
  

  

Abstract—The accurate segmentation of PET-only brain 
images is challenging because of the low spatial resolution and 
high noise level in PET data. PET/CT has now replaced PET 
and offers the opportunity to improve segmentation through the 
high resolution, lower noise CT data. This paper pioneers the 
research of PET-CT brain image segmentation, which takes 
advantage of the full information available from the combined 
scan. In the proposed approach, the contrast stretched CT 
image is utilized to delineate cerebrospinal fluid (CSF) from 
other brain tissues. Gray matter is separated from white matter 
by applying the fuzzy clustering of spatial patterns (FCSP) 
algorithm to the joint PET-CT image. We compared our 
approach to a widely used PET segmentation method in the 
SPM toolbox for simulation and patient data. Our results prove 
that the incorporation of anatomical information in CT images 
substantially improves the accuracy of brain structure 
delineation. 

I. INTRODUCTION 
OSITRON emission tomography (PET) is able to detect 
subtle functional changes at the early stages of a disease 

process, which gives PET a distinct advantage over 
anatomical imaging techniques in the evaluation of 
neurodegenerative disorders [1]. However, the delineation of 
these subtle early changes can be operator-dependent. 
Computer-aided diagnosis, where segmentation is an 
essential step, offers the potential to reduce such bias.  

A variety of segmentation approaches have been proposed 
[2], [3]. The SPM-based segmentation [4] is one of the more 
popular methods. This method, which we refer to as 
SPM-Seg in this paper, is based on cluster analysis with a 
modified mixture model and prior information about the 
likelihood of each voxel belonging to each of three major 
structures. However, due to the relatively low spatial 
resolution and intrinsic high noise level in PET data when 
compared to anatomical imaging such as CT and MR, it is 
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challenging to accurately segment brain structures from PET 
data alone. 

PET-CT scanning has essentially replaced PET in clinical 
practice. PET-CT scanners combine a PET scanner and a fast 
helical CT scanner in the one instrument, thus complementing 
functional imaging (PET) with co-registered anatomical 
imaging (CT).  It would seem logical that the high resolution, 
lower noise CT structural information should aid 
segmentation of brain structures in PET-CT scans. However, 
until now, the segmentation of PET-CT brain images has not 
been addressed in the literature. Therefore, this research aims 
to investigate if the incorporation of the anatomical 
information in CT could really improve the performance of 
brain image segmentation. In this paper, we propose an 
approach to delineate three major brain structures - gray 
matter, white matter, and cerebrospinal fluid (CSF). We first 
applied contrast stretching to the CT image and then adopted 
the Otsu algorithm [6] and a region growing method [5] to 
differentiate CSF from other brain structures. We finally used 
the fuzzy clustering of spatial pattern (FCSP) algorithm [7] to 
further separate gray from white matter. We also compared 
our approach, which we refer to as the FCSP-Seg method, to 
the SPM-Seg algorithm on simulation and patient data.  

II. METHODS 

A. Simulation and Patient PET/CT Data 
The simulation was based on the Zubal anatomical 

phantom [10]. The PET sinogram data were simulated for an 
ECAT Exact HR+ scanner by the PET-SORTEO simulator 
[11] assuming FDG activity of 23.0 MBq in gray matter and 
8.5 MBq in white matter.  A 3D filtered back projection 
method was applied to derive reconstructed PET data with 
corrections of random, dead-time, attenuation and scatter. 

The CT data was simulated based on the following CT 
image model [12] 

( ) ( ) ( ) Φ+Θ+∗⋅= zyxPSFzyxOKzyxCT ,,,,,,       (1) 
where K  is an energy-dependent contrast factor, ( )zyxO ,,  
represents the 3D attenuation distribution of the scanned 
object, ( )zyxPSF ,,  is the point spread function (SPF) of the 
imaging system, Θ  is noise, and Φ  is other artifacts.  

It was assumed that the attenuation value was uniform 
within the same tissue, the effect of PSF could be 
approximated by a Gaussian filter with the full width at half 
maximum (FWHM) of [4.4, 4.4, 4.2] mm for three 
dimensions, and the noise in each region followed a Gaussian 
distribution without contribution of other artifacts. The CT 
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simulation consists of the following three steps: (1) 
estimating the attenuation values of background, bones, gray 
matter, white matter, and CSF from clinical CT data; (2) 
convolving the attenuation volume with the 3D Gaussian 
filter; and (3) degrading each region with a zero-mean 
Gaussian noise, whose standard deviation is also derived 
from clinical CT data. The simulated CT data was generated 
in a matrix of 128256256 ××  with the voxel size of 

4.11.11.1 ××  mm. The simulated PET data was then 
interpolated to the same voxel size as the CT data. 

The clinical data were selected from the archives of the 
department of PET and Nuclear Medicine at Royal Prince 
Alfred Hospital and were acquired on a Biograph LSO Duo 
PET-CT scanner. The clinical MRI scans of the same patients 
were performed at Westmead Hospital.  

B. Derivation of Image Priors 
The spatial normalization function in the SPM toolbox [8] 

was used to estimate the 3D deformable transformation, 
which mapped the standard PET template to the patient PET 
data. The derived transformation was then applied to the 
standard image priors of brain mask, gray matter, white 
matter and CSF. The resultant image priors, which had the 
same dimension, location and 3D orientation as the patient 
data, were used to facilitate the segmentation. 

C. Contrast Stretching of CT Images 
Brain tissue occupies only a fairly small range (mostly 

within [ ]160,10−  Hounsfield Units (HU)) of the dynamic 
range of several thousand HU of CT images. To improve the 
contrast of brain tissue, the following intensity transformation 
to the brain region defined by the prior of brain mask was 
applied.  
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where ( )yxCT ,  is the HU value at ( )yx, , ( )yxCTT ,  is the 
intensity value of the transformed image, and the 
function ( )⋅eqH  maps the intensity range [ ]160,10−  to 
{ }254,,2,1 L  by using the histogram equalization technique 
[5]. 

After contrast stretching, those pixels whose intensity 
values fall in the set { }254,,2,1 L  were regarded as belonging 
to the brain and were then further processed. 

D. Segmentation of CSF 
CSF has a relatively high contrast from brain tissue in CT 

images, but in PET images it is difficult to distinguish CSF 
from white matter because of the partial volume effect (PVE) 
and because both tissues can have low tracer uptake on PET. 
Hence the delineation of CSF relied solely on the CT images.  

To highlight the CSF region and suppress the noise 
amplified during the contrast stretching, the CT image was 
fused with the image prior of CSF as follows 

( ) ( )( ) ( )[ ] ( )ωω +⋅+= 1,,, yxPyxCTInvyxCT CSFTHE      (3) 

where ( )⋅Inv  represents the operator of inversing intensity, 
the prior ( ) [ ]255,0, ∈yxPCSF  is proportional to the 
probability of the pixel belongs to CSF, and the weight ω  is 
set to be 5.0  in our experiments. 

The fused image was thresholded by the Otsu algorithm [6] 
to produce a rough segmentation of CSF. However, due to the 
inaccuracy of the prior, the central part in the fused image is 
usually over emphasized and thus may result in larger CSF 
regions. To this end, those CSF regions in the central part 
were eroded by a disk with a radius of 3 pixels. Next, all 
obtained CSF regions were used as “seeds” and a region 
growing technique was adopted to achieve a refined 
segmentation. Finally, a 33× median filter was employed to 
remove the isolated small regions caused by noise. 

E. Separation of gray matter from white matter 
The region of gray matter and white matter has relatively 

low contrast and high noise level in both PET and CT images. 
Neither image alone can allow accurate separation of gray 
from white matter. Therefore, we applied the joint PET-CT 
information to the FCSP algorithm, which performs well 
when applied to data with low SNR [7]. 

In the FCSP algorithm, the pixel located at ( )yxs ,=  was 
characterized by a 2D spatial pattern ( ) ( )( )sCTsPETp Ts ,= , 
which has a PET component and a CT component. The values 
of both components were normalized to the range [ ]255,0 . 
The optimal segmentation was achieved by clustering all 
spatial patterns through minimizing the following objective 
function. 

( ) ∑∑
∈ =

=
Ss c

cs
m
csm duVUJ

2

1

2,                             (4) 

where S  represents the region of gray matter and white 
matter, m  is a fuzzy factor, csu  is the membership of the 
pattern sp  to the cth cluster cV , and csd  is the dissimilarity 
between the pattern sp  and the prototype of cV , which can 
be defined as 

S
cs

F
cscs ddd ⋅+= α                                (5) 

where F
csd  is the Euclidean distance between sp  and the 

center of cV , S
csd  is the spatial dissimilarity between sp  and 

cV , and the weight α  balances the contribution of two 

dissimilarity measures. The spatial dissimilarity S
csd  

characterizes how much of sp ’s neighbourhood is occupied 
by other clusters and thus can be estimated as 

{ } { }
{ } { }ctct

ctctF
cs VpVp

VpVp
d

∈+∈
∈−∈

=
−

−

1

1 , st η∈            (6) 

where sη  denotes the neighborhood of s  and A  is the 
cardinality of set A . 

The objective function can be minimized by performing 
the Picard iteration [9]. During initialization, half of the labels 
were randomly set and the others were set according to the 
priors of gray matter and white matter. To ensure the 
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optimization was dominated by intensity values in the early 
stage and by spatial constrains in the later stage, the following 
variable weight of dissimilarity was adopted 

( ) ( )n
rn ααα ⋅= 0                                 (7) 

where n  is the iteration number, 0α  and rα  are empirically 
initialized as 100 and 0.93.  

III. RESULTS 
In this section, we compared the performance of the 

proposed FCSP-Seg approach with the SPM-Seg algorithm 
on both computer simulation and patient data. 

The segmentation results obtained by applying both 
approaches to the 77th slice of PET-CT simulation data are 

given in Fig. 1. The segmentation performance was 
quantitatively assessed with the overlapping area measures of 
Dice similarity coefficient (DSC) [13] 

TrueEst

TrueEst

AA
AA

DSC
+
∩

= 2                           (8) 

where EstA  and TrueA  are the estimated area and true area, 
respectively. The DSC ranges from 0  to 1 . 1=DSC  
represents the optimal segmentation, where the estimated area 
is identical to the atlas in size, shape and location. The DSC 
values calculated on segmentation results of the 76th-79th 
slices are compared in Table I. It is obvious that the 
FCSP-Seg approach improves the segmentation performance 
significantly compared to the SPM-Seg algorithm. 

                (a)                                            (b)                                              (c)                                             (d)                                             (e) 
Fig. 1. Segmentation results on simulation data. (a) Simulated PET image, (b) Simulated CT image (after contrast stretching), (c) Result of SPM-Seg 
algorithm, (d) Result of the proposed FCSP-Seg algorithm, (e) Atlas 

                       (a)                                            (b)                                              (c)                                             (d)                                             (e) 
Fig. 2. Segmentation results on patient data. (a) Patient PET images, (b) Patient CT images (after contrast stretching), (c) Results of SPM-Seg algorithm, 
(d) Results of the proposed FCSP-Seg algorithm, (e) Reference images obtained by segmenting the MR images 
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Next, the methods were evaluated on patient data. Fig. 2 
compares the effectiveness of the SPM-Seg algorithm and the 
FCSP-Seg on two PET-CT slices taken from the clinical 
scans of two patients. Due to the lack of the correct diagnosis, 
the VBM5 toolbox [14] was applied to the co-registered MR 
image of the same patient and the segmentation result was 
used as a reference image. Based on the MR reference 
images, though the results of both methods are not satisfying, 
the proposed FCSP-Seg algorithm performs better than the 
SPM-Seg algorithm. A possible cause of the obvious 
difference between the PET-CT images and the MR images is 
that there is a considerable time interval between those two 
scans. 

IV. CONCLUSION 
This paper pioneers the research of automated 

segmentation of brain structures from PET-CT images. The 
proposed segmentation algorithm consists of three steps:- 
contrast stretching of the CT image, delineating CSF from 
other structures in the CT image, and differentiating gray 
from white matter by applying the FCSP algorithm to the 
joint PET-CT images. The comparative experiments on 
simulation and patient data suggest that our method is 
superior to the SPM-Seg method and provides more accurate 
segmentation results. This result proves that the incorporation 
of the anatomical information in CT images does 
substantially improve the performance of brain image 
segmentation. In the near future, we will extend this novel 
approach to the segmentation of 3D volume data with better 
accuracy and efficiency. We will also apply this approach to 
PVE correction and classification of neurological disorders. 
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TABLE I 
PERFORMANCE COMPARISON ON SIMULATION DATA 

Slice Method Gray Matter White Matter CSF 
SPM-Seg 0.603 0.600 0.300 76th FCSP-Seg 0.792 0.835 0.759 
SPM-Seg 0.597 0.658 0.281 77th FCSP-Seg 0.789 0.868 0.722 
SPM-Seg 0.588 0.668 0.229 78th FCSP-Seg 0.776 0.861 0.630 
SPM-Seg 0.596 0.691 0.230 79th FCSP-Seg 0.795 0.869 0.619 
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