattern classes are
defined; that is, s = 17. Each pattern class is characterized by
the modal frequency change ratios between the undamaged
and damaged state. That is, the modal frequency change ratios
are used as the entries of the input vector X = {x,,x,,...,x;,
co xp}T. For the purpose of comparison, the input vector is
designed to comprise the first 20, 10, and 5 modal frequencies,
respectively; that is, p = 20, 10, and 5, respectively.

In order to obtain the training vectors, for each pattern
class one or more damage scenarios of the same type and
region but at different locations are introduced, respectively,
in the FEM and the corresponding modal properties are
evaluated. For some damage scenarios (e.g., the cable tension
reduction), the damage will cause the change of bridge static

configuration. In these cases, the updated bridge static config-
uration is first achieved through a nonlinear iteration scheme
and then the modal parameters in the damaged state are com-
puted. When the modal frequency change ratios for a training
scenario are analytically obtained, they are added with ran-
dom noise according to (4) to form the training vectors.

50 sets of modal frequency change ratios are randomly
produced for each damage scenario. After entering the noise-
polluted training vectors of all pattern classes as weights
between the input and pattern layers, the PNN for damage
localization is configured. Table 6 provides a description of
the training and testing damage scenarios for each pattern
class and the number of the training and testing damage sce-
narios considered in each pattern class (given in the parenthe-
ses). If ] training scenarios are used for the kth pattern class,
the number of training vectors for the kth pattern class is
n, = 501 as listed in Table 7. In this study, the total number
of training vectors is 211;1 n. = 2000. Thus the total number
of neurons in the pattern layer of the configured ANN is 2000.

The testing samples for the damage localization simula-
tion study are produced in a similar way to obtaining the
training samples. As shown in Table 6, for each pattern class
the number of the testing damage scenarios is the same as
that of the training damage scenarios. However, the testing
damage scenarios are assumed at different locations from
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TABLE 8: Summary of correct identification for Ting Kau Bridge
(TKB).

Identification accuracy (IA)
Noise level

Using 20 Using 10 Using 5
frequencies frequencies frequencies

£=100% 46.23% 33.35% 27.90%
e=80% 57.08% 45.25% 33.05%
£=60% 62.55% 51.85% 43.40%
& =40% 78.15% 62.90% 51.33%
e=20% 84.33% 71.70% 58.75%
£=10% 86.42% 73.53% 60.83%
e=8% 87.63% 75.08% 63.15%
£=6% 88.90% 76.85% 65.80%
£=4% 89.32% 77.23% 67.58%
e=2% 89.97% 77.35% 67.33%
e=1% 90.00% 80.05% 67.70%

Note: IA (identification accuracy) is defined as the ratio of total number of
correct identification to total number of testing samples (4000).

those of the training damage scenarios within the same region
of the same type. The analytical modal frequency change
ratios for each testing damage scenario are calculated and
then polluted with random noise to obtain the “measured”
testing vectors. The random noise sequences used to contam-
inate the training samples and the testing samples are inde-
pendent but with identical level in statistical sense. For each
testing damage scenario, 100 sets of noise-corrupted testing
vectors are produced. Thus a total of 4000 sets of “measured”
testing vectors for 40 testing damage scenarios are obtained.
When presenting each set of the testing vectors of “unknown”
source to the configured PNN, the PNN outputs in the
summation layer the PDF estimates for each pattern class at
the testing vector point, and the damage type and region are
identified from the pattern class with the largest PDE.

5.2. Identification Results Using PNN. By entering the 4000
sets of “measured” testing vectors into the configured PNN
in turn, the damage type and region corresponding to each
set of the testing vectors are identified. Table 8 summarizes
the damage identification results under different noise levels
from € = 0.01 to &€ = 1.00. The identification accuracy (IA) is
defined as the ratio of the total number of correct identifica-
tion for all testing damage scenarios to the total number of the
testing samples (4000). As expected, the identification accu-
racy is reduced with the increase of the noise level corrupted
in the training and test samples. The identification accuracy
is significantly increased when more modal frequencies are
included in the input vector. In the case of taking the first 20
modal frequencies as input vector to the PNN, the IA value is
86.42% when ¢ = 0.10, 87.63% when & = 0.08, 88.90% when
e = 0.06, 89.32% when ¢ = 0.04, 89.97% when ¢ = 0.02, and
90.00% when & = 0.01. Therefore, when the first 20 modal
frequencies are used and the noise level ¢ is less than 0.1, the
damage type and region can be identified with high confi-
dence (the probability of identifiability is greater than 85%).

6. Conclusions

In this study, the probabilistic neural network (PNN) which
uses only the modal frequency information has been for-
mulated for damage localization in the suspension Tsing Ma
Bridge (TMB) and the cable-stayed Ting Kau Bridge (TKB).
A discrete number of pattern classes to be classified were
formed to represent possible damage types/regions in the
bridges, and the noise-corrupted modal frequency data for
each pattern class were used as training samples to establish
a three-layer PNN for damage localization. The numerical
simulation results for the TMB show that the damage at deck
members can be located with high confidence (the probability
of identifiability is greater than 90%) when the noise level ¢ is
less than 0.2. It is interesting to note that the maximum modal
frequency change is about 0.71% among the first 20 modes for
the damage at deck members which was assumed to generate
the training and testing samples in the simulation study. It is
found from the simulation study of the TKB that in the noise
level ¢ < 0.1, the damage type and region can be identified
with high confidence (the probability of identifiability is
greater than 85%) when 20 modal frequencies are used. The
results obtained are promising in recognizing the fact that the
proposed method uses only modal frequency information of
the bridge rather than using the mode shape information as
well.
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