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ABSTRACT 

The partial distortion search is a particular attractive fast 

block-matching algorithm, because it introduces no 

prediction error as compared with the full-search 

algorithm. It reduces the number of necessary matching 

evaluations for every searching point to save computation. 

In the literature, many researches have tried to improve 

block-matching algorithms by making use of an 

assumption that pixels with larger gradient magnitudes 

have larger matching errors on average. Based on a simple 

analysis, we have found that on average, pixel matching 

errors with similar magnitudes tend to appear in clusters 

for natural video sequences. By using this clustering 

characteristic, we propose an adaptive partial distortion 

search algorithm which significantly improves the 

computational efficiency of the original PDS. This 

approach is much better than other pixel gradient based 

adaptive PDS algorithms. In addition, our proposed 

algorithm is suitable for motion estimation of both opaque 

and boundary macroblocks of an arbitrary shaped object in 

MPEG-4 coding. 

1. INTRODUCTION 

Block-based motion compensation technique has been 

widely used to reduce the redundancy between successive 

frames in many modern video coding standards [1,2]. By 

the block-based motion compensation technique, the 

values of pixels in a macroblock (MB) in the current frame 

are predicted from another MB of pixels in a reference 

frame. The displacement between these two MBs is 

defined as a motion vector (u,v). The motion vector is 

obtained by minimizing a measure of matching distortion 

between these two MBs. One of the most frequently used 

criteria to measure a matching distortion is the sum of 

absolute difference (SAD). 

The traditional full search algorithm (FSA) can give an 

optimal solution by exhaustively searching all possible 

locations within the search window. However, this 

algorithm suffers from heavy computational load. 

The partial distortion search (PDS) [3,4] is a fast 

algorithm which has identical quality as that of the FSA. 

The PDS [3] reduces the computation complexity by 

terminating the SAD calculation early when it finds that a 

partial SAD is already greater than the minimum SAD 

encountered so far in the searching. 

Let us define a generalized form of the partial SAD of 

a MB at position (x,y) as shown below, 
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where { }256,...,16,...,0),( ijnlk nn +×=   is an index set of 

all pixels in a MB and p specifies a stopping position of a 

partial SAD. The index set determines the coordinates and 

orders of the pixel matching errors accumulated to the 

SADp. In this paper, we propose an adaptive PDS 

algorithm by using a characteristic of clustered pixel 

matching errors. It can be shown that pixel matching errors 

with similar magnitude tend to appear in a cluster in 

natural video sequences. An adaptive index set is formed 

based on this characteristic, thus a pixel with greater 

matching error is accumulated to the SADp earlier than 

other pixels. As a result, the SAD calculation can be 

terminated earlier. 

Experimental results show that our proposed algorithm 

has a significant speed-up when compared to the 

conventional PDS, and other PDS algorithms which make 

use of pixel gradient to predict pixel matching errors, such 

as the PDS algorithm using representative pixels and 

adaptive matching scan (AMS-PDS) [5].  

2. THE CHARACTERISTIC OF CLUSTERED 

PIXEL MATCHING ERROR 

In order to accumulate a pixel with greater matching 

error to the SADp earlier than other pixels according to the 

order indicated by an index set, it is necessary for us to 

investigate possible spatial distributions of pixel matching 

errors in a MB. We have found that errors with similar 
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magnitude tend to appear together in clusters. It is because 

natural images are dominated by low frequency 

components. The matching errors of low frequency 

regions between a target MB and a candidate MB have 

similar magnitudes and are partitioned by edge pixels of 

these two MBs. This phenomenon is demonstrated in Fig. 

1. Fig. 1(a) depicts the matching of a one dimensional (1-

D) target MB (thick continuous line) within a 1-D search 

window (thin dotted line). The corresponding pixel 

matching errors appear in a cluster form as shown in Fig. 

1(b).

Edges are the most prominent feature in image 

processing. They are also frequently used to predict pixel 

matching errors in motion estimation. The prediction is 

accurate especially near a minimum distortion position. 

Fig. 2 shows that locations with large pixel matching 

errors (the hatched region) can be detected by using pixel 

gradients when the target MB is located near a good 

candidate MB. However, the result is not good enough in 

general. In Fig. 1(b), only the pixel matching errors in the 

hatched region are found, while matching errors outside 

the hatched region are underestimated. 

According to the above analysis, we can forecast that 

clustered pixel matching error characteristic can be used to 

achieve greater advantage in an adaptive partial distortion 

search. 

3. PROPOSED ALGORITHM 

3.1 Determination of an adaptive index set 

For a target MB, the positions of its pixels are 

represented by an index set, ( ){ }1,...,0, −== NnlkS nn
,

where N is the number of pixels in a MB. For a single 

pixel at sn = (kn,ln), sn ∈ S, its matching error is e(sn) = 

It(sn) - R(sn), where R(sn) is a random variable which 

represents the pixel value at sn of a candidate MB. For the 

sake of simplicity, in the following discussion, sn is 

replaced by n, and both MB location (x,y) and motion 

vector (u,v) are dropped. To improve the saving in 

computation of a PDS, pixel matching errors with an ideal 

index set must have the following relation, 
222 )1(...)(...)0( −≥≥≥≥ Nenee (2)

Let us define p(n) as the predicted pixel matching 

errors,  p(n) = It(n) – m, where m is a reference value to be 

used to obtain the prediction. One possible solution of m is 

to minimize the expected value of the sum of squares of 

the difference between e(n)
2
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By substituting R(n) = It(n) – e(n) into eqn. (3) and 

assuming that natural images are dominated by low 

frequency components, we finally can obtain three 

approximate real roots m of a cubic equation, 

tIm ≈ or 2eIm t ±≈ (4)

It must be note that these solutions are valid only if an 

image consists mainly low frequencies and the standard 

deviation of It(n) is small enough. However, a shifting of 

m would not affect our purpose dramatically in general. 

The first approximated root is the mean of pixel values 

in the target MB. The meaning of the other roots can be 

interpreted as the following. Intuitively, m is a function of 

pixel values in a candidate MB, i.e. ( )( )m m R n= . The 

other roots, 2

tI e±  can also be obtained by the following 

consideration. We observed that e(n) often consists of two 

components, em(n) and ew(n). ew(n) denotes zero-mean 

white noise with negligible magnitudes. em(n) represents 

errors due to irregular motions, light variation, etc. They 

tend to have a same sign in a block. Hence, we assume that 

2
eIeIR tt ±≈±≈ . It indicates an approximation of the 

mean of pixel values in a candidate MB. 

3.2 Clustered Pixel Matching Errors for Adaptive 

Partial Distortion Search (CPME-PDS) 

The earlier that the global minimum is met in a search 

can improve better the computational efficiency of a PDS. 

To achieve this purpose, we use two strategies as listed 

below. 

1. The outward spiral scanning can be used to exploit the 

center-biased motion vector distribution characteristics 

of the real world video sequence [6]. 

2. The correlation in the motion field is exploited by 

using a median predictor described in [7]. 

According to the above considerations and our 

analytical results, we suggest using the mean of pixel 

values in the candidate MB of the initial searching point to 

compute the reference value, m, because we can assume 

that 
1( , ) ( , )t med med tI i u j v I i j− + + ≈ , where (umed, vmed) = the 

median predictor. The CPME-PDS approach can be 

summarized as follows: 

Note that all division operations in the following 

description are integer division with truncation toward 

zero for the sake of lower complexity. 

Step 1) Determine the median predictor, (umed, vmed),

according to the description in [7] 

Step 2) Calculate the reference value, m, with the median 

predictor, (umed, vmed).
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Step 3) Initialize an index set, { }1,...,0),( −=′′=′ NnlkS nn
.
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Step 4) Calculate the expected absolute pixel matching 

error, | pexp(n)|=|It(k’n,l’n) - m|, of each pixel in the 

target MB. 

Step 5) Rearrange the order of set S ′  to obtain an adaptive 

index set S by sorting the expected absolute pixel 

matching error, | pexp(n)|, in descending order, i.e.  

|pexp(0)| ≥ ... ≥  | pexp(n)| ≥ ... ≥ | pexp(N-1)| with 

{ }1,...,0),( −== NnlkS nn

Step 6) Apply the adaptive index set, S, to calculate the 

partial SAD in eqn. (1) during the searching in an 

outward spiral scanning. 

It is straightforward to modify the above procedure for 

boundary MBs of an arbitrary shaped video object in 

MPEG-4 [7]. First, the reference value, m, is calculated 

after that the repetitive padding is applied to a reference 

video object plane (VOP). It is only necessary to compute 

the expected pixel matching error, pexp(n), for opaque 

pixels in the case of a boundary MB. Note that, for the 

index set, N is equal to number of opaque pixels in the 

boundary MB. Second, the partial SAD in eqn. (1) is 

rewritten as, 
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3.3 Analysis of the Computational Overhead 

From the above description, it is shown that the 

additional computation introduced by the CPME-PDS is 

the process to construct the adaptive index set for each 

target MB in the current frame or VOP. These overheads 

include the calculations of m, | pexp(n)|, and the check to 

ensure that only opaque pixels are involved in a boundary 

MB. To obtain the final adaptive index set, S, a sorting 

process is required in step 5 of Section 3.2. The counting 

sort [8] is used in our implementation. Note that all 

multiplications and divisions required can be implemented 

with simple bitwise shift operations. In our analysis, 

however, each multiplication or division is counted and 

assumed to be equivalent to 8 additions for the sake of 

simplicity. 

4. EXPERIMENTS 

In order to compare the efficiency between the CPME-

PDS and pixel gradient based PDS, we have to modify the 

adaptive PDS to become a pixel gradient based algorithm 

(PG-PDS).  

4.1 Pixel Gradients based Adaptive PDS (PG-PDS) 

In the PG-PDS, an adaptive index set, Spg, is obtained 

based on the magnitude of individual pixel gradient. For 

each pixel in an opaque MB, let us express the magnitudes 

of x-directional gradients, Gx, and y-directional gradients, 

Gy, as, 

( , ) ( , ) ( 1, )x t tG x y I x y I x y= − + where x = 0,…,14 ; y = 0,…,15 

( , ) ( , ) ( , 1)y t tG x y I x y I x y= − + where y = 0,…,14 ; x = 0,…,15
(8)

These magnitudes are sorted in descending order with a 

counting sort. The Spg is then established by extracting the 

pixel’s position according to the order of the sorted 

gradient magnitudes. Obviously, each pixel must appear 

only once in Spg. It is necessary to check this to prevent 

double extraction of a pixel, because each pixel involves 

two directional gradient magnitudes. The adaptive index 

set, Spg, is applied for the calculation of the SADp in eqn. 

(1).

There are some differences between the 

implementation of a boundary MB and an opaque MB. In 

calculating eqn. (8), if one of the involved pixels is a 

transparent pixel, the magnitude of the corresponding 

gradient is regarded as zero. 

4.2 Experimental Results 

To evaluate the performance of the CPME-PDS, we 

have implemented five algorithms: the FSA, the 

conventional PDS, the AMS-PDS [5], the PG-PDS and the 

CPME-PDS. The outward spiral scanning was applied to 

all five algorithms. In addition, a median predictor was 

used as an initial searching centre to exploit the correlation 

in the motion field for all tested algorithms. Because 

AMS-PDS is an algorithm developed only suitable for 

block based motion estimation, experiments which 

involved arbitrary shaped video objects did not include 

AMS-PDS. The computational efficiencies of the 

algorithms were assessed in terms of the number of 

operations required for the searching. 

In our implementation, quick sort was used as the 

sorting approach for AMS-PDS. Note that the selection of 

a sorting algorithm seriously affects the performance of an 

adaptive PDS. In order to prevent under-evaluation of 

AMS-PDS, the numbers of operations in its sorting 

process were excluded in all of our experiments. 

Table 1 demonstrates a comparison between the 

computational efficiencies of the tested algorithms. The 

computational efficiencies were compared in terms of the 

average number of operations per MB including their 

overheads (except AMS-PDS) and the speed-up ratios. 

The results show that our proposed algorithm, CPME-

PDS, can successfully improve the computational 

efficiency of the conventional PDS and is better than other 

adaptive PDSs. In terms of speed-up ratios, it can achieve 

a speed-up ranging between 3 and 9 times of the FSA. 

5. CONCLUSIONS 

We have proposed an adaptive partial distortion search 

algorithm, the clustered pixel matching error for adaptive 
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partial distortion search (CPME-PDS), for motion vector 

estimation. The algorithm makes use of a phenomenon that 

pixel matching errors in a MB with similar magnitudes 

tend to appear together and in cluster form, in natural 

video sequences. According to this phenomenon, we have 

found that means of pixel values in a candidate MB be a 

good reference value to predict the magnitude of each 

pixel matching error in a target MB. Hence, the mean of 

pixel values in the initial candidate MB at the centre of a 

search window have been used to calculate a reference 

value and to construct an adaptive index set. As a result, 

the pixel matching error with larger magnitude can be 

accumulated to the SADp sooner than others and the SAD 

calculation can be terminated at an early stage. Our 

experimental results show that the computational 

efficiency of CPME-PDS outperforms other tested 

algorithms, including PG-PDS which were introduced for 

comparison in this paper. Our experimental results show 

that CPME-PDS can have a speed-up of 3 to 9 as 

compared with FSA, depending upon the contents of the 

coded video sequences. The major advantages of CPME-

PDS are its high efficiency and conceptual simplicity. 
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Table 1. Average numbers of operations per MB of the tested algorithms 

in a search window with a search range equal to 15 (i.e. 15 , 15u v− ≤ ≤ ).  

FSA

Speed 

up

ratio PDS 

Speed 

up

ratio 

AMS-

PDS

Speed 

up

ratio PG-PDS 

Speed 

up

ratio

CPME-

PDS

Speed 

up

ratio

Video Sequences 

Football 738048 1.00 299882 2.46 279341 2.64 263057 2.81 232779 3.17 

Tabletennis 738048 1.00 219509 3.36 194414 3.80 170269 4.33 149103 4.95 

Stefan 738048 1.00 241830 3.05 206729 3.57 191230 3.86 169652 4.35 

Salesman 738048 1.00 160614 4.60 140468 5.25 126625 5.83 111693 6.61 

Foreman 738048 1.00 153344 4.81 123309 5.99 110916 6.65 106310 6.94 

Grand mother 738048 1.00 157032 4.70 129139 5.72 126619 5.83 121658 6.07 

Suzie 738048 1.00 170286 4.33 137157 5.38 135321 5.45 121301 6.08 

Trevor 738048 1.00 110638 6.67 93004 7.94 89113 8.28 81240 9.08 

Arbitrary Shaped Video Objects 

News 689274 1.00 188931 3.65   147191 4.68 138052 4.99 

Children 653006 1.00 188931 3.46   116043 5.63 99908 6.54 

Bream 698661 1.00 219654 3.18   155870 4.48 139461 5.01 

Goldfish 663847 1.00 226663 2.93   151615 4.38 140129 4.74 
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Fig.1. (a) Matching of a 1-D target MB within a 1-D search window. (b) 

Corresponding pixel matching error of the target MB at the current 

position.
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Fig. 2. (a) Matching of a 1-D target MB within a 1-D search window 

near a minimum distortion location. (b) Corresponding pixel matching 

error of the target MB at the current position.
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