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Morphology-Based Multifractal Estimation
for Texture Segmentation

Yong Xia, Student Member, IEEE, (David) Dagan Feng, Fellow, IEEE, and Rongchun Zhao

Abstract—Maultifractal analysis is becoming more and more pop-
ular in image segmentation community, in which the box-counting
based multifractal dimension estimations are most commonly
used. However, in spite of its computational efficiency, the reg-
ular partition scheme used by various box-counting methods
intrinsically produces less accurate results. In this paper, a novel
multifractal estimation algorithm based on mathematical mor-
phology is proposed and a set of new multifractal descriptors,
namely the local morphological multifractal exponents is defined
to characterize the local scaling properties of textures. A series
of cubic structure elements and an iterative dilation scheme are
utilized so that the computational complexity of the morphological
operations can be tremendously reduced. Both the proposed
algorithm and the box-counting based methods have been applied
to the segmentation of texture mosaics and real images. The com-
parison results demonstrate that the morphological multifractal
estimation can differentiate texture images more effectively and
provide more robust segmentations.

Index Terms—Fractal dimension, image segmentation, mathe-
matical morphology, multifractal estimation.

I. INTRODUCTION

RACTAL geometry, as initially developed and explored by

Mandelbrot [1], [2], does not assume that the studied ob-
jects have good properties of continuity and smoothness, and
thus enables the characterization of irregularity and complexity
that may not be treated in general by Euclidean geometry. Since
Pentland [3] presented evidence that most natural surfaces are
spatially isotropic fractals and the intensity images of these sur-
faces are also fractals, fractal analysis has been successfully
applied to many fields of digital image processing [4]-[6]. It
offers the potential of unifying and simplifying various two di-
mensional texture descriptions, as well as the possibility of in-
terpreting them in terms of three dimensional structure of the
image.
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Due to its relative insensitivity to scaling transformation
and strong correlation with the judgment of surface roughness
by human vision system (HVS) [3], the fractal dimension has
been widely used in texture segmentation [7]-[16]. However, a
number of researchers have argued that a single fractal dimension
may not fully represent and discriminate textures. Some studies
[17] on different textures showed that, despite of obvious visual
differences, the estimated fractal dimensions remained quite
identical. The reason lies in the fact that the fractal dimension
can only characterize self-similarity in ideal cases. Nevertheless,
most real textures are merely semi-fractals and have anisotropic
and inhomogeneous scaling properties [7], which can hardly be
successfully characterized by the fractal dimension. Therefore, a
set of measures, instead of only one, should be used to describe
statistically the same phenomenon in different scales in order
to achieve efficient texture analysis. This generalization leads
to the idea of multifractal analysis (MFA).

As a natural extension of the fractal modeling, multifractal
analysis has drawn much more attention in the image processing
society in recent years [18]-[27]. Many multifractal features
have been developed, among which multifractal dimensions are
the most popular ones. Known as a continuous spectrum of ex-
ponents, multifractal dimensions provide a simple yet powerful
way to probe statistically the inhomogeneous scaling properties
of fractal set, and has been shown to be distinct with respect to
the texture contents of images.

There are several methods available to estimate the mul-
tifractal dimensions of images. One of the commonly used
methods proposed by Chaudhuri and Sarkar [10] is based on
the differential box-counting (DBC) algorithm [9]. Instead of
directly measuring an image surface, the measures at different
scales are obtained by means of counting the minimum number
of boxes of different size, which can entirely cover the whole
surface. Taking account that obtaining the optimal box number
N, usually involves complex optimization, this method adopts
the regular partition scheme to gain an approximation of N..
The process can be detailed as follows. For a given scale ¢,
an M x M image is partitioned into grids of size € X .
On each grid, there is a column of ¢ X € X ¢’ boxes, where
¢’ = |e x G/M | and G is the maximum gray level. The image
is viewed as a three-dimensional (3-D) surface, where (3, j)
denotes the 2-D position and the third coordinate z denotes the
gray level of the corresponding pixel. Given the maximum and
minimum gray levels in the (i, )" grid fall in the v*" and "
boxes respectively, the number of boxes needed to cover the
image surface on that grid is calculated as

ne(i,j)=v—u+1 (1
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and the total number of boxes needed to cover the whole surface
can then be approximately estimated as follows:

i

In order to describe the distribution of different subfractals, a
measure 1. (i, 7) is defined on the grid as

o ne(4,7)
(1,9) = el 3
fe (7, 7) N (3)

The partition and estimation are performed for different scales,
and the multifractal dimension of order ¢ can be estimated by

L WS nely]
lim ln(%)

D, “)

:1—q€—>0

where r = ¢/M. B

It is obvious that the box number N, counted by this scheme
is only a rough approximation of the optimal one. Feng et al.
[28] demonstrated that this method caused under-counting at
a smaller scale and over-counting at a larger scale and thus
produced a decreased estimation of fractal features. Therefore,
though quite effective, the box-counting based algorithm may
lead to less precise multifractal estimations. More recently, Du
and Yeo [27] have proposed a novel modification to this ap-
proach, which combines the idea of the relative differential box-
counting (RDBC) algorithm [11] and the multifractal estima-
tion based on the gliding-box method [29]. Although resulting
in better accuracy, the modified approach can hardly fully elim-
inate the intrinsical estimation error caused by the box-counting
scheme.

Abandoning the means of box-counting, this paper adopts the
basic morphological operations to directly measure an image
surface and hence proposes a novel multifractal estimation al-
gorithm to characterize texture images. The quality of the esti-
mation is evaluated on both synthetic images and various nat-
ural textures from the Brodatz album [30]. Comparative exper-
iments have been carried out by applying our multifractal tex-
ture descriptors and other two box-counting based multifractal
dimensions to differentiate the mosaics of Brodatz textures and
the images of natural scenes.

II. MORPHOLOGY-BASED MULTIFRACTAL ESTIMATION

Fractal estimation is, as described by Mandelbrot, based on
the idea of “measure the fractal set at different scales.” The
fractal dimension can be obtained from the relation between the
measures acquired and the scales used. He gives, as an example,
the calculation of the length of the British coastline [2]. Let the
center of a small disk with radius e follow the coastline to form
a strip of width 2¢, within which all the points have the same
property: its distance to the coastline is less than the radius €.
The suggested length L(e) of the coastline can be expressed
by the area of the strip divided by 2¢. As e decreases, L(e)

increases. For a fractal curve, he concludes that the following
equation holds well:

L(e) = Ce'~* &)

where C' is a constant and s is the desired fractal dimension of
the curve.

When Mandelbrot’s original idea is extended to surface area
estimation, it is natural to suppose that all points with distance to
the surface of no more than e form a 3-D object. The area A(e)
of the surface is the volume of the object divided by 2¢, and the
fractal dimension of the surface can be estimated from power
law followed by A(e) and e. In order to form the 3-D object
and measure its volume, Peleg ef al. [7] iteratively constructed
blankets, Sarkar and Chaudhuri [9] piled the image surface with
boxes of different scales. However, it can be achieved in a more
straightforward and accurate way by adopting the operations of
the mathematical morphology.

Since it was developed by Matheron and Serra [31], Mathe-
matical morphology has been a useful tool for image analysis.
Through eliminating the details whose scale is less than that
of the structure element (SE), it provides us the ability to ob-
serve and measure an image at different scales. Samarabandu et
al. [32] have proposed a morphological method to estimate the
fractal dimension of an image, which has superior performance
as compared to popular fractal dimension estimations. However,
in order to reduce the time cost, this method use only one invari-
able SE to measure the image surface by iteratively dilating it,
which limits the improvement of the estimation accuracy.

In our multifractal estimation method, a series of SEs of dif-
ferent scales is used to measure the image surface. Similarly, an
M x N image is considered to be a 3-D surface X, which can be
defined as a set of triplets {(i, 7, f(i,7));i = 1,2,--- . M;j =
1,2,---, N}. For every scale ¢, the SE Y is also given as a set
of triplets {(i-k, jek, 2ek); b = 1,2,---, P.}, where P is the
number of elements in Y,. The dilation of X with Y, at pixel
(7,7) is calculated as

Ffe(ig) = _max  A{f(itick.j+jer) +zex}. (0)

The dilation X & Y. will result in a 3-D surface, which con-
tains all the points with a distance ¢ to the upper side of the
original surface X. In 3-D space, if we define the distance be-
tween points (7, j, k) and (¢, 7', k) as

d(i g, ki 5 K) = V(i =) + (G = 7)7 + (k= K2 (7)
Consequently, the SE used in the dilation will be a sphere,

whereas a different distance definition may lead to a different
SE. In our approach, the distance is defined as

1
d<LJ7 k7il7j/7 k/) = max {|L - il|7 |J - j/|7 EU{; - kl|} (8)
whereupon a cubic SE will be obtained, and that means

zen = Pe, k=1,2,--+, P 9)

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 25,2010 at 03:15:41 UTC from |IEEE Xplore. Restrictions apply.



616

Fig. 1. Extended support of SEs at different scales.

The coefficient 3 determines the shape of the SE and thereby

called the shape factor. Substituting the new value of Z_; into

(6), we find
fe(i,g) =

{f(Z + ik, J + Jer) + Be}. (10)

k= 1

Itis obvious that, taking advantage of the cubic SE, the second
term on the right hand of (10) is independent of the indicator k.
Let fl(4,5) = max _ f(i + %ck,J + jer), and (10) can be

rewritten

=hH4yhle

fe(i,5) = f2i,§) + Be.

For different scales, f/(4, j) can be calculated iteratively

Y

max
(7,5')EDe 41

FLaalivd) = mx{ £66.9), fi} a2
where D, represents the extended support of the SE at scale ¢,
as shown in Fig. 1. Initially, f(¢,7) = 0 for all ¢, j. By this
means, the computation cost of f. (i, j) for all scales equals to
that for the maximum scale.

Similar to the definition of the multifractal measure used in
the DBC-based method [10] and the RDBC-based method [27],

a local natural measure p. (%, j) is defined in a window of size
W x W as

S f i g) — f(i )]

Then the measure of order ¢ at scale & can be calculated as

pe(iy j) = (13)

w
Ige) = a) ueli,j) (14
L,j
where
w Sy ..
_ iy lfe(ind) — D)1 (15)

9

As a multifractal measure, (g, ) must satisfy the following
power law:
I(g,e) ~ ™,

—00 < q < o0. (16)
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Subsequently, a set of multifractal texture descriptors, namely
the local morphological multifractal exponents (LMME), are
defined as follows:

1. In(I(ge))
L, = — lim ——=~*,
In ()

T lale=o
Plot In(I(q, <)) versus In(1/¢) for a given set of scales and the
limitation in (17) can be estimated by the gradient of the line that
fits the plot. The coefficient « is added to assure that the mor-
phological fractal dimension is given by L. In the following
experiments, the window size w is set to be 11, the shape factor
[ is 3, and the scales € of SE are 2, 3, 4, 5, and 6, respectively.

g # 0. (17)

III. ESTIMATION EVALUATION

In this section, we use two sets of images to test the per-
formance of our proposed multifractal estimation algorithm.
Image Set I consists of ten synthetic textured images of size
256 x 256, which are 2-D discrete Gaussian grids each with
a mean of 128 and standard deviation of 1, 4, 8, 16, 24, 32,
48, 60, 84, and 128 [9], [11]. Those samples are denoted by
S1,S2,...,510 and half of them are shown in Fig. 2. The
generated gray-levels are truncated so that they lie in the range
[0, 255] and the exact standard deviations of those images are
1.04, 4.01, 7.98, 16.05, 23.89, 32.11, 47.58, 57.93, 74.61, and
91.51, respectively. Image Set II consists of 12 natural textures
of size 256 x 256, which are randomly chosen from Brodatz
album [30]. Those samples are denoted by T'1, T2, T ..., T12
and are shown in Fig. 3.

Similar to the experiments in [10] and [11], we use the dis-
tance error to evaluate the quality of the proposed estimation.
Plotting In(7(q,€)) versus In(1/¢) for several different scales
and typically those points will lie on a straight line. Let y =
mx + c is the fitted line, y denotes In(1(q,¢)) and x denotes
In(1/¢). The quality of the estimation may be evaluated by the
fitted error, which can be expressed as the root mean-square dis-
tance of the points from the fitted line

DE =

(18)

n

where n is the number of scales used.

For every image, the proposed estimation is performed at each
pixel (i, j) using a moving window of size 11 x 11 centered on
(4,7). The results are averaged over all pixels to decrease the
impact of randomness. Some components of the average LMME
spectrum, respectively L_3, L_o, L_1, L1, Lo, and L3, together
with the average fitted errors, are shown in Figs. 4 and 5.

As for the synthetic textures, the bigger the standard devia-
tion, the more rugged the image surface is, and the larger fractal
feature will usually be expected. It is revealed from Fig. 4(a)
that our LMME spectrum can successfully capture this trend.
However, the performance of each component with respect to
different order ¢ is of significant difference. Comparing with
Ly and L3, the estimations of L_3, L_5, L_; and L; occupy a
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| S3:0=798 | S5 6=23.89 |

S6: o=

3211 | S8 6=5793 | S10: 0=91.51 |

Fig. 2. Five samples of the synthetic images: name and the standard deviations.

i

D16: Hemingbone Weave | D19 Woolen Cloth | D22: Reptile Skin

D34: Netting D35: Lizard Skin | D53: Straw Cloth

D55 Straw Matting D34: Raffia D87 Sea Fan

D92: Pigskin D103: Loose Burlap | D104: Loose Burlap

Fig. 3.

wider dynamic range, which demonstrates a better ability to dis-
tinguish textures. The same conclusion can also be drawn from
Fig. 5(a).

As depicted in the previous section, the multifractal measures
I(gq, ) used in the deduction of the local morphological mul-
tifractal exponents is defined by analogy with the DBC-based
algorithm. Given that (g, ¢) effectively characterizes the mul-
tifractal properties of an image surface, it must follow the power
law with scale €. Consequently, In(I (g, ¢)) and In(1/e) will ex-
hibit a perfect linear relationship, which must result in an ideal
linear fit and a low fitted error. As illustrated in Figs. 4(b) and
5(b), the average distance errors of the proposed estimation are
as low as that of popular estimations of fractal dimension, which
are, as reported in [10] and [11], ranging from 0.001 to 0.074.
The satisfying results demonstrate that the proposed morpho-
logical measures can certainly follow the desired power law and
the proposed estimation is able to successfully characterize the
local scaling properties of texture images.

IV. EXPERIMENTAL RESULTS

To assess the ability of the proposed multifractal estimation to
differentiate various natural textures, the obtained LMME spec-
trum has been applied to the segmentation of texture images.
To decrease the complexity of the classifier, only three compo-
nents of the LMME spectrum {L_», L_; L1}, which exhibit

Twelve natural textures from Brodatz album. Their name and corresponding positions are shown in the table below the figure.

wider dynamic ranges in Figs. 4 and 5, are used as the features
in our experiments. For every pixel, the multifractal features are
computed in a slipping window of size 11 x 11 centered on
that point. The segmentation is essentially based on the fuzzy
C-means (FCM) algorithm [33], which is able to classify the
pixels into a specified number of regions by clustering those
features.

Besides our LMME estimation, other two groups of multi-
fractal dimensions are also used as image features in our com-
parative experiments. One is estimated by the method based
on differential box-counting and therefore denoted as MDBC,
the other is presented by generalizing the relative differential
box-counting algorithm and denoted as MRDBC. The MDBC
features are initially developed by Chaudhuri and Sarkar [10],
and three components of them (¢ = —5, 1, 5) have been used by
Li et al. [26] to segment mosaic textures. The MRDBC features
are first introduced by Du and Yeo [27], and four components
of them (¢ = —1, 0, 1, 2) have been applied to the segmentation
of remote sensing images. Both of those two group of features
are calculated within a window of size 17 X 17. In following
experiments, every test image is segmented by three different
approaches, and the results are compared through the error per-
centage of the incorrectly classified pixels. Since these experi-
ments are aimed to evaluate the ability of different multifractal
descriptors to differentiate various textures, those three segmen-
tation methods share the same scheme and the same FCM-based
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Fig. 4. Morphology-based multifractal estimation on synthetic textures. (a) LMME spectrum and (b) distance error.
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algorithm. The only distinctions of them are the image features.
For this reason, they are referred by the notation of the corre-
sponding features. It should be noted that other unsupervised
classifier, such as the self-organization map (SOM) [34], may
bring better segmentation result, but it will not influence our
evaluation of those multifractal texture descriptors. Discussing
the impact of different classifiers is obviously beyond the scope
of this paper.

The first comparative experiment has been performed on the
image database named as MII, which is generated by using
the 12 Brodatz textures shown in Fig. 3. Each texture is com-
bined with every other texture, thus we totally have 66 test im-
ages, each of which is a mosaic of two textures with a size of
256 x 256 and a dynamic range of 256 gray levels. Three ex-
ample test cases (MII1 to MII3) are shown in the left column
of Fig. 6. The right column illustrates the results of the pro-

(o)
o
=y

&

Digtance Error (e-3)
[} (8]

(b)

Morphology-based multifractal estimation on Brodatz textures. (a) LMME spectrum and (b) distance error.

posed LMME method and the two middle columns show the re-
sults obtained by applying the MDBC method and the MRDBC
method. Table I gives the segmentation errors of the results
shown in Fig. 6. The average error over the whole database is
presented in Table II. Generally, the proposed LMME spectrum
is preferable to other multifractal dimensions, which are fail to
locate accurate boundaries separating the regions.

To demonstrate the advantage of the proposed texture de-
scriptor in differentiating textures of more than two classes, the
second comparative experiment has been carried out. This ex-
periment is similar to the previous one, except that it uses the
test image set MIV, which consists of 495 mosaics of four dif-
ferent textures with a size of 512 x 512. Those test images
are generated by combining each four patterns chosen from
the 12 textures shown in Fig. 3. Four example test cases, to-
gether with their corresponding segmentation results, are pre-
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Fig. 6. Three test cases of mosaics of two textures (MII1-MII3) and their segmentation by applying (the second column) the MDBC method, (the third column)

the MRDBC method and (right column) the proposed LMME method.

TABLE 1
ERROR PERCENTAGE OF INCORRECTLY CLASSIFIED PIXELS (MII1-MII3)

Image Texture Segmentation Methods
Index Components MDBC MRDBC LMME
Ml D16 vs. D103 4.2% 6.5% 3.0%
M2 D22 vs. D55 13.4% 17.0% 5.3%
M3 D35 vs. D104 11.5% 22.9% 3.1%
TABLE 1I
AVERAGE ERROR PERCENTAGE OF INCORRECTLY
CLASSIFIED PIXELS FOR DATABASE MII

Methods MDBC MRDBC LMME

Average Errors 18.61% 20.42% 14.58%

sented in Fig. 7. All segmentation results are shown using arbi-
trarily selected gray level to highlight different regions. Fig. 8
compares the error percentage of the incorrectly classified pixels
obtained by applying different segmentation methods to each of
twenty randomly chosen example test images. The averaged er-
rors over the entire database are listed in Table III. Although not
superior to the MRDBC features in some cases, the proposed
LMME spectrum shows the best discrimination ability and cor-
responding segmentation method achieves the least overall seg-
mentation error. This is completely in accordance to the results
reported in the previous experiment.

Next, we apply the presented comparative experiment to a
number of real images. The segmentation of textures in these
images is subjective. In Fig. 9, we show the segmentation by the
MDBC method, the MRDBC method, and the proposed method
for a picture of road, a grassland scene, a crowded stadium, and
a face image of a chimpanzee. The results presented from the
segmentation scheme, which uses the proposed LMME spec-
trum are shown in the right column. In all cases, the segmented
regions seem to, on the whole, agree with the regions we would
perceived as distinct if we try not to make use of semantics like
“sky,” “grass,” “trees,” “crowd,” etc. Unfortunately, in case of
other multifractal features are used, the results are a bit worse,
as shown in the two middle columns of Fig. 9.

Generally, multifractal-based image segmentation algorithms
are very time consuming. In our approach, we abandoned the
complicated box-counting process and adopted the mathemat-
ical morphological operators instead to measure the image sur-
face. Through delicately selecting the SE and iteratively dilating
the image, the proposed method successfully reduced the com-
putational burden. Table IV gives the average computational
time required by the above three segmentation methods in the
first two experiments (Intel Pentium III, 871 MHz processor).
As shown in the right three columns of the table, the entire time
of segmentation depends on many factors, such as image size
and how many features are used. To fairly compare the compu-
tational expense of those multifractal estimation methods, we
also present the average time needed for calculating every single
feature, which is the total time of feature extraction divided by

9% ¢
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Fig. 7. Four test cases of mosaics of four textures (MIV1-MIV4) and their segmentation by applying (the second column) the MDBC method, (the third column)
the MRDBC method and (right column) the proposed LMME method.

e
[}

I Error of MDBC
1 Error of MRDBC =
1 Error of LMME

[ £1]
[3]
I

— — L] [y (3]
[ T o] (8] O
T I
1
| 1

Percentaae of Misclassified Pixels
M

M 11 M3 MG M7 MNG  MNT1 _MIV13 MPM15 Ml\h? MMN1S  Average
20 Test Cases of Mosaics of 4 Textures

Fig. 8. Error percentage of incorrectly classified pixels (MIV1-MIV20).
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Fig. 9. Four real images and their segmentation by using (the second column) MDBC features, (the third column) MRDBC features and (right column) the

proposed LMME spectrum.

TABLE III
AVERAGE ERROR PERCENTAGE OF INCORRECTLY
CLASSIFIED PIXELS FOR DATABASE MIV

Methods MDBC MRDBC LMME

Average Errors 22.37% 12.38% 10.63%

the image size and the feature dimension. From Table IV, we
can conclude that the computational cost decreased substan-
tially when the proposed LMME features are used.

V. CONCLUSION

Theoretically, multifractal features can successfully describe
many structural properties of texture, e.g., coarseness, regu-
larity, etc., which are important parameters in the human visual
experience. Most work in the past on multifractal analysis has
been concerned with the box-counting scheme. Nevertheless,

the mathematical morphology may bring us a more straightfor-
ward and accurate way to achieve this goal.

In this paper, a morphology-based multifractal estimation
algorithm has been proposed, and as a result, a set of new
multifractal texture descriptors has been presented. By means
of mathematical morphology, the novel algorithm delicately
avoids the drawback of various box-counting methods and thus
achieves better accuracy in characterizing the local scaling
properties of a texture image. The cubic SE and the iterative
dilation scheme used in our approach substantially reduce
the computational expense of morphological operations. We
evaluated the quality of the proposed multifractal estimation for
both the synthetic texture and the natural texture. It reveals that
the estimation error is considerably small. The performance
of the presented texture descriptors is compared with that of
two popular multifractal dimensions on texture mosaics and
real images. The experimental results illustrate that the features
derived from the proposed multifractal analysis approach has a
better ability to differentiate various textures.
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TABLE 1V
COMPUTATION TIME OF THE THREE SEGMENTATION METHODS ON THE DATABASE MII AND MIV

Average Time Per Feature

Average Time of Segmentation

Image Database

MDBC MRDBC LMME MDBC MRDBC LMME

M (256%256) 78.36 US 514.29 Us 39.29 Us 16.654s 137.107s 8.803s

M (512x512) 7197 US 497.70 US 39.18 US 64.454s 525.813s 34.650s
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