
1996 IEEE TENCON - Digital Signal Processing Applications 

stem Identification with 
-active Signal 

el Pak-Kong Lun', W.C. Siu' 
e Hong Kong Polytechnic University 1 

ung Horn, Kowloon, Hong Kong 
, Basser Department of Computer Science, The University of Sydney, 

Sydney, N.S.W. 2006, Australia 

2 

ABSTRACT: In this paper, we propose a novel 
approach to perfarm the tomographic dynamic 
imaging of the cross-section of humans, which is 
time-varying in nature. The approach requires only 
the partially sampled noisy radio-ache cignak 
recorded by a conventional rotaring camerG: system, 
without the need of knowing any addiftonal 
information or prior knowledge. Based on rhe 
reconstructed dynamic images, we use a new system 
identification technique to quantify the dy~amic 
processes in humans and to estimate the 
physiological parameters. The reliability of the 
method has been tested by computer simulations arid 
the results show that using the propo~ed oApp:mch, 
dynamic imaging and system ident$catknn 5y 3 

conventional rotating camera system with pai-ridly 
sampled noisy radio-active signals are com2wrlzbie 
with those using a more expensive system where.fu!!y 
sampled data are needed. 

while the camera is rotating with the varying of the 
object, the directly measured projection data are 
inconsistent with its internal distribution. Hence, 
only partial information can be recorded in each 
rotation. 

In this paper, we propose a new approach to 
perform tomographic dynamic imaging and system 
identification with rotating camera system, without 
the need of knowing any additional information or 
prior knowledge. Based on the partially sampled 
projection data recorded by a typical single-head 
rotating camera, we use a recently developed WPQ 
method (Weighted Parabola Overlapped Integration 
Method) [4]  to estimate the full projection data. 
Then, we employ a normalisation step to reduce the 
sstimation error and the projection noise. Finally, 
based on the constructed dynamic images, we use a 
new system identification technique to quantify the 
dynamic process. To evaluate the performance, we 
use PET FDG (['8F]flu~r~-2-de~xy-D-gluc~se) model 
dynamics as an example to compare the dynamic 
I.nages reconstructed and physiological parameters 
estrma!edt from the partially sampled projection data 
recorded by the single-head rotating camera by using 
our new approach, with those obtained from the fully 
sampled projection data, such as in PET system. 

Advances in the computer technology and signa1 
processing techniques have meant that t o f i i ~ g r a p h ~  
imaging methods could be applied to deternplaae i n  
vivo M y  functioning. It is new possible to record 
the bio-distribution of radiopharmaceuticals within 
the body and the change of these distributions with - 

time [l]. This information provides an important :od 
for diagnosis and monitoring of the effects of 
treatment of patients. However, such imaging 
methods require the use of the very expensive PET 
(Positron Emission Tomography) system. Hence, for 
reasons of availability and cost, it would be beneficial 
to have tomographic dynamic imaging and modeling 
for conventional rotating camera SPECT (Single 
Photon Emission Computer Tomography) system. 

In fact, the use of rotating camera system for 
quantitative uses has been extensively studied by the 
Research Institute for Brain and Blood Vessels, i n  
Akita, Japan [2]. Besides, Mansen et a1 [3] recently 
applied conventional image reconstruction methods 
to a rotating SPECT camera for dynamic analysis of 
myocardial functions. Qn the other hand, alternative 
approaches which perform system identification 
directly from the projection data has been proposed 
in [4-51. 

The major problem of using the rotating camera 
system for tomographic dynamic imaging is that, 

TIBNS AND PROBLEMS OF 
~ ~ ~ ~ ~ E - ~ E ~ ~  ROTATING GAMMA 
CAMERA SYSTEM 

The operation of a single-head rotating camera 
SPECT system is shown in Figure 1.  The object 
located in the center of the figure is to be scanned. 
This object contains three regions in which their 
activity changes with time. The camera which rotates 
around the object can only take projection data from 
one angle at a time. a 

Figure 1 The Single-head Rotating Camera 

462 
0-7803-3679-8/96/$5.00 0 1996 IEEE 

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 28,2010 at 03:38:32 UTC from IEEE Xplore.  Restrictions apply. 



In order to accurately reconstruct the image of a 
time-varying object from its projection data at a 
particular time, it is required that the projection data 
of this object from all angles are available at the 
same time. Obviously, the single head rotating 
camera system described above cannot fulfil tRis 
requirement. 

For the traditional Hat model method, the object 
scanned is assumed static during the scanning period 
and the full projection data are obtained by first 
simply extending the recorded data to the whole time 
frame and then combining the projection data from 
different views together. After that, the FBP 
(Filtered-Backprojection Algorithm) is used to 
reconstruct the dynamic images. 

The traditional approach has two problems. 
Firstly, the reconstructed dynamic images suffer 
serve motion artifacts because the combined full 
projection data are inconsistent with the internal 
distribution of the object under scanned. Secondly, 
on using the conventional modeling technique for 
physiological parameter estimation, we need the full 
details of the tracer time activity curve within the 
object. This requirement is extremely difficult for 
single-head rotating camera system because of the 
limitation on the camera rotating speed and the 
trade-off between image counts and the temporal 
resolution. Hence, the above system, when using the 
conventional approach, is not suitable for 
physiological parameter estimation and it is mainly 
used for qualitative study. 

3. THEORY FOR THE PROPOSED METHOD 
Our proposed approach tends to solve the above two 
problems in three steps: 1) estimate the full 
projection data accurately; 2) reduce the estimation 
error and projection noise; 3) quantify the dynamic 
process using a new system modeling technique. 

3.1 Estimation Of Full Projection Data 
The simplest technique to estimate the full projection 
data is by linear interpolation. This method, which 
may outperform the traditional Flat model approach, 
is still not good enough in our situation because of 
the small number of samples directly measured in 
each angle. The estimated projection, as well as the 
reconstructed dynamic images, using simple linear 
interpolation approach is biased. To obtain a better 
estimation, we use a recently developed W O  
method (Weighted Parabola Overlapped Integration 
Method) to approximate the full projection data. The 
WPO method can be applied to uniformly sampled 
data as well as non-uniformly sampled data. Its main 
idea is given as follows: 

Assume there are n sampled data for an 
integrated function y(t). For any four consecutive 
points, ti.l,ti,ti+l,ti+z, they can only be fitted with one 
third order polynomial. Integrating this third order 
function, Y:~), from ti to ti+l, we obtain 

4 
The value Si obtained has third order algebraic 

accuracy. On the other hand, for the three points, 
ti.l,ti,ti+l, they can be fitted with only one second 
order polynomial. Integrating this second order 
polynomial, y{*), from ti to ti+l, we obtain 

ti 

Here, the Sf obtained has second order algebraic 
accuracy. Similarly, for the points, ti,ti+l,ti+z, another 
second order polynomial can be fitted. Integrating 
this polynomial, yi+~(~),  we obtain 

fi+l 

ti 

sif+* = ly::](t)dt 

Again, the value obtained has second order 
algebraic accuracy. Calculate the weighting 
coefficients as 

ai =(ti+1 +'i+2 - t i ) l [2( t i+2  -ti-1)1 

we can overlap the weighted Sb and Si+lf to 
obtain Si as 

si =(l-ai)s;+clisif+l 

By using the method above, we obtain an 
approximation integration with third order algebraic 
accuracy during every interval from ti to ti+l where 
O&n. For the interval to to tl and tn., to t,, second 
order algebraic accuracy can be obtained by setting 
%=l and CX,,,.~=O. 

The first step of the proposed approach is 
illustrated more intuitively in Figure 2, in which the 
W O  method is applied to obtain an estimation of 

re"",. 

Pixel 1 

111. 

Plxel 2 

-.r-.R.F"ll..-.r"m.. r.".rs.. 4-. 

Figure 2 The first step of the proposed approach 
using the WPO method 
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the total activity (area under the curve) during each 
time frame for each of the pixel. The estimated total 
activity is then divided by the duration of the 
corresponding time frame to obtain an average value. 
These averages which represent the average 
projection counts are used as estimates to fill into the 
full projection data as shown at the bottom of the 
diagram, which can then be used to reconstruct the 
dynamic images after normalisation. 

3.2 Reduction Of Projection Noise And Estimation 
Error 
After performing the WPO, the estimated profiles are 
quite irregular because the W O  is carried out on 
pixel by pixel basis, whose the measurement is very 
noisy. Therefore, we employ a normalisation step to 
filter out such error before applying the FBP. The 
underlying assumption of the normalisation is that 
within the same time frame, the projections of the 
total activity within the object from different angles 
should be the same, i.e., the profiles at different 
angles should have the same total sum. This total 
sum is computed by averaging the total sums of the 
directly measured profiles at different angles for the 
same time frame. This total sum average can then be 
utilised to normalise the estimated profiles so that all 
profiles within the same time frame will uniformly 
have the same total sum. Finally, these normalised 
profiles at different angles within the same time 
frame are combined together to form the full 
projection data which are then used to reconstruct 
the dynamic images as shown at the bottom of 
Figure 3. 

VIEW 1 

VIEW 2 

n n m r- 
u u u u  Normalirsdon NormslizatiQn Normalization Normalization 

Projection 
domain 

Figure 3 The second step of the proposed approach. 

3.3 Quantification Of Dynamic Process 
After the above two steps, we obtain a sequence of 
consistent dynamic images. The next step is to 
perform the system identification to extract the 
physiological parameters. In this step, in order to 
solve the problem of insufficient sampling as 
mentioned in Section 2, we make use of a new 
modeling approach proposed in [7]. This new 
modeling approach differs from the traditional 
modeling technique in that a new weighted least 
squares cost function or Rss (Residual sum of 
squares) is defined as follow: 

K -- 
Rss = z w k [ y ( t k ) - z ( t k ) l 2  

k=l  

1 1 where Y(tk) =- j y ( t ) d t  , a = _. Jz ( r )d t  , 

wk is the weighting, Y(tk) is the model instantaneous 
predicted output values, z(tk) are the measurements 
obtained within certain interval Atk centred at tk. 

By using this newly defined Rss, the curve fitting 
is performed based on the average area within 
certain time interval instead of instantaneous value. 
Therefore, the number of samples needed does not 
depend on the changes of the object under scanned. 
Furthermore, Feng et a1 have shown in [7] that, by 
using the new system identification technique, the 
minimum number of samples needed to identify the 
parameters is equal to the number of model 
parameters if they are identifiable. As a result, we 
can greatly reduce the number of directly measured 
samples needed for performing system identification 
and the problem of insufficient samples can be 
solved. 

4. Simulation Method 
Due to the problem mentioned earlier, there are not 
many SPECT quantitative studies available. 
Therefore, in the simulation, we use a well-known 
PET FDG model [l], which is used for the analysis 
of glucose metabolic rates of human brain, to 
evaluate the performance of our proposed approach. 
The PET system is used for comparison because the 
projection data for a PET system are obtained from 
all angles at the same time, hence the problems for 
the rotating camera system to perform dynamic 
imaging should not exist. 

The simulated brain model is shown at the center 
of Figure 1. It contains three ROI's (Regions of 
Interest). The left ellipse, right ellipse and the circle 
represent the brain white matter, gray matter and the 
average of whole brain. Their tracer activity curves 
are shown, respectively, at the right bottom, right 
middle and right top of the diagram. The outer 
largest ellipse is used as the background and is static. 
The transport rate constants, k&, for the three 
matters are obtained from [ 13 and are listed below: 

Atk Atk *h Atk 
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I I I klk3/(k2+k3) 
Gray 1 0.102 I 0.130 I 0.062 I 0.0068 I 0.0329 
Matter I I I 
Matter I I 

- .  

At means the measurement time for each angle. Six 
noise levels corresponding to C=O. 1,0.2,0.5,1.0,2.0 
and 4.0 are added to the directly measured projection 
data to simulate different noise environment. 

In the simulation, we have compared 4 different 
methods of dynamic imaging: 1) the full projection 
method which is based on the full information, such 
as those in PET systems; 2) the Flat model method 
which is the traditional approach; 3) the Linear 
Interpolation method and 4) the normalised W O  
method which are based on the partial information 
that can be measured by a single-head rotating 
camera system. After reconstructing the dynamic 
images, the new system identification technique is 
used to quantify the dynamic process. 

I Brain I I I 

5. Results 
Figure 4 is a comparison of the directly recorded 
projection data and the estimated projection data, as 
well as the reconstructed dynamic images, at the four 
different time frames using the four different 
methods. These projection data and dynamic images 
are taken from the noise free case which is 
performed with only one trial. As shown, the 
projection data obtained from the normalised W O  
method are very close to those obtained from the full 

I 
For simplicity, K, which is equivalent or more 

precisely proportional to the LCMRGlc (local 
cerebral metabolic rates of glucose) is used as our 
final estimation result to compare the performance 
for different methods. 

To obtain the projection data, the whole scanning 
period (120 min.) is divided into 4 time frames so as 
to construct four dynamic images for system 
identification. According to [81. the four time frames 
are of different length and they are, in minutes, 
[0,2.733], [2.733,15.6831, [ 15.683,77.067], 
[70.067,120]. For each of these time frames, 32 view 
angles are taken respectively. Hence, a total of 128 
view angles is obtained sequentially from 0" to 180 O 

for the first time frame, then from 180 O to 360 O for 
the second time frame. And then repeat the same 
fashion for the third and fourth time frames. For 
each of the view angles, 64 raysum are projected. 

The noise problem of the projection data is also 
studied in the simulation. Poisson noise with zero 
mean and variance given below are added to the 
data. 

where OIi1127, 013'163, C is the noise constant, r 
represents the directly measured projection data and 

noise variance = C*r(i,j)/At(i) 

~ 
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measurement and the reconstructed images do not 
suffer from motion artifacts especially for the first 
time frame during which the activity changes 
rapidly. 

WPO 
Figure 4 The projection data and the reconstructed 

dynamic images from four different methods. 

The curves in Figure 5 are the cross sections of 
the images on the right, which are taken in the first 
time frame and are for the noise free case. For the 
left column of Figure 5 (i.e., (a), (c) and (e)), the 
higher peak of the curves represents the activity of 
the upper ellipse which simulates the average activity 
of the whole brain. The left peak represents the 
activity of the lower left ellipse which simulates the 
average activity of the brain white matter. For the 
right column of Figure 5 (i.e., (b), (d) and (f)), the 
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Figure 5 Comparisons of the images reconstructed 
from the full projection data with those from the 

partial projection data. 

highest peak represents the activity of the lower right 
ellipse which simulates the average activity of the 
brain gray matter. 

For all of the six figures, the solid line is obtained 
from the image reconstructed using the full 
projection data, which is assumed to be the most 
correct curve we can get as full information is 
recorded. The dotted lines in Figure 5 (a) and (b) are 
obtained from the Flat model. The dashed lines in 
Figure 5 (c) and (d) are obtained from the Linear 
interpolation and, lastly, the cross lines in Figure 5 
(e) and (0 are obtained from the reconstructed image 
using the normalised W O  method. As can be seen, 
the dotted line deviates from the solid line 
significantly. As a result, the parameters estimated 
from such dynamic images are very poor. On the 
other hand, the cross line matches the solid line very 
well. It shows that by using the normalised W O  
method, comparable dynamic images can be obtained 
and, hence, the physiological parameter estimation 
would be more accurate. 

Based on the dynamic images reconstructed using 
the four different methods, the new system 
identification technique described earlier is used for 
parameter estimation. Figure 6 shows the simulation 
result of K s  estimated using the four different 
methods under different noise levels. The case with 
noise constant equals to 0 represents the noise free 
case which is performed for just one trial. For other 
values of noise constant, the simulations are carried 
out for one hundred trials to obtain average 
performances of each method. The left column of the 
figure shows the absolute percentage errors and the 
right column shows the standard derivations of the 
estimated K's of different matters. It shows that the 
parameters estimated from the proposed approach 
using the normalised W O  method are comparable 
with those obtained with fully recorded projection 
data at all different noise levels. Besides, the overall 
performance of the normalised W O  method is far 
better than those of the Flat model and the Linear 
Interpolation methods. 

6. C Q ~ C ~ U S ~ Q ~ S  
In this paper, we have proposed a novel approach to 
accurately reconstruct dynamic images from the 
partially sampled projection data recorded by a 
typical rotating gamma camera system, without the 
need of knowing any additional information or prior 
knowledge. The detail theories of the proposed 
approach are given. The reliability of the proposed 
method has been tested by computer simulations at 
various noise levels. The results have proven that, 
the dynamic images reconstructed and the 
parameters estimated from the proposed approach 
using the normalised W O  interpolation method are 
comparable with those obtained with fully recorded 
projection data at all different noise levels, including 
the noise free condition. 

In our simulation, we just use a single-head 
rotating camera system to illustrate the idea of the 
proposed approach. Indeed, the proposed approach 
can be easily extended to multi-head rotating camera 
system, which are commonly used in clinical 
environment. This new approach has a great 
potential for clinical applications by making use of 
the conventional rotating camera SPECT for 
quantitative study of physiological functions in 
h u m a n  body with high accuracy. 
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