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Information Technology Applications
in Biomedical Functional Imaging

(David) Dagan Feng

Abstract—In parallel with rapid advances in computer technol-
ogy, biomedical functional imaging is having an ever-increasing
impact on healthcare. Functional imaging allows us to see dy-
namic processes quantitatively in the living human body. How-
ever, as we need to deal with four-dimensional time-varying
images, space requirements and computational complexity are
extremely high. This makes information management, process-
ing, and communication difficult. Using the minimum amount
of data to represent the required information, developing fast
algorithms to process the data, organizing the data in such a
way as to facilitate information management, and extracting the
maximum amount of useful information from the recorded data
have become important research tasks in biomedical information
technology. For the last ten years, the Biomedical and Multimedia
Information Technology (BMIT) Group and, recently, the Center
for Multimedia Signal Processing have conducted systematic
studies on these topics. Some of the results relating to functional
imaging data acquisition, compression, storage, management,
processing, modeling, and simulation are briefly reported in this
paper.

Index Terms— Biomedical functional imaging, information
technology.

I. INTRODUCTION

BIOMEDICAL functional images obtained from positron
emission tomography (PET) and other nuclear medicine

imaging modalities play an important role in modern biomed-
ical research and clinical diagnosis, providing a window to
internal human biochemistry that was not previously available.
For example, parametric images of the local cerebral metabolic
rate of glucose derived from PET provide image-wide quan-
tification of physiological and biochemical processes within
the human brain and visualization of their distributions in
relation to anatomical structures when MRI data are available
and coregistered with the PET images. In order to estimate
physiological parameters using PET tracer kinetic modeling to
form physiological functional images, a sequence of dynamic
images needs to be recorded. Counts are recorded continuously
and stored according to a predesigned sampling schedule.
Conventionally, an empirical image sampling schedule is used,
which requires the taking of a large number of images, and
may not provide maximum information for the study. For a
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routine dynamic study with PET, it is easy to acquire nearly
500 images for just one patient in one study. Such a large num-
ber of images imposes a considerable burden on the computer
image storage space and data processing. Therefore, tech-
niques to minimize the amount of data recorded, to facilitate
the data management, to improve the quality of visualization,
to improve the accuracy of physiological parameter estimation,
and to minimize the computational complexity in data process-
ing, are of great interest. For the last ten years, the Biomedical
and Multimedia Information Technology (BMIT) Group and,
recently, the Center for Multimedia Signal Processing have
conducted systematic studies on information management and
processing in biomedical functional imaging, particularly in
the areas of functional imaging data acquisition, compression,
storage, management, modeling, simulation, analysis, process-
ing, registration, visualization, and communication, which are
represented by the blocks in Fig. 1. Some of our results and
related research by other investigators are discussed in the
following sections.

II. DATA ACQUISITION

A. Image Sampling Schedule—A Critical Issue

Great attention has been paid to the design of PET image
frame sampling or data acquisition schedules. Hawkins [16]
studied the effects of temporal sampling on the glucose model
using tracer 18-fluoro-deoxy-D-glucose (FDG). In the same
year, Mazoyer [29] proposed a general method for estimating
the precision of parameters resulting from the use of various
rates of tomographic data collection. Delforge [6] applied
the experimental design-optimization framework and various
criteria to the estimation of receptor-ligand reaction model
parameters with dynamic PET data. At the same time, Jovkar
[21] addressed the general problem of finding an optimal
scan schedule in PET dynamic studies to minimize parameter-
estimation errors. The influence of scan intervals in PET on the
accuracy of estimation of the rate constants was investigated.
They found that for realistic noise levels there is a mono-
tonic improvement in the index of parameter accuracy with
increasing sampling frequency, particularly over the initial
minutes after the tracer injection. Most of the previous studies
suggested that a higher sampling frequency, particularly in the
early stage, should be used. This conclusion, however, imposes
a considerable burden on the computer image storage space
and data processing.
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Fig. 1. Biomedical functional imaging research focuses on the research of the BMIT Group and the Center of Digital Signal Processing for Multi-
media Applications.

Fig. 2. Clinical data were used to show that the estimation accuracy of cerebral metabolic rate of glucose (CMRGlc) using only four image frames
based on the OISS is comparable to that using 22 image frames based on the conventional sampling schedule. In this diagram,z(t) is the FDG tracer
time-activity curve in tissue.

B. Optimal Image Sampling Schedule

We have reinvestigated this issue, i.e., an optimal sampling
schedule design for PET image data acquisition [14]. We found
that if a different cost function for parameter estimation is
used, which depends only on the direct PET measurement,
rather than the instantaneous measurement, the accuracy of
parameter estimation can remain almost unchanged when two
neighboring image frames are combined into one [27]. We
have further proven that the minimum number of image
frames needed to be recorded is equal to the number of
parameters to be estimated, and, under certain conditions,

the combination of several neighboring image frames will
not change the parameter estimation quality. We proposed
the optimal image sampling schedule (OISS) design and used
computer simulation [26] and clinical data [18] to show that
the estimation accuracy of metabolic rate of glucose (when a
four-parameter model is used) using only four image frames
based on the OISS is comparable to that using 22 image frames
based on the conventional sampling schedule, as shown in
Fig. 2. The OISS idea has been extended to data acquisition
for whole body PET dynamic studies [19]. The results of our
study have permitted the data recorded in the data acquisition
stage to be greatly reduced. Furthermore, we have extended
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Fig. 3. The three stages for dynamic image data compression.

the idea to perform quantitative studies with dynamic image
data recorded from rotating camera systems, such as single
photon emission computed tomography (SPECT) [24] and to
study the minimum dynamic SPECT image acquisition time
required for T1-201 tracer kinetic modeling [23].

III. D ATA COMPRESSION, STORAGE, AND MANAGEMENT

Conventional image compression algorithms can be divided
into two main categories, lossless and lossy compression
algorithms. Lossless compression algorithms allow for perfect
reconstruction of the original images from compressed data.
These algorithms yield modest compression ratios, typically
between 1.7 : 1 to 2.1 : 1 for medical image data. On the
other hand, lossy compression can achieve higher compression
ratios. However, the original images can only be reconstructed
approximately from compressed data, though the differences
may not be distinguishable by the human visual system
[5], [25], [31], [32]. The challenge in the development of
a practical image compression scheme for dynamic medical
images is the development of compression algorithms that
are lossless for diagnostic purposes, i.e., make no difference
to doctors, qualitative and quantitative assessment, yet attain
high compression ratios to reduce storage, transmission, and
processing burdens. It should be noted that in the clinical
situation a slight loss of precision in a derived parameter may

be undetectable visually and may be quite insignificant rela-
tive to the measurement error. The conventional compression
algorithms mentioned above are not specifically tailored for
the diagnostic use of dynamic medical image data. Therefore,
new algorithms have to be developed to fully exploit spatial
and temporal redundancies in these data.

A. Dynamic Image Data Compression

We have recently proposed a three-stage technique for
dynamic image data compression [17], as described in Fig. 3.
In Stage 1, the proposed OISS is first used to remove temporal
redundancies and reduce the number of frames to a mini-
mum. Even data sets obtained using conventional sampling
schedules can be reorganized using the procedures described
in Stage 1 to remove the temporal redundancies. Then, in
Stage 2, compression in the spatial domain exploits spatial
redundancies in the data. Using cluster analysis, the reduced
set of temporal frames can be further compressed to a single
indexed image. However, as our functional image data are
multidimensional, clustering algorithms suitable for grouping
vectors, rather than just pixel values, have been developed.
Cluster analysis involves grouping and classifying pixel-wise
time-activity curves (TAC’s) by natural association according
to self-similarity (or dissimilarity) characteristics. As expected,
TAC’s with high degrees of natural association belong to the
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same cluster groups, and, conversely, TAC’s with low degrees
belong to different groups. The indexed image maps each pixel
into a particular cluster. The respective temporal information
for each cluster group is contained in an index table. This table
is sequentially indexed by the cluster group and each index
contains the mean TAC cluster values for that group. In Stage
3, we compress and store the indexed image obtained from
cluster analysis using the portable network graphics (PNG)
file format. The coding technique presently defined and imple-
mented for PNG is based on deflate/inflate compression with a
32-kB sliding window. Deflate compression is based on an LZ-
77 derivate and encoded using fixed or custom Huffman codes.
The PNG file format was chosen over other lossless image
compression file formats due to its portability, flexibility, and
being legally unencumbered. Furthermore, PNG supports a
variety of features, such as indexed color images, greyscale
images up to 16 bit per pixel, true color images up to 48
bit per pixel, transparency, gamma information, progressive
display, and file integrity checking. Stages 1–3 in combination
can reduce storage requirements by more than 95%.

B. Image Database Management Systems

Conventional database management systems (DBMS) do
not lend themselves to efficient storage, flexible retrieval
or manipulation of image data. The image retrieval (IR)
problem is principally concerned with retrieving images that
are relevant to users’ requests from a large collection of
images, referred to as theimage database. There is a multitude
of application areas that consider image retrieval as a principal
activity. Tamura and Yokoya provided a survey of image
database systems that are in practical use [34]. More recently,
the work in [15] provided a comprehensive survey and relative
assessment of a picture retrieval system. We recently proposed
a signature for content-based image retrieval using a geomet-
rical transform [35]. Since the application areas are extremely
diverse, there seems to be no consensus as to what an image
database system really is. Consequently, the characteristics
of existing image database systems have essentially derived
from domain-specific considerations. Image databases for the
storage of dynamic image data have not yet been developed
because dynamic images are a relatively new phenomenon and,
at the same time, are complex and space-demanding. Due to
the success of functional image data compression, it is possible
to design a model for the record and content-based dynamic
image database.

C. Content-Based Image Retrieval

Normally, because of their large storage space requirements,
PET dynamic image sequences are recorded and archived to
off-line storage media. Retrieval is therefore time-consuming
and labor-intensive. One of the principal advantages of the
image database system, based on the compressed data using the
above developed three-stage technique, is its ability to rapidly
recover images almost identical to the original dynamically
acquired images, for direct visual interpretation or recalcula-
tion of functional parameters. Because of the high compression
ratio, it will be possible to maintain the data of a large number

of patient investigations on-line for immediate availability to
the physician, and to perform content-based retrievals based
on image characteristics.

Content-based retrieval of dynamic data will open up im-
portant new opportunities for research. As our data are com-
pressed in such a way that features, in terms of the similarity
in medical functions, are grouped in the same clusters and
their features are stored in the index table. Features from
each region can be easily extracted for indexing and retrieval,
which will make it possible to readily identify and study,
from patient data stored in the database, tissue regions that
exhibit similar physiological behavior. For example, tumors
of a particular type and grade should have a characteristic
pattern of kinetic behavior. This characteristic will be a useful
research tool for increasing our understanding of physiological
processes in normal tissue and a range of disease states. The
knowledge gained will hopefully lead to improved specificity
in diagnosing disease. At the moment, the development of a
content-based functional image database is actively conducted
in the BMIT Group and the Center for Multimedia Signal
Processing.

IV. DATA PROCESSING, MODELING, AND SIMULATION

A. Processing of Compressed Data

Raw and parametric images can be recovered much more
rapidly from the compressed data produced by our compres-
sion scheme than by conventional methods, because param-
eters need only be estimated for each cluster rather than
pixel-by-pixel. The steps involved in generating images from
the compressed data are as follows.

Step 1: Decompression of Indexed Image: Since lossless
compression is used for compressing the indexed
image, a perfect reconstruction of the image is
possible.

Step 2: Tracer Kinetic Modeling and Parameter Estima-
tion: Using the cluster TAC’s defined in the index
table, parameter estimates for the tracer kinetic
model are obtained by fitting the cluster TAC’s
to the model parameters. Subsequently, the physi-
ological parameters of interest are calculated using
the obtained estimates. The required input func-
tion can be prestored or derived directly from the
compressed images.

Step 3: Pixel-Wise Mapping: Map the obtained estimates
and calculated physiological parameters for each
cluster TAC to their respective pixel locations by
referencing the indexed image. The resultant im-
ages are the required parametric images. The over-
all speed for generating parametric images would
be more than 10 000 times faster than the conven-
tional approaches.

B. Fast Algorithms for Parametric Imaging

In addition to fast algorithms for processing the compressed
data, it is also important to develop fast algorithms for the
generation of parametric images based on the conventional
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Fig. 4. Generation of parametric images based on pixel-by-pixel FDG tracer kinetic modeling.

uncompressed data sets, i.e., based on the pixel-by-pixel tracer
kinetic modeling as shown in Fig. 4. Medical parametric imag-
ing, which requires the estimation of parameters for certain
biosystems at the pixel-by-pixel level, is an important tech-
nique providing image-wide quantification of physiological
and biochemical functions and visualization of the distribution
of these functions corresponding to anatomic structures. With
the recent development of high spatial and temporal resolution
PET, a variety of parametric imaging techniques have been
developed. The steady-state method [33] employs a constant
input of tracer allowing the radioactivity concentrations in
blood and tissue to reach constant levels. The autoradiographic
method [22] allows for the uptake and clearance of tracer
after a bolus injection and uses one tissue concentration
measurement in conjunction with a fully sampled arterial
input function to estimate usually one parameter. In both
the steady-state and autoradiographic methods, estimation is
based on many assumptions which will reduce the estimation
accuracy. In the dynamic protocols, more than one unknown
parameter can be estimated from a single input/single output
(SISO) experiment. The classicnonlinear least squares (NLS)
method can provide parameter estimates of optimum statistical
accuracy. However, this NLS method requires considerable
computation time and good initial parameter values (without
a good initial guess, NLS will not converge). It is, therefore,
impractical for estimation of image-wide parameter estimates.
Several alternative rapid parameter estimation schemes for
certain specific dynamic PET data or model types have been

proposed. For example, the well-known integrated projection
method can simultaneously estimate cerebral blood flow and
distribution volume from the decay uncorrected and corrected
PET data in a very efficient way [20]. The famous Patlak
graphical approach (PGA) can estimate the combination of
the model rate constants, which allows for the determination
of cerebral metabolic rate of glucose, when a unidirectional
transfer process is dominant during the experimental period,
i.e., the returning rate constant for the model used must be
assumed to be zero [30]. Among these schemes, the weighted
integration method (WIM) is more generally applicable [1].
However, to increase the estimation reliability by predeter-
mining the optimal sets of weighting functions for every
pixel in the functional image is not practical. A generalized
linear least squares (GLLS) algorithm for parameter estimation
of nonuniformly sampled biomedical systems is therefore
proposed by our research team [11]. This algorithm: 1) can
estimate continuous model parameters directly; 2) does not
require the initial parameter values; 3) is generally applica-
ble to a variety of models with different structures; 4) can
estimate individual model parameters as well as physiological
parameters; 5) requires very little computing time; and 6) can
produce unbiased estimation. Therefore, the GLLS algorithm
has been widely used for generating parametric images, such
as for myocardial blood flow images with N-13 Ammonia
[3], for local cerebral blood flow images with O water [8],
and for local cerebral metabolic rates of glucose images [10].
Fig. 5 shows the parametric image of cerebral metabolic rates
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Fig. 5. The parametric image of cerebral metabolic rates of glucose (CMRGlc) and parametric images of individual rate constantk values of the five-parameter
glucose model generated by using the GLLS algorithm. In this diagram,K�

5
is the spillover constant parameter from plasma (C�

P
(t)) to the measurementZi(t).

Fig. 6. A four exponential curve with a pair of repeated eigenvalues has been validated by clinical data [responses of FDG bolus injections,u(t)] to
be the most suitable PTAC model.

of glucose as well as the parametric images of individual
rate constant values of the five-parameter glucose model,
generated by using the GLLS algorithm.

C. Novel Modeling and Simulation Approaches

In PET tracer kinetic modeling, the directly measured
(piecewise linear approximation) plasma time-activity curve
(PTAC) of tracer is often used as the input function to esti-
mate regional physiological parameters. However, no explicit
general model has been available for PTAC itself, which
limits the further study of the effects of PTAC, such as
PTAC measurement noise or PTAC sampling schedules, on
the physiological parameter estimates. A PTAC model has
been proposed by our research team [7] based on clinical
data (responses to FDG bolus injections). A four-exponential
curve with a pair of repeated eigenvalues has been validated
by the clinical data to be the most suitable PTAC model

as depicted in Fig. 6. Multiple experimental data sets were
used to test the models and several statistical criteria were
used to validate their adequacy. This model has been found
very useful for generating realistic PTAC curves in computer
simulation studies of other tracers and their kinetic modeling
characteristics. Applications of the model to study the effects
of input function measurement noise in PET data modeling
[7], to study the effects of input function sampling schedules
[9], and to study the spillover effects and corrections [12], [28]
were conducted. This PTAC model has been found particularly
useful in noninvasive quantification of brain function [13]
which will be discussed in detail in Section IV-D.

D. Extracting Maximum Information from Data

PET is an important tool for enabling quantification of
human brain functions. However, quantitative studies using
tracer kinetic modeling require the measurement of the tracer
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Fig. 7. A cascaded modeling approach to extract the input function together with the physiological parameters from the brain dynamic images alone.

PTAC as the model input function. It is widely believed that
the insertion of arterial lines and the subsequent collection and
processing of the biomedical signal sampled from the arterial
blood are not compatible with the practice of clinical PET, as it
is invasive and exposes personnel to the risks associated with
the handling of patient blood and radiation dose. Therefore,
it is of interest to develop practical noninvasive measurement
techniques for tracer kinetic modeling with PET.

Watabeet al. recently presented a method for the pixel-
by-pixel quantification of regional cerebral blood flow (CBF)
using oxygen-15 labeled water [36]. They defined two regions
as gray matter and whole brain, respectively. Two equations
representing two regions derived from the CBF model were
utilized for eliminating blood terms. The method can accu-
rately detect relative changes in CBF which is mainly restricted
to brain activation studies. Carsonet al. presented a method
for absolute CBF determination also using oxygen-15 water
and PET [2]. They treated the unmeasureddiscrete blood
samples as the unknown parameters to be estimated during
the modeling process, together with the pixel blood flow
parameters. In other words, parameters would be
estimated from the scan frames with the total number of
measurements being . If the number of scan frames is
large, the computational complexity is very high. Moreover,
this method is difficult to be extended to the tracer for glucose
metabolism or other general higher order systems, as many
discrete PTAC sample values are involved.

Based on the PTAC model [7], we have recently proposed
a cascaded modeling approach to extract the input function
together with the physiological parameters from the brain
dynamic images alone [13]. The main idea (refer to Fig. 7)
is that, for a given output curve of a linear time-invariant
system, if the system transfer function is known, we can use
deconvolution techniques to obtain the input function, or, if the
input function is known, we can estimate the transfer function.

Fig. 8. Knowledge-based image smoothing technique which combines the
image processing technique and physiological information to smooth the
dynamic images can successfully remove the noise and greatly improve the
quality of the dynamic images.

Nevertheless, we cannot obtain both the input function and
system transfer function simultaneously from the SISO system.
However, in PET dynamic studies, multiple output functions
can be obtained from different regions of interest (ROI’s).
These output functions or measurements are the convolution of
the physiological impulse-response functions corresponding to
the local regions with the same input function (PTAC). In other
words, we are dealing with multiple systems with a single input
and multiple outputs. Each of the outputs is associated with a
SISO system. Thus, the PTAC and physiological parameters
can be estimated simultaneously from two or more output
curves (TTAC’s) sampled from various regions in the dynamic
images as discussed in [13]. The identifiability of this method
is tested rigorously using the Monte Carlo simulation. The
results show that the proposed method is able to quantify
all the required parameters by using the information obtained
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Fig. 9. The process of converting 22 PET image frames obtained from the traditional sampling schedule into five frames based on the optimal image
sampling schedule design for a five-parameter glucose model using FIPS.

from two or more ROI’s with very different dynamics in the
PET dynamic images. This method has further been validated
by and applied to clinical data as described in [37]. The results
demonstrated that the cascaded modeling approach is able to
extract the input function, i.e., the tracer PTAC, noninvasively
from the brain images reasonably well. Moreover, we also
developed a different approach to extract PTAC from the
brain image carotid arteries (CA’s) [4] to maximize the useful
information for noninvasive quantitative studies.

E. Knowledge-Based Image Smoothing Techniques

Due to the small amount of tracer used in nuclear medicine
imaging, the dynamic images are often very noisy. Although
there are many existing smoothing algorithms available, they
have not utilized the information and knowledge related to
the living systems under investigation, or not quite object-
orientated and knowledge-based, for example, to assign a value
to a pixel by averaging the values of a block of pixels around
this pixel in the image, according to certain weighting. How-
ever, the physiological structures and properties corresponding

to the pixel and its neighboring pixels may be very different,
such as the brain tissues and blood vessels. Therefore, we
have recently proposed a knowledge-based image smoothing
technique to combine the image processing techniques and
physiological information to smooth the dynamic images,
which can successfully remove the noise and greatly improve
the quality of the dynamic images as shown in Fig. 8. Details
will be reported separately.

V. SOFTWARE DEVELOPMENT

The above mentioned new techniques have been integrated
into a software system called the functional image processing
system (FIPS). Fig. 9 shows the process of converting 22 PET
image frames obtained from the traditional sampling schedule
into five frames based on the optimal image sampling schedule
design for a five-parameter glucose model using FIPS. Fig. 10
shows the output of a three-dimensional (3-D) MRI volume
image and a 3-D parametric image of cerebral metabolic rates
of glucose generated by FIPS using the GLLS algorithm.
A more comprehensive description of the overall structure,
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Fig. 10. The output of a 3-D MRI volume image and a 3-D parametric image of cerebral metabolic rates of glucose generated by FIPS using the
GLLS algorithm.

various functions, and novel applications of this software
system will be reported separately.

VI. CONCLUSION

Reducing space and computational complexity and facil-
itating information management and communication are of
vital importance to the success of applications of biomedical
functional imaging and the modernization of the healthcare
system. This paper has given a brief summary of work related
to the information technology in biomedical functional imag-
ing in the context of data acquisition, compression, storage,
management, processing, modeling, and simulation, which
has been done by others and by us at the Biomedical and
Multimedia Information Technology Group and the Center for
Multimedia Signal Processing.
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