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ABSTRACT - The recently developed generalized 
linear least squares (GLLS) algorithm has been 
found v e v  useful in non-uniformly sampled 
biomedical signal processing and parameter 
estimation. In this paper, the algorithm is used for 
the identification of a compartmental model with a 
pair of repeated eigenvalues bused on the non- 
uniformly sampled noisy data. A ca,re study is 
presented, which demonstrates that the algorithm is 
able to select the most suitable model for the system 
from the non-uniformly sampled noisy signals. 

I. INTRODUCTION 

System identification is generally referred to as 
the determination of a mathematical rnodel for a 
system or a process by observing the input-output 
relationships. In biomedical system identification, the 
key issue is to estimate the physiological parameters 
of a model based on the sampled data from a 
dynamic process. This model can usually be 
described by a set of differential equations. If the data 
can be sampled uniformly as in  most of the 
engineering systems, the indirect method can be 
utilized and the signal processing is relatively 
straightforward. The indirect method proceeds by 
first estimating the parameters for a discrete-time 
model that best fits the data at these uniformly 
sampled times. The discrete-time model parameters 
are subsequently converted into the parameters of an 
equivalent continuous-time model through Impulse- 
Invariance method, which guarantees that the 
continuous-time and discrete-time models have 
identical output values at these uniformdy sampled 
instances. The advantage of using the indirect 
method is that a number of effective parameters 
estimation algorithms are available, e.g. Least 
Squares (LS), Instrumental Variable (IV), Multistage 
Least Squares, and Generalized Least Squares (GLS) 
[6]. Among these methods, GLS has the highest 
accuracy. GLS iteratively upgrades the estimates that 
are initially obtained from the Least Squares and the 
final estimates are unbiased. 

However, in contrary to engineering systems, the 
dynamic data in most biomedical systems are usually 

sampled non-uniformly [7]. In these cases, the well- 
developed indirect method algorithms cannot be 
used. The direct method, on the other hand, 
estimates the continuous-time rnodel parameters by 
fitting these non-uniformly sampled data directly. 
The classic nonlinear least squares (NLS) is widely 
applied and can provide parameter estimates of 
optimum statistical accuracy [lo]. Nevertheless, good 
initial parameter values are required and the 
computational complexity of this algorithm is very 
high. If the initial parameter values are not close 
enough to the parameter true values, NLS will 
converge very slowly or even not converge at all. 
Other algorithms such as System Reference Adaptive 
Model, Maximum Likelihood (ML), and Prediction 
Error [2] are all very time-consuming. As a result, 
they are impractical for high resolution image-wide 
parameter estimation. 

Recently, Feng et a1 [ 5 ]  proposed an Generalized 
Linear Least Squares (GLLS) algorithm for 
parameter estimation of non-uniformly sampled 
biomedical systems. This algorithm can provide 
unbiased parameter estimation with very little 
computing time and without the need of providing 
the initial parameter values. As it is statistically 
reliable and computationally efficient, it has been 
found to be very useful for biomedical system 
identification and image-wide parameter estimation 
[4,5]. However, this algorithm cannot deal with the 
signals and systems containing repeated eigenvalues 
which often occur in biological systems [3]. Wong et 
a1 [9] extended it so that it can be used for 
identification of system containing repeated 
eigenvalues as well. In this paper, the GLLS 
algorithm is used for the identification of a 
compartment model and the case study demonstrates 
that the algorithm is able to select the suitable model 
for the system based on the non-uniformly sampled 
data. 

11. THEORY 

The general Single-Input-Single-Output (SISO) 
linear continuous dynamic system can be described 
by the following n-th order differential equation: 

559 
0-7803-3679-8/96/$5.00 0 1996 IEEE 

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 25,2010 at 04:06:09 UTC from IEEE Xplore.  Restrictions apply. 



y'll'(t> + aly("-')(t) + . . . + a,y(t) 

= blu'"-''(t) + bzu'n-2)(t) + ...+ b,u(t) (1) 

where u(t) and y(t) are the input and output of the 
system respectively, al, az, ... , a, and bl, b2, ... ,b, are 
the system transfer function parameters. The Laplace 
transform of equation (1) is given by 

S"Y(S) - s"-'y(o) - ... - y'""'(o) -t al[s"-'Y(s) - S"-~Y(O) 

- ... - y'" 2 ' ( ~ ) 1  -t ... + a,Y(s) 

= bl[s"-'U(s) - s"?I(O) -...- u'"-~'(O)] +...+ b,U(s) (2) 

where u(O), .._ ~ u'"-~'(O) and y(O), ".. , y'""'(0) are the 
initial conditions for the input and output functions. 
Equation (2) can be rewritten as 

(SI' i- alsn-' + ... + a,)Y(s) = (bls"-' + b2sn-2 

+ ".. -+ bn)U(s) + visn-' + v2sn-' + ... + v, ( 3 )  

where vl ,  v2, ... ~ v, are the linear combinations of the 
input and output initial conditions, with al ,  ... , a, 
and bl, ... , b, as their coefficients. vi (i = 0, 1, 2, ... , 
n) can be written in matrix form as below: 

Let A(s) = S" + alsn-' -+ ... -+ a, , B(s) = bls"-i + b2sn-2 
-+ ... + b, V(s) = v1sn-' + v2sn-' + ... -+ v,. 
Equation (3) is further abbreviated as: 

and 

A(s)Y(s) = B(s)U(s) + V(s) (4) 

In most of the cases, the initial conditions are all 
zeros. If some of the initial conditions are unknown, 
they can be considered as the unknown parameters to 
be estimated. Dividing both sides of equation (3) by 
s" and rearranging it, we get 

Y(s) = -als-'Y(s) - ... - a,s-"Y(s) -+ bls-'U(s) 

-t- ... +b,s-"U(s) f VIS-' -+ ... + v,s-" ( 5 )  

Taking the inverse Laplace transform, we get the 
time domain expression as 

Assume that m samples are taken at different time 
instances ti (i = 1, 2, ... , m). In general, if some of 
the vi's are zeros and some are not, m should be 
greater than or equal to the total number of the 
parameters to be estimated in equation (6). For 

convenience, we denote the number of the parameters 
to be estimated as p. Integrating equation (6) n times 
from 0 to t, (i=1,2, ..., m) with respect to t, we get the 
following matrix equation 

y = X 8 + 5  (7) 

where y=[y(tl), y(t2), _ _ _  , y(tm)lT is the column vector 
of the measurements at times tl, tz, ..., t,, and 8=[-al, 
..., -a,, bl, ..., b,, v1, ..., v, IT is the column vector of 
the parameters to be estimated with dimension of p, 
X is the m x p coefficient matrix containing integrals 
of input or output, or functions oft: 

5 = [ c l ,  52, ... cm]' is the column vector of the 
equation noise terms. These terms originate from the 
measurement noise in y(t). If m = p and X-' exists, 
we can solve 0 uniquely from equation (7) by 

0 = X - ' y  (8) 

where 6 denotes the estimate of 8. 
If m > p, the linear least squares (US) solution for 0 
is given by, 

6U-s = (XTX)-'XTy (9) 

where represents the estimated 8 in the linear 
lease squares sense. The estimates from equation (9) 
are biased, even though the direct measurement noise 
is white or independent at different sampling times 
[5,9]. In other words, the equation noise 6 is 
correlated or coloured. This can also be shown in the 
frequency domain as follows. 

If we rearrange equation (4) and add a white 
measurement noise term to the equation, we have 

where E(s) is the Laplace transform of the white 
noise e(t). If we convert equation (10) back to the 
original format of equation (4), we have 

A(s)Y(s) = B(s) U(s) + V(s) + A(s) E(s) (1 1) 

From equation (1 1), we can see that the equation 
noise A(s)E(s) is coloured, even though the direct 
measurement noise E(s) is white. Therefore the 
parameters estimated from equation (9) are biased. 
These parameters can be refined by the generalized 
linear least squares method (GLLS). The main idea 
behind GLLS is to whiten the equation noise using 
the previously estimated parameters and then to re- 
estimate the parameters. In other words, if the 
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equation noise can be whitened, im unbiased 
estimation can be achieved. If a rough estimation of 

parameters 8 is obtained from equation (9), A(s) , 
the estimated A(s) can be determined 

(A(s) = s" + a l  s"-' + ... + a,, where a l  ,..., a,, 
are the estimates of al ,  ..., a"). Dividing equation (1 1) 

dA(s) 
) = ___ ' ds 

bottom of the page), where 

by A(s) , we obtain 

. The If A(s) + A(s), the equation noise is whitened and 
the estimates from equation (12) would be unbiased. 
As the noise term will not affect the derivation of 

and '(') , we can first rernove it from A(s) B(s) -- 
A(s) ' A(s) A(s) 
equation (12), hence 

c 

Now, consider the estimated characteristics equation 

A(s) = s" + ais"+' + . . .  + a, (14) 

In general, if we consider that A(s) has repeated and 
distinct eigenvalues (these eigenvalues are assumed 
to be real so that a large class of practical 

applications are comprised), A(s) can be written as 

y( t) 0 (t '-'e"'') 1 
y ( -c)( t - 2) ' -' e '., 'I-'' d-c Y,,.(t) = = -j"' 

(+I) ! (r'-l)! 

in which 0 is convolution integration operator, r = I ,  
2 ,..., q; r ' =  1, 2 ,..., pr; k = 0, 1, 2 ,..., n-I; i = 1, 

2 ,..., n' and n'= n - C p ,  . 
q 

,=I 
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When A(s) -+ A(s), the equation noise 5 will be 
whitened, and the generalized linear least squares 
(GLLS) estimator for the non-uniformly sampled 
continuous systems is given by 

(25) 
where 

6 GLLS = (zT z>-' zT r 

and Z = [ C I D I G ]  

in which 

D= 

G= 

I I 

and 0cLLS represents the estimated 0 in the 
generalized linear least squares senses with initial 

A(s) provided by equation (9). Theoretically, 

equation (25) is used iteratively until A(s) +A(s). 
However, in  practical applications, one or two 
iterations are sufficient to obtain satisfactory 
parameter estimates [5]. A case study to evaluate the 
GLLS algorithm for the identification of a non- 
uniformly sampled biomedical system with a pair of 
repeated eigenvalues is presented in the next section. 

111. CASE STUDY 

The GLLS algorithm with distinct eigenvalues 
has been successfully applied in non-uniformly 
sampled biomedical system parameter estimation and 

in the construction of biomedical functional images 
[ 5 ] .  In  compartment analysis, when the time series 
data are fitted by sum of exponential functions, it is 
often assumed that the eigenvalues in the 
compartment model are real and distinct, and the 
number of compartments is equal to the number of 
exponentials. However, some systems may contain 
repeated eigenvalues [3]. The repeated eigenvalues, 
although more difficult to be detected, may be 
inherent in the data from the model output. In this 
case, the impulse response of the system is different 
from those models of distinct real eigenvalues. 

Figure 1 shows a two-compartment system which 
can have either real distinct or real repeated 
eigenvalues. Therefore, three possible mathematical 
models can be used to describe the system, (i) Model 
I :  A,(e'" -e'") , 2nd order model with distinct 

eigenvalues, (ii) Model 2: A, teh",  2nd order model 
with a pair of repeated eigenvalues, and (iii) Model 
3: A,e'" +A,te"" , 2nd order model with a pair of 
repeated eigenvalues (general expression). 

koi km 

Figure I The two compatment model with input jn compa~tme~it I 
and output in compartment 2 respectively. 

Suppose kzl = kO2 = 1, k12 = kol = 0 and u(t) = 
106(t), an impulse of magnitude 10, the impulse 
response of the system is y(t) = lOte-', which has a 
pair of repeated eigenvalues hl=h2=-1. In other 
words, Model 2 is the right model for the system. For 
the noise free data generated by y(t) = lOte-', we can 
easily use the GLLS algorithm to validate that Model 
2 is the right model. To generate the noisy data, we 
added zero-mean white Gaussian noise with 5% 
coefficients of variation (CV) to y(t)> the model 
output. Model 1, Model 2 and Model 3 were then 
used to fit the noisy data using the GLLS algorithm 
respectively. The simulation study was performed 
using the PV-WAVE package. 

Numerous statistical tests can be used to compare 
the results of parameters estimation for determining 
the best fit model. In this paper, we use the analysis 
of weighted residuals sum of squares (WRSS), 
parameters estimate asymptotic coefficients of 
variation (CVs), the parameter correlation matrix 
(R), Akaike Information Criterion (AIC) [ l ]  and 
Schwarz Criterion (SC) [8] to determine which 
model is the best. 

The results of the parameter estimation are 
summarized in Table 1. As seen in Table 1,  the 
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weighted residual sum of squares (WKSS) of the 
three models are very close, other criteria should be 
used to determine the best fit model. Compare Model 
1 with Model 2, although the WRSS of Model 1 is 
smaller than that of Model 2, the parameter estimates 
in Model 1 have the largest asymptotic CVs whereas 
the asymptotic CVs of the parameters in Model 2 are 
much smaller. Moreover, the AICs and SCs of Model 
1 are larger than those of Model 2, which are also in 
favour to Model 2. Furthermore, the parameter 
estimates in  Model 1 are strongly correlated as 
shown in the correlation matrix R M M ~ ~ ~ ,  1, whereas the 
correlation matrix of Model 2, Rl\ldel 2, shows that 
the parameter estimates in  Model 2 are less 
correlated. 

hl 1 2  

-0.9869 0.9897 
1.0000 -0.9615 

-0.9615 1.0000 1 RModel1 = 

AI A I  

Based on the above arguments, it can be seen that 
Model 2 is better than Model 1 and we can reject 
Model 1 from our analysis. Now, we compare Model 
2 with Model 3. Both models contain repeated 
eigenvalues and Model 3 being the general 
expression. The correlation matrix of Model 3 is 
given by 

h1 A2 

0.1183 -0.1830 
1.0000 -0.6563 

-0.6563 1.0000 

R ~ o d e 1 3  = 

From Table 1, it can be seen that the WRSS of 
Model 2 is less than that of Model 3. Moreover, 
comparison of the sub-matrix of R M ~ ~ I  3 (the 
resultant matrix of RModel after removing the first 

row and the first column of &del 3) and the 
correlation matrix of Model 2 ( R ~ ~ o d ~ l  2) also shows 
that Model 2 is better than Model 3 since the 
parameters in Model 2 are less correlated than those 
of Model 3. In addition, one of the parameters (A,) in 
Model 3 has a very large asymptotic CV (1 1.10%) 
and the asymptotic CVs of the other two parameters 
(A2 and AI)  are slightly larger than those 
corresponding to the parameters A1 and AI in  Model 
2. The above comparisons suggest that Model 3 is 
not as suitable as Model 2 to describe the system. To 
further support of our arguments, we can consider 
the AICs and SCs of both models. As shown in Table 
1, the AICs and SCs of Model 2 are smaller than 
those of Model 3, which in turn implied that Model 3 
is over-parameterized to describe the system. In other 
words, Model 2 is better than Model 3 .  

Comparisons of the two rejected models (Model 1 
and Model 3) also suggest Model 3 is still better than 
Model 1 since the correlation coefficients and the 
asymptotic CVs of the parameters in  Model 3 are 
much smaller than those of Model 1. 

Based on the above comparative arguments, we 
conclude that the best model to describe the system is 
Model 2 which is the exact form of the impulse 
response of the system that generated the data. 

IV. CONCLUSION 

In this paper, a fast algorithm is presented, which 
can estimate continuous-time model parameters 
directly without the need of providing initial 
parameter values. Moreover, the algorithm can 
produce unbiased parameter estimates and it requires 
very little computing time. The case study presented 
demonstrates the reliability of the algorithm. With 
this algorithm, we can provide more choices for 
system identification and can find the best suitable 
model for the system from the non-uniformly 
sampled noisy data. 

"Degree of Freedom = number of data point(N) - number of parameters(P) + number of conbtraintb 
'VVaiiance Rdtin = WRSS/dP 
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