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Abstract—Inductive transfer learning has attracted increasing 

attention for the training of effective model in the target domain 

by leveraging the information in the source domain. However, 

most transfer learning methods are developed for a specific 

model, such as the commonly used support vector machine 

(SVM), which makes the methods applicable only to the adopted 

models. In this regard, the generalized hidden-mapping ridge 

regression (GHRR) method is introduced in order to train various 

types of classical intelligence models, including neural networks, 

fuzzy logical systems and kernel methods. Furthermore, the 

knowledge-leverage based transfer learning mechanism is 

integrated with GHRR to realize the inductive transfer learning 

method called Transfer GHRR (TGHRR). Since the information 

from the induced knowledge is much clearer and more concise 

than that from the data in the source domain, it is more 

convenient to control and balance the similarity and difference of 

data distributions between the source and target domains. The 

proposed GHRR and TGHRR algorithms have been evaluated 

experimentally by performing regression and classification on 

synthetic and real world datasets. The results demonstrate that 

the performance of TGHRR is competitive with or even superior 

to existing state-of-the-art inductive transfer learning algorithms. 

 
Index Terms—Generalized hidden-mapping ridge regression, 

Inductive transfer learning, Knowledge-leverage, Neural 

networks, Kernel methods, Fuzzy systems, Regression, 

Classification. 

I. INTRODUCTION 

Transfer learning has been studied extensively for different 

applications (e.g. web text classification) in recent years [1]. As 

illustrated in Fig. 1, it is a learning procedure to develop an 

effective model by using the data of the target domain and 

leveraging the useful information from the source domains 

simultaneously (definition of the domains is given in Table I). The 

existing work about transfer learning can be categorized generally 

into three main types: 1) transfer learning for classification [2-15]; 

2) transfer learning for regression [16-20]; and 3) transfer learning 

for unsupervised learning [21-23] (e.g. clustering and 

dimensionality reduction [14]). Besides, based on the differences 

in settings, transfer learning can also be divided into inductive 

transfer learning and transductive transfer learning. A few data in 

 
This work was supported in part by the Hong Kong Research Grants Council 

(PolyU 5134/12E), the National Natural Science Foundation of China 
(61170122). 

Z.H. Deng is with the Department of Biomedicine, University of California, 

Davis and School of Digital Media, Jiangnan University, Wuxi, China. (e-mail: 
zhdeng@ucdavis.edu). 

K.S. Choi is with the Centre for Smart Health, the Hong Kong Polytechnic 

University(e-mail: kschoi@ieee.org) 
Y.Z. Jiang and S.T. Wang are with the School of Digital Media, Jiangnan 

University, Wuxi 214122, China (e-mail: wxwangst@aliyun.com). 

the target domain are labeled in the former approach while all the 

data in the target domain are unlabeled in the latter. In this study, 

we focus on inductive transfer learning.  

Modeling task in  the 

Target Domain
 

 
 Useful information in the 

Source Domain
 

Fig.1 An illustration of transfer learning for modeling in the target domain 

 
TABLE I DEFINITION OF DOMAINS IN TRANSFER LEANING 

Terms Explanations 

Domain 

A domain is a scene where a modeling task is to be 

accomplished. It is usually characterized by the 
data collected and the learning task to be 

performed in this domain. 

Target domain 

In transfer learning, it is referred to as a domain 

containing insufficient data or data that are difficult 
to be used for proper modeling, while a modeling 

task is required to be effectively implemented. 

Source domain 

It is the domain related to the target domain, with 
similar data distribution and/or learning task to 

some extent. There may be differences between the 

target domain and the source domain, but it is 
assumed that the source domain can provide some 

useful information for the modeling task in the 

target domain. 

 
The use of inductive transfer learning in real world applications 

is becoming more common. One of the examples is the modeling 

of fermentation process [24]. In the target domain of certain 

microbiological fermentation process, the data collected may be 

insufficient for modeling. Some of the required data may be 

missing due to deficiency of the sensor setup. Thus, we cannot 

effectively model the fermentation process for this domain with the 

data collected. However, if the data available from other similar 

microbiological fermentation processes are available, they can be 

considered as source domains for the target domain. Transfer 

learning can then be exploited by making use of the information 

from the source domain to improve the modeling result of the 

target domain (see Fig. 1), thereby resulting in a model with better 

generalization capability. In this case, inductive transfer learning is 

an effective solution to the corresponding modeling task because it 

can enhance the model by leveraging the information available 

from the source domains, such as the data collected in other time 

frames or with other setups. 

Many modeling techniques have been adopted to implement 

inductive transfer learning for modeling task based on different 

intelligence models, including support vector machine (SVM), 

neural networks, fuzzy logic systems and so on. For example, 

SVM has been extensively used to develop different inductive and 

transductive transfer learning methods [15, 27]. Although many 

inductive transfer learning algorithms have been proposed and 

shown to be effective in various applications, an obvious issue is 
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that most of the algorithms are developed only for a specific model 

that make it difficult to use the related transfer learning mechanism 

for other models and restrict the applicability. Hence, there is a 

demand for generalized transfer learning modeling methods that 

can be readily used for most classical models, e.g. neural networks, 

fuzzy systems and kernel methods. To meet this challenge, we 

propose a generalized ridge regression learning method, the 

generalized hidden-mapping ridge regression (GHRR), as well as 

the associated transfer GHRR (TGHRR) established on the 

knowledge-leverage based transfer learning mechanism in order to 

realize inductive transfer learning for multiple classical models, 

including neural networks, fuzzy systems and kernel methods. 

Compared with most existing inductive transfer learning 

methods, which usually implement transfer learning by using the 

data in the source domain directly, the proposed 

knowledge-leverage mechanism based TGHRR has the following 

advantages: (1) while the data are the original information in a 

source domain, the knowledge can be taken as the induced 

information by some learning procedure from the source domain. 

In practical applications, information obtained from the induced 

knowledge is expected to be more apparent and concise than that 

from the data in the source domain. (2) when the data in the source 

domain are used directly, the data indeed may not be always 

appropriate for the learning task in the target domain due to 

potential drifting in data distributions between the source and 

target domains, where controlling the balance of the similarity and 

difference in data distributions between these two domains in the 

learning procedure is an issue. However, compared with the direct 

use of the data in the source domain, it is expected that, by using 

the induced knowledge of the source domain for the target domain, 

the influence of the source domain can be controlled more 

conveniently. (3) For those scenes where inductive transfer 

learning is required, there are usually plenty of labeled data in the 

source domain but few in the target domain. In this case, if the data 

in the source domain is directly used for the modeling task in the 

target domain, the trained model will over approximate the scene 

in the source domain, which should be avoided in the transfer 

learning procedure. This is still a not well-solved problem in the 

existing inductive transfer learning methods. In this study, since 

the proposed methods do not need to directly use the data in the 

source domain for most situations, the problem can be effectively 

avoided to some extent. 

 In conclusion, the proposed transfer learning algorithm 

TGHRR has two distinctive characteristics: (1) TGHRR is not 

restricted to a certain model but can taken as a more general 

method applicable for various intelligent models, such as fuzzy 

systems and neural networks; and (2) the knowledge-leverage 

mechanism realizes transfer learning from the source domain to the 

target domain, which makes it more convenient to control and 

balance the similarity and difference of data distributions between 

two domains.  

The rest of this paper is organized as follows. Section II 

describes the related work, including a review of the classical 

inductive transfer learning methods, the existing ridge regression 

learning methods and the knowledge-leverage based inductive 

transfer learning framework. In Section III, the GHRR method is 

introduced and the properties are discussed. The TGHRR method 

is then proposed in Section IV by integrating the 

knowledge-leverage based inductive transfer learning mechanism. 

Experimental results and analyses are given in Section V. Further 

discussions about the proposed methods and the potential 

improvements are given in section VI. Finally, the paper is 

concluded in section VII. For clarity, a list of acronyms used in this 

paper is given Table II. 
 

TABLE II THE ACRONYMS USED IN THIS PAPER 

Acronym Description 

RR, KRR, DRR, 

GHRR, GHRR 

Ridge Regression, Kernelized RR, Dual RR, Generalized 

Hidden-mapping RR, Transfer GHRR 

FLS, TSKFLS Fuzzy Logic Systems, Takagi-Sugeno-Kang FLS 

MHFN Multiple Hidden-layer Feedforward Neural Networks 

SVM Support Vector Machine 

RKHS Reproducing Kernel Hilbert Space 

RBF, RBF-NN Radial Basis Function, RBF-Neural Networks 

KKT Karush–Kuhn–Tucker 

II. RELATED WORK 

In this section, we first review the classical inductive transfer 

learning methods, followed by several existing ridge regression 

learning methods. Finally, the knowledge-leverage based transfer 

learning framework is introduced. 

A.  Inductive Transfer Learning 

Definition (Inductive Transfer Learning) [1]. Given a source 

domain DS and a learning task TS in DS, a target domain DT and a 

learning task TT in DT, inductive transfer learning aims to improve 

the learning of the target predictive function fT(.) in DT using the 

knowledge in DS and TS, where TS TT. 

Under inductive transfer learning setting, the target task is 

different from the source task. In this case, some labeled data in the 

target domain are required to induce an objective predictive model 

for use in the target domain. Representative inductive transfer 

learning algorithms can be summarized as follows [1]. (i) 

Instance-transfer approach. Dai et al. [25] proposed a boosting 

algorithm called TrAdaBoos, which is typical inductive transfer 

learning algorithm by weighting the data in the source domain. 

Jiang and Zhai [26] proposed a heuristic method to remove 

“misleading” training examples from the source domain. Liao et al. 

[2] proposed a new active learning method to select the unlabeled 

data in a target domain, which are to be labeled with the help of the 

source domain data. Wu and Dietterich [27] integrated the source 

domain (auxiliary) data with the SVM framework to improve the 

classification performance; (ii) Feature-representation-transfer 

approach. This is similar to common feature learning in the field of 

multitask learning [28]. If no labeled data in the source domain are 

available, unsupervised learning methods are proposed to 

construct the feature representation; (iii) Parameter-transfer 

approach. Lawrence and Platt [6] proposed an efficient algorithm 

known as MT-IVM, which is based on Gaussian Processes (GP) to 

handle multitask learning. Bonilla et al. [29] also investigated 

multitask learning in the context of GP. Schwaighofer et al. [7] 

proposed to use hierarchical Bayesian framework (HB) together 

with GP for multitask learning. Evgeniou and Pontil [30] applied 

the idea of HB to SVMs for multitask learning. Gao et al. [8] 

proposed a locally weighted ensemble learning framework to 

combine multiple models for transfer learning. (iv) 

Relational-knowledge-transfer approach. Mihalkova et al. [9] 

proposed the TAMAR algorithm that transferred relational 

knowledge with Markov Logic Networks (MLNs) across relational 

domains. MLNs [31] is a powerful formalism for statistical 

relational learning, which combines the compact expressiveness of 

first-order logic with flexibility of probability. Mihalkova and 

Mooney [10] extended TAMAR to the single-entity-centered 

setting of transfer learning. Davis and Domingos [11] proposed an 

approach to transfer relational knowledge based on a form of 

second-order Markov logic. 
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Although many approaches have been proposed to realize 

inductive learning and they have demonstrated distinctive 

effectiveness in different applications, there are still difficult issues 

to be resolved:  

(1) Many of the existing algorithms are developed for a specific 

model only, e.g. SVM. These algorithms are thus infeasible for 

other models. Even though some algorithms such as TrAdaBoost 

are universal for different learners, the realization of this algorithm 

on different models, including SVM and neural networks, is so 

different that the use for other models is difficult and inconvenient. 

(2) Most of the algorithms assume that the data in the source 

domain are available and these data can be used for transfer 

learning directly. Since drifting in data distributions between the 

source and target domains can possibly exist, it is difficult to 

maintain a balance in similarity and difference of data distributions 

between these two domains in the learning procedure. Besides, due 

to privacy protection, it may be forbidden to disclose the data in the 

source domain.  

In this study, we will develop a new method to deal with these 

two issues from the viewpoint of ridge regression learning.  

B. Classical Ridge Regression 

Several existing ridge regression learning methods [32-34] are 

briefly introduced in this section, including the basic methods, 

kernel methods, and dual ridge regression methods. The network 

structure of ridge regression is also discussed. For simplicity and 

clarity, all the vectors in this paper are represented with the column 

vectors. The notations used in the text are listed in Table I (S) of 

the Supplementary material. 

1) Basic Ridge Regression: For a given regression task and the 

dataset  ,i iyx , , ,d
i R y R x 1, ,i N , the idea of basic ridge 

regression (BRR) [32] is to obtain a linear regression model 

 ( ) Ty f x x w  (1) 

with ,d dR R w x , by optimizing the following objective 

 
2 21

min  
2 2


 

w
Xw y w , (2) 

where 

 1 , ,
N

T
N dR   

  
X x x  (3) 

 1[ , , ]T N
Ny y R y . (4) 

Taking the derivatives of Eq. (2) and equating them to zero gives 

 
1

T T
N


  w X X I X y , (5) 

where NI  is an N N  identity matrix.  

The output of BRR is a linear function in the original space and 

therefore BRR only realizes linear regression. 

2) Kernel Ridge Regression: By introducing the kernel trick, the 

kernel ridge regression (KRR) method aims to obtain a linear 

regression model in the Reproducing Kernel Hilbert Space 

(RKHS) [33, 34], i.e., 

 ( ) ( )Ty f  x x w  (6) 

by optimizing the following objective 

 
2 21

min  
2 2




 
w

X w y w , (7) 

where ( )
d

R  x  is the image of x  in the RKHS and 

  1( ), , ( )
T N d

N R 
  


   X x x . (8) 

Similarly, the solution can be written as 

  
1

T T
d  


  w X X I X y . (9) 

Since the dimension of the feature in the RKHS is usually 

unknown, Eq. (9) cannot be solved directly. However, the 

following identity can be adopted to tackle this issue. 

   
1 1

1 1 1T T T T
 

    P B R B B R PB BPB R . (10) 

In Eq.(10), P , B  and R  are three matrices. Let 
1

d
P I , 

B X  and NR I . With the identity of Eq. (10), the solution in 

Eq. (9) can be then given by 

   
1 1

T T T T
d N      

 
    w X X I X y X X X I y . (11) 

Here, d
I  is a d d   identity matrix. The same result can also be 

obtained by the dual ridge regression method to be introduced in 

the next subsection, as shown in Eq.(20.b). With Eq. (11), the 

output function of KRR is 

 
1

( ) ( ) ( )T T T T
Ny f     


       

x x w x X X X I y . (12) 

Since ( ) x is usually unknown, Eq.(11) can be calculated by 

introducing the Mercer kernel. Define a Mercer kernel matrix for 

KRR as follows, 

 T N N
KRR R 

 Ω X X  (13) 

with  , ( ) ( ) ( , )T
KRR i j i j i jK   x x x x , where ( , )i jK x x  is a 

kernel function. Then, Eq.(12) can be written as 

 

1

1
1

( ) ( ) ( )

( , )

.

( , )

T T T T
N

T

KRR N

N

y f

K

K

    








      

 
 

  
 
 

x x w x X X X I y

x x

Ω I y

x x

 (14) 

When nonlinear kernel functions, such as radial basis function 

(RBF), are adopted, KRR can be used for nonlinear regression. 

Especially, if the kernel function is a linear kernel, i.e., 

( , ) T
i j i jK x x x x , KRR is equivalent to BRR and is just linear 

regression in the original space. Thus, BRR can be taken as a 

special case of KRR. 

3) Dual Ridge Regression: Instead of optimizing the primal cost 

functions in BRR and KRR to obtain regression models, an 

alternative optimization method is to solve the dual problem. Here, 

Eq. (7) is equivalently formulated as [34] 

 
22

1,

1
min  

2 2

N

i
i







w ξ
w   (15) 

s.t. ( )Ti i iy  x w , 1, ,i N , 

where i  is the training error, i.e., the slack variable, with respect 

to the training sample ix . The Lagrangian function of Eq. (15) is  

 22

1 1

1
( , , ) ( )

2 2

N N
T

DRR i i i i i i i
i i

L y


     
 

     w w x w (16) 

where , ,
T N

i N R    α  is the Lagrangian multiplier vector. 

Using the Karush–Kuhn–Tucker (KKT) theorem, the following 

optimality conditions are obtained. 

 
1

1
0    ( )

N

DRR i i
i

L  
 

     w w x  (17.a) 

 0    DRR i i iL        , 1, ,i N , (17.b) 

 0    ( )TDRR i i i iL y        x β 0 , 1, ,i N . (17.c) 
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Then, from Eqs. (17.a)-(17.c), we have 

 T
 w X α , (18.a) 

 ξ α , (18.b) 

    X w y ξ 0 . (18.c) 

By substituting Eqs. (18.a) and (18.b) into Eq. (18.c), we can get 

the following equation. 

  T
N      

X X I α y  (19.a) 

Then, we have  

 
1

 T
N  


     
α X X I y . (20.a) 

Furthermore, based on (17.a) , 
w can be obtained by 

  
1

T T T
N    


   w X α X X X I y . (20.b) 

Note that Eq. (20.b) is the same as Eq. (11). Thus, if the feature in 

the mapping space is unknown, the kernel trick can be used as in 

KRR. 

1
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d
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(a) (b) 

Fig.2 Network structure of regression model learned by BRR and KRR. (a) 

BRR; (b) KRR. 

 

4) Network Structure of Ridge Regression 

Ridge regression can be interpreted from the viewpoint of neural 

networks [35], as illustrated in Fig. 2. From Fig. 2(a), we can see 

that BRR can be used to learn a two-layer neural network, which 

only realize linear regression. On the other hand, as shown in Fig. 

2(b), KRR can be used to learn a three-layer neural network, where 

the hidden layer consists of d  hidden nodes. The value of d  and 

the form of the activation functions in the hidden layer are usually 

unknown. According to the theory of neural networks, we know 

that the network in Fig. 2(b) usually have strong nonlinear 

approximation abilities with appropriate activation function. Since 

the form of the hidden nodes is usually unknown for neural 

networks associated with KRR, the kernel trick is needed for 

solving KRR, as described previously in section II-B-2. 

 
 Data of target domain 

(insufficient)

Target 

domain
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domain

 
 Knowledge of 

Source domain

Knowledge-Leverage 

Based Transfer Learning

Modeling/learning from the 

data of target domain and the 

knowledge of source domains

Models learned by the 

knowledge-leverage based 

transfer learning methods

 

Fig. 3 A framework of knowledge-leverage based transfer learning. 

C. Knowledge-leverage based Transfer Learning 

Most inductive transfer learning algorithms are developed to 

learn directly from the data in the source domain with some 

strategies. Rather than the original data, transfer learning from the 

knowledge in the source domain is investigated recently with the 

knowledge-leveraged based transfer learning framework [36, 47]. 

As shown in Fig. 3, a generalized learning framework was 

proposed in [36] for knowledge-leverage based fuzzy system 

transfer learning. Under this framework, the model in the target 

domain can be learned from the data in the target domain and the 

knowledge in the source domain simultaneously. In this study, 

knowledge-leverage based inductive transfer learning for the 

proposed GHRR will be studied accordingly. 

III. GENERALIZED HIDDEN-MAPPING RIDGE REGRESSION 

In this study, we extend BRR and KRR to propose the 

generalized ridge regression method GHRR, where BRR and KRR 

become a special case of GHRR. Especially, we will show that 

GHRR can be used to train a wide range of intelligence models, 

including forward-feed neural networks, Takagi-Sugeno-Kang 

fuzzy logic systems (TSKFLS) and kernel methods. The properties 

of GHRR are also discussed. 

A. GHRR 

In essence, the idea of GHRR is to obtain a linear regression 

model in a hidden-mapping feature space, i.e., 

 
1

( ) ( ) ( )
dT

i i
i

y f w


 


  x x w x , (21) 

with optimizing the following objective 

 
2 21

min  
2 2




 
w

X w y w , (22) 

where  

  1( ), , ( )
T N d

N R 
  


   X x x . (23) 

Here, ( )
d

R  x  is the vector in the hidden-mapping space, which 

is obtained from x  by hidden-mapping. 

The following explanation is provided to clarify the difference 

between the proposed GHRR and the existing ridge regression 

methods.  

(1) BRR is a special case of GHRR with ( ) dR  x x , i.e., the 

hidden-mapping feature space is just the original feature space. 

(2) For KRR, the input variable is in the RKHS, i.e., ( )
d

R  x , 

where the dimension number in this space is usually unknown and 

kernel trick is needed to solve the corresponding ridge regression. 

Thus, when ( ) ( ) x x , KRR is reduced to a special case of 

GHRR. 

(3) For GHRR, ( )
d

R  x  in a hidden-mapping feature space is 

taken as the input variable, which can be known or unknown. 

When ( )
d

R  x  is unknown, the setting is similar to that of the 

kernel-mapping space in KRR. However, in most situations the 

hidden-mapping space may be known. For example, the 

hidden-mapping feature space can be constructed by different 

classical intelligence models, such as neural networks and fuzzy 

logical system, which will be explained in the next subsection.  

B. GHRR: A Unified Learning Method for Neural Networks, 

Fuzzy Systems and Kernel Methods  

In this section, we will show that classical intelligent models, 

including neural networks, fuzzy systems and kernel methods, can 

be learned by using GHRR. In other words, we will show that the 

learning of these models can be transformed to the learning of a 
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linear regression model in a hidden-mapping feature space. 

1) GHRR for Feedforward Neural Networks: Consider a 

multiple hidden-layer feedforward neural network (MHFN) with 

single output, which includes an input layer, M  hidden layers and 

an output layer. This MHFN can be viewed as a generalized signal 

hidden-layer feedforward neural network with more complicated 

activation functions in the hidden layer. For a reduced single 

hidden-layer feedforward neural network (SHFN), the output can 

be formulated as 

 
1

( ) ( , )
MN T

i i i
i

y f g w


 x x θ . (24) 

As proved in literature [37,38], if the activation 

functions ( , )i ig x θ are piecewise continuous, the hidden nodes can 

be randomly generated independent of the training data and the 

corresponding network still retain the universal approximation 

capability. Thus, when the hidden parameters are fixed with the 

randomly generated hidden nodes, the MHFN training can be 

taken as a hidden-mapping linear regression problem. Let the 

hidden mapping function ( ) x  be 

 1 1
( ) [ ( , ), , ( , )] M

M M

NT

N N
g g R  x x θ x θ , (25) 

Eq. (24) can then be written as 

( ) ( )Ty f  x x w , (26) 

and it is can be solved directly by using the GHRR method as 

discussed in Eqs. (21)-(23). 

2) GHRR for TSKFLS: Next, we will show that classical 

TSKFLS [39] can be trained by using the proposed GHRR. For 

TSKFLS, the most commonly used fuzzy inference rules are 

defined as follows.  

TSK Fuzzy Rule kR :  

1 1 2 2IF  is   is   is  k k k
d dx A x A x A    (27) 

  0 1 1Then  k k k k
d df p p x p x   x , 1k , ,K . 

In Eq. (27), k
iA  is a fuzzy subset subscribed by the input 

variable ix  for the kth rule; K is the number of fuzzy rules, and   

is a fuzzy conjunction operator. Each rule is premised on the input 

vector 1 2[ , , , ]T d
dx x x R x , and maps the fuzzy sets in the 

input space k dA R  to a varying singleton denoted by  kf x . 

When multiplicative conjunction, multiplicative implication and 

additive disjunction are employed respectively as the conjunction 

operator, the implication operator and the disjunction operator, the 

output of the TSKFLS can be formulated as 

     
1 1

1

( )
( )

( )

kK K
k k k

Kk kk

k

y f f f





 



     


x
x x x x

x

 (28) 

where ( )k x  and ( )k x  denote the fuzzy membership and the 

normalized fuzzy membership associated with the fuzzy set kA . 

These two memberships can be calculated with 

  
1

( )k
i

d
k

iAi
x 


x , (29.a) 

      
1

Kk k k

k
  




 x x x . (29.b) 

Here, clustering technique is commonly used to set the parameters 

of the antecedents. When the antecedents of the TSKFLS are 

determined, we can consider the learning of TSKFLS as the 

hidden-mapping linear regression below, 

( ) ( )Ty f  x x w  (30) 

with 

 1 2 ( 1)( ) ( ) ,( ) , ,( )
T

T T K T K dR     
x x x x  (31.a) 

 k k
ex x x , (31.b) 

(1, )T T
e x x , (31.c) 

1 2( ) ,( ) , , ( )
T

T T K T    
w p p p ,  (31.d) 

0 1( , , , )k k k k T
dp p pp . (31.e) 

Thus, the TSKFLS can be solved directly by using the GHRR 

method as described in Eqs. (21)-(23). 

In particular, from the viewpoint of neural networks, TSKFLS 

can be viewed as the corresponding fuzzy neural network. As in 

the case of neural networks, we can transform TSKFLS into the 

generalized SHFN with the specified hidden nodes, where the 

activation functions in the hidden layer are defined as 

 ( , )= k
j j eig x x x , 

( 1)( 1) ,    1, , ,     1, , 1j k d i k K i d         . (32) 

Comparing Eq. (31.a) with Eq. (32), it is obvious that the following 

equation is satisfied. 

( 1)
1 1 2 2 ( 1) ( 1)( ) ( , ), ( , ), , ( , )

T K d
K d K dg g g R    

 
  
 

x x x x . 

It has been proved in literature [37, 38] that from the viewpoint 

of neural networks, the activation functions can also be randomly 

generated and the corresponding fuzzy neural networks are still 

universal approximators. Thus, once the hidden nodes, i.e. the 

antecedents of TSKFLS, are fixed by random generation or other 

techniques such as clustering technique, the learning of TSKFLS 

can be regarded as a hidden-mapping linear regression problem 

and solved directly by using the GHRR method proposed in Eqs. 

(21)-(23). 

3) GHRR for Kernel Methods: Kernel methods have been 

studied extensively and SVM is the most classical one. SVM is 

used to solve a linear model in RKHS based on statistical learning 

theory. For the proposed GHRR method, if the hidden-mapping is 

unknown in the RKHS, we only need to solve the linear model in 

RKHS in a way similar to that achieved by KRR [33,34] (see the 

review of KBB in section II-B-2). In this case, the GHRR can be 

easily used to train the kernel methods. 

C. Optimization of GHRR 

The objective function of GHRR in Eq. (22) can be solved 

efficiently in various ways depending on the condition of the 

hidden-mapping ( ) x . Here, we discuss the different cases as 

follows. 

1) Case 1: ( ) x  is known: In this case, we can obtain explicit 

values of the data ( ) x  in the hidden-mapping space. For 

example, ( ) x  can be constructed by neural networks or fuzzy 

logic systems. The solution for the model parameter w  can then 

be obtained in a similar form as that shown in Eqs. (5) and (9), i.e., 

  
1

T T
d  


  w X X I X y , (33.a) 

where T
d  X X I  is a d d   matrix. If the d   is small, the 

computation of the inverse of this matrix is very efficient. 

Otherwise, if the size of dataset is much smaller than the 

dimensionality d  , we can instead solve GHRR more efficiently 

using the approach discussed in Eqs. (11) and (20), i.e., 
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1

 T
N  


     
α X X I y , (33.b) 

  
11 T T T

N    



   w X α X X X I y , (33.c) 

where T
N  X X I  is an N N  matrix. If N  is small, the 

computation of the inverse of this matrix can be very efficient.  

2) Case 2: ( ) x  is unknown: In this case, explicit formulation 

of the data ( ) x  in the hidden-mapping space cannot be obtained 

and thus w  cannot be specified explicitly. Kernel trick is then 

needed to obtain the final decision function  f x . While the 

introduction of kernel trick to the solution strategy in (33.a) is 

difficult, it can be achieved conveniently with the solution strategy 

in (33.c). Following the approach described in Eqs. (12)-(14), we 

can obtain the decision function  f x  as follows, 

1
 GHRR N 

    α Ω I y , (34.a) 

11
 T T

GHRR N  


     w X α X Ω I y , (34.b) 

1

1
1

( ) ( ) ( )

( , )

       .

( , )

T T T
GHRR N

T

GHRR N

N

f

K

K

  







    

 
 

    
 
 

x x w x X Ω I y

x x

Ω I y

x x

 (34.c) 

where T
GHRR  Ω X X  with  , ( ) ( )T

GHRR i j i j   x x  ( , )i jK x x  

and ( , )i jK x x  denotes the kernel function. Hence, GHRR is 

equivalent to KRR in this particular case, as discussed in section 

II-B-2. 

D. Algorithm of the GHRR 

Based on the solution of GHRR described above, the details of 

the proposed algorithm for GHRR are given below. 

Algorithm of the GHRR 

Case 1: The hidden-mapping is known 

Step 1: Calculate the model parameter 
w  using Eq. (33.a) or Eq. 

(33.c). 
Step 2: Calculate the output of the testing data using the decision 

function ( ) ( )Tf  x x w . 

Case 2: The hidden-mapping is unknown and kernel trick is 

adopted 
Step 1: Calculate α  using Eq. (34.a). 

Step 2: Calculate the output of the testing data using the decision 

function in Eq. (34.c). 

Remark 1. For the proposed GHRR algorithm, if the 

hidden-mapping is known, when the number of the training data is 

larger than the number of features in the hidden-mapping space, 

i.e., (N>> d ), it is more efficient to use Eq. (33.a) rather than Eq. 

(33.c) considering the computational complexity of matrix inverse; 

otherwise, Eq. (33.c) is used. 

E. Classification 

GHRR is originally developed for regression. Similar to other 

regression methods like radial basis function neural network 

(RBF-NN), additional strategies are required when GHRR and the 

proposed TGHRR (to be discussed in section IV) are used for 

classification. One of the commonly used approaches is to use the 

regression function to approximate the class labels in the 

corresponding classification task. Once the model is trained, a 

future testing sample can be tested and the label, which is nearest 

to the model output, is taken as the label of the given testing 

sample. Here, a more effective strategy enabling the use of 

regression method for classification is introduced in detail as 

follows. 

The idea of the strategy is to use a multiple output function for 

the classification task. For a given classification dataset including 

m classes,  ,i iyx ,  1, ,iy m , 1, ,i N , we will construct a 

multi-output  regression dataset  ,i ix y . If the original class label 

is 
iy p (1 )p m  for the ith training sample in  ,i iyx , the 

corresponding output vector containing m outputs in the 

constructed multi-output regression dataset  ,i ix y is defined as  

[0, ,0, 1,0, ,0]
p

T m
i R y .  

In this output vector, only the pth element of iy  is one, while the 

rest of the elements are set to zero.  

With the corresponding multi-output regression dataset, a 

multi-output regression model will be trained. Once the trained 

model is obtained, for a given testing sample the output vector 

obtained by the trained model can be expressed as  
model model model model

,1 ,,
[ , , , ]Ti i i mi l
y y yy . 

Then the predicted class label of the testing sample is the index of 

the element having the highest value in the output vector. For 

example, if model
,i l

y (1 )l m   has the highest value among all the 

elements in the vector model
iy , i.e., model

,{ }i jy , 1, ,j m , the final 

predicted class label of the testing sample will be l . 

IV. TGHRR 

For the proposed GHRR, our ultimate goal is to develop the 

corresponding transfer learning method TGHRR for the inductive 

transfer learning task. In particular, the knowledge-leverage based 

transfer learning mechanism is introduced to the GHRR and the 

algorithm is presented below. 

A. Objective Function for TGHRR 

Based on the knowledge-leverage based transfer learning 

framework described in section II-C, the following generalized 

objective function is proposed for TGHRR. 

 min  ;TGHRR t sJ J J
Θ

Θ Θ Θ( ) + ( ) , (35) 

where Eq. (35) consists of two parts which are explained below.  

(1) The first part,
tJ , inherits from the GHRR directly, which is 

used to train the model by the data in the target domain. 

(2) The second part,
sJ , is developed for knowledge leverage 

from the source domain. For the design of the TGHRR, this part is 

varied and depends on the specified knowledge-leverage strategies 

adopted. 

With the general objective in Eq. (35), we propose the explicit 

objective function below 

 
2 220 11

min  
2 2 2

s
 

   
w

X w y w w w , (36.a) 

or equivalently, 

 
222 0 1

,
1

1
min  

2 2 2

N

i s

i

 




  
w ξ

w w w , (36.b) 

 s.t. ( )Ti i iy  x w , 1, ,i N . 

In Eq. (36), the first two terms are inherited from the GHRR 

directly, which are used to learn from the data in the target domain, 
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while the third term is used to learn from the knowledge, i.e., the 

model parameters sw , from the source domain, where the model 

parameter sw  is assumed to be knowledge available from the 

source domain. 

B. Optimization of TGHRR 

For simplicity, we use Eq. (36.b) to derive the solutions of the 

two proposed objective functions in Eqs. (36.a) and (36.b). The 

corresponding Lagrangian function of Eq. (36.b) can be expressed 

as 

222 0 1

1

1

1
( , , )

2 2 2

                           ( ( ) )

N

TGHRR i i i s
i

N T
i i i i

i

L

t

 
  

 





   

  





w w w w

ρ x w

. (37) 

Based on the KKT theorem, the following KKT optimality 

conditions are given: 

0 1
1

0  ( ) ( )
N

TGHRR s i i
i

L   


       w w w w ρ x 0 ,  (38.a) 

0TGHRR iL     α ξ , 1, ,i N , (38.b) 

0 ( ) 0T
TGHRR i i i iL y        x w , 1, ,i N . (38.c) 

Then, from Eqs. (38.a)-(38.c), we have 

 1 0 1 0 1( ) ( )T
s        w w X α , (39.a) 

 ξ α , (39.b) 

    X w y ξ 0 , 1, ,i N . (39.c) 

The solution of the proposed TGHRR can then be calculated 

efficiently in different ways depending on the hidden mapping 

( ) x  and the training conditions. 

1) Case 1: ( ) x  is known and the number of training data is 

small. 

In this case, the solution of TGHRR can be calculated efficiently 

as follows. By substituting Eqs. (39.a) and (39.b) into Eq. (39.c), 

we obtain 

1

0 1 0 1

1 T
N s  



   

 
   

  
X X I α y X w . (40)  

With Eq. (40), the solution for α  is given by 

1

1

0 1 0 1

1 T
N s  



   


    
          

α X X I y X w . (41.a) 

Then, we can calculate w  using (39.a) as follows. 
1

1 1

0 1 0 1 0 1 0 1

1
1 1

0 1
0 1 0 1

1

   ( ) .

T
Ts

N s

T Ts
N s


  

   

 

       

 
 

   






   
             

 
            

Xw
w X X I y X w

w
X X X I y X w

  

  (41.b) 

The final output of the hidden-mapping linear regression model 

can be formulated as 

 ( ) ( )Tf  x x w , (42) 

with 
w  obtained in Eq. (41.b). 

2) Case 2: ( ) x  is known and the number of dimensionality of 

( ) x  is small.  

In this case, the solution of TGHRR can be calculated efficiently 

by first obtaining ξ  using Eqs. (39.a) and (39.b), i.e.,  

   1
0 1

0 1

T s



 

 

  
        

w
ξ X w , (43) 

with T



 
  
X  as the pseudo-inverse of T

X . Substituting Eq. (43) 

into Eq. (39.c), we have  

   1
0 1

0 1

T s
 


 

 

  
          

w
X w y X w 0 , (44) 

and then we can get 

    
1

0 1 1
T T

d s    


     
  

w X X I X y w . (45) 

Furthermore, the output of the hidden-mapping linear regression 

model can be formulated as  

 ( ) ( )Tf  x x w , (46) 

with 
w  obtained in Eq. (45). 

3) Case 3: ( ) x  is unknown. 

When the hidden mapping ( ) x is unknown, 
w  cannot be 

calculated directly as in the two previous cases with Eq. (41.b) or 

Eq. (45). However, when the Mercer kernel is adopted, the output 

of the hidden-mapping linear regression model can be computed 

accordingly. From Eq. (41.a), we know that 

 

1

1

0 1 0 1

1 T
N s  



   


   

          
α X X I y X w . (47) 

Since sw  is the parameter of the hidden-mapping linear model 

learned in the source domain by GHRR, according to Eqs. 

(33.a) and (33.b), it can be expressed as 

 ,
T

s s s s w X α , (48.a) 

 
1

, ,  T
s s s s s Ns s  


    

α X X I y . (48.b) 

Here, ,sX  is the matrix constructed using the data in the source 

domain by Eq. (23); s  is the regularization parameter used in the 

source domain. Since ( ) x is unknown, we express Eq. (48.b) as 

 
1

,  s s GHRR s s Ns s 


   α Ω I y , (48.c) 

with , , ,( , )
s s

GHRR s i s j s
N N

K


 
 

Ω x x . Meanwhile, substituting Eq. 

(48.a) into Eq. (47), we have 
1

1
,

0 1 0 1

1 1T T
N s s

s
   



    


    
            

α X X I y X X α . (49.a) 

Furthermore, as ( ) x is unknown, Eq. (49.a) can be expressed as 

1

1
, ,

0 1 0 1

1 1
GHRR t N GRRR ts s

s



    


    
            

α Ω I y Ω α  (49.b) 

with , , ,( , )
t t

GHRR t i t j t
N N

K


 
 

Ω x x  and 

, , ,( , )
t s

GRRR ts i t j s
N N

K


 
 

Ω x x . Then, according to Eq. (41.b), we 

have 

1 1
,

0 1 0 1 0 1 0 1

1 1
T

T Ts
s s

s


 

 

        


    

   

X αw
w X α X α .  (50) 

Finally, the decision function of the hidden-mapping linear model 

can be expressed as 
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1
,

0 1 0 1

1
,

0 1 0 1

1, 1,

1

0 1 0 1
, ,

1 1
( ) ( ) ( ) ( )

1 1
                     ( ) ( )

( , ) ( , )
1 1

                     

( , ) (

T

T T T T T
s s

s

T T

s s
s

s t

s
s

Ns s Nt t

f

K K

K K

 

 


  

    


 

    



    

 



  
 

 
 

 
 

  
  

 

x x w x X α x X α

X x α X x α

x x x x

α

x x x

.

, )

T



 
 
 
 
 

α

x

  (51) 

 

C. Algorithm of TGHRR 

Based on the solution of TGHRR above, the details of the 

proposed algorithm of TGHRR are presented below. 

 

Algorithm of TGHRR 

Case 1:  The hidden mapping is known 

Step 1:  Obtain the knowledge from the source domain, i.e., the 

model parameter sw  and the parameters of the hidden 

nodes in the source domain. 

Step 2:  Calculate the model parameter 
w  in the target domain 

by using Eq. (41.b) or Eq. (45). 

Step 3:  Calculate the output of the testing data by using Eq. (42) 

or Eq. (46). 

Case 2:  The hidden mapping is unknown and kernel is 

adopted 

Step 1:  Obtain the knowledge and data from the source domain, 

i.e., ,s sα , and  ,s i sD  x . 

Step 2:  Calculate 
α  by using Eq. (49.b). 

Step 3:  Calculate the output of the testing data by using Eq. (51). 

 

Remark2. For the proposed TGHRR algorithm, if the hidden 

mapping is known, when the number of the training data is larger 

than the number of dimensionality of the hidden-mapping features, 

i.e., (N>> d ), obtaining the solution with Eq. (41) is more 

efficient than that with Eq. (45) considering the computational 

complexity of matrix inverse; otherwise, Eq. (45) is more efficient. 

Remark3. When the hidden mapping is known, only the 

knowledge 
sw  is used for transfer learning and the data in the 

source domain is not required. This means that the proposed 

algorithm has good privacy protection ability for the data in the 

source domain. However, if the hidden feature mapping is 

unknown, the data in the source is also required, as shown in Eqs. 

(50) and (51), in order to effectively implement transfer learning. 

In this case, the proposed algorithm can no longer protect the 

privacy of the data in the source domain.  

V. EXPERIMENTS 

Three sets of experiments were conducted to comprehensively 

evaluate the performance of the proposed GHRR and TGHRR 

algorithms. The first two experiments studied their performance on 

two regression datasets, i.e., a synthetic dataset and a real-world 

biomechanical process modeling dataset. The last experiment was 

carried out on real-world text classification datasets, i.e., email 

spam filtering text datasets. 

A. Experimental Setup 

1) Methods for Comparison: The performance of the proposed 

algorithms were compared with a number of existing classical 

non-transfer learning and inductive transfer learning algorithms 

as listed in Tables III and IV, respectively. 
TABLE III NON-TRANSFER LEARNING METHODS USED FOR PERFORMANCE 

COMPARISON 

Method Description Task 

GHRR: SHFN(RBF) GHRR used for training single 

hidden-layer neural networks with 
RBF-type hidden nodes 

Class 

and  

Reg* 

GHRR: SHFN(Sigm)  GHRR used for training single 

hidden-layer neural networks with 

Sigmoid-type hidden nodes 

GHRR: MHFN(RBF) GHRR used for training multiple 

hidden-layers neural networks with 

RBF-type hidden nodes 

GHRR: MHFN(Sigm) GHRR used for training multiple 

hidden-layers neural networks with 

Sigmoid -type hidden nodes 

GHRR: TSKFLS(RBF) GHRR used for training TSK fuzzy 
logic systems with the RBF-type 

membership function 

GHRR: RR(RBF) GHRR used for training kernel ridge 
regression with the RBF-type kernel 

function 

RBF-NN [40] RBF neural network based on the back 

propagation learning algorithm 

Reg 

L2-TSKFLS [41] L2-norm TSK-type fuzzy logic system 

learning algorithm 

LS-SVR [42] Least square support vector regression 

KNN [43] K near neighbors classifier Class 

C-SVM [44] C-support vector machine 

*Class and Reg denote classification and regression respectively. 

 

TABLE IV INDUCTIVE TRANSFER LEARNING METHODS USED FOR 

PERFORMANCE COMPARISON 

Method Description Task 

TGHRR: SHFN(RBF) 

Transfer version of GHRR used for 
training different models. 

Class 

and  

Reg* 

TGHRR: SHFN(Sigm)  

TGHRR: MHFN(RBF) 

TGHRR: MHFN(Sigm) 

TGHRR: TSKFLS(RBF) 

TGHRR: KRR(RBF) 

TrAdaBoost  

(LS-SVR+RBF) [25] 

Transfer AdaBoost based on the 

LS-SVR learner with the RBF-type 
kernel function for regression 

Reg HiRBF [45] 
Bayesian transfer learning for 

nonlinear regression 

SVR-AuD  

(LP-SVR+RBF) [27] 

Linear programming support vector 
regression with the RBF-type kernel 

function by using the auxiliary data 

TrAdaBoost 
(LS-SVC+RBF) [25] 

Transfer AdaBoost based on the 
LS-SVC learner with the RBF-type 

kernel function for classification 

Class SVC-AuD (LP-SVC) ) 

[27] 

Linear programming support vector 

classification with the RBF-type kernel 
function by using the auxiliary data 

KNN-AuD [27] KNN classification with the auxiliary 

data 

* Class and Reg denote classification and regression respectively. 

 

2) Parameter Setting: For all the algorithms, the hyper 

parameters were determined with the five folds cross-validation 

(CV) strategy based on the training sets. To save space, the 

parameter sets are presented in Table II(S) of the Supplementary 

material. 

3) Datasets: In the experiments, synthetic and real-word 

datasets were adopted for performance comparison. The synthetic 

dataset was adopted for regression task, whereas the real-world 

datasets were used for regression tasks in biomedical processing 

modeling and classification tasks in email spam filtering. For all 

the datasets, each of the attributes of the data inputs was 



 

 9 

normalized into the range [-1, 1]. For the regression datasets, the 

attributes of the data outputs were also normalized into the range 

[-1, 1]. The details of these datasets are described in the following 

subsections respectively. 

4) Evaluation Indices: In all the experiments, the performance 

index  

2 2

1 1

1 1
( ) ( )

N N

reg i i i

i i

J y y y y
N N

 

     (52.a) 

is adopted for performance evaluation of the regression tasks [35], 

where N is the number of test data; iy  is the output for the ith test 

input; iy   is the model output for the ith test input and 

1

N

i
i

y y N


 . The smaller the value of Jreg, the better the 

generalization performance. 

For classification tasks, the performance index below, i.e., 

classification accuracy, is used to evaluate the classification 

performance. 

Number of the test samples classified correcly 
=

Number of the test samples
clasJ . (52.b) 

5) Other Settings: All the algorithms in the experiments were 

implemented with Matlab on a computer with a 1.66 GHz CPU and 

2GB RAM.  

 
TABLE V THE SYNTHETIC DATASETS FOR REGRESSION 

Source domain Target domain 

Dataset (D1) Training set (D2) Testing set (D2_test) 

Size Size Size 

175 19 377 
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(a) (b) 
Fig. 4 Synthetic regression datasets: (a) two models used to generate the data in 

the source domain (SD) and the target domain (TD); (b) the generated data in 
SD and TD. 

B. On Synthetic Datasets for Regression 

1) Construction of Synthetic Regression Datasets: To simulate 

the scenarios of the inductive transfer learning tasks discussed in 

this study, the synthetic regression datasets should satisfy the 

following requirements: 1) the source domain should be related to 

the target domain, i.e., the source and target domains are different 

but related; 2) the training data of the target domain are 

insufficient, or part of the data are missing.  

Based on these requirements, we generated the synthetic 

datasets by making use of the function 

( ) cos( ) (0, ),  [ 3 ,3 ]Y f x x x N x         to define the source 

domain. It was to generate the data in the source domain (D1), 

where (0, )N  denotes the Gaussian white noise with zero mean 

and standard deviation  . On the other hand, the function 

( ) cos( )* (0, ),  [ 3 ,3 ]y F x x x x N x         was used to define 

the target domain and generate the training dataset (D2) and testing 

dataset (D2_test) of the target domain. Fig. 4(a) shows the two 

functions used to simulate the related domains and Fig. 4(b) shows 

the data generated in the source domain and the target domain, 

where the standard deviations   of Gaussian white noise in the 

data of source domains and the training data of target domain were 

both set to be 0.85, and the test data of target domain is noise-free. 
 

2) Results and Discussion: Experiments were conducted to 

evaluate the regression performance of the proposed methods and 

the related methods on the synthetic datasets. The results are 

divided into four parts, namely, Parts A to D, and presented in 

Table VI. Parts A, B and C give the results of different non-transfer 

learning algorithms obtained respectively by using (i) the data in 

the source domain only, (ii) the data in the target domain only, and 

(iii) the data in both domains. The best values of the parameters 

were obtained by the CV strategy and the corresponding 

generalization performance indices Jreg on the test data in the target 

domain for these three cases are shown in Table IV with Part A, B 

and C.  

On the other hand, Part D gives the results of different inductive 

transfer learning methods. Similarly, the corresponding 

generalization performance indices, with the best parameter values 

obtained by CV strategy, on the test data in the target domain are 

shown in Part D of Table VI. In this table, the adopted performance 

index, i.e., Jreg, is defined in Eq. (52.a) for the regression task. The 

lower the value of this index, the better the modeling effect, i.e., 

the better generalization abilities. From the results in Table VI, the 

following observations can be made. 

(1) The results in Part A show that the generalization 

performance of different models trained by the proposed GHRR 

based only on the data in the source domain are comparable with 

the performance of the classical learning algorithms, including 

RBF-NN, L2-TSKFLS and LS-SVR. The results in Part B and Part 

C of Table VI, where the models are trained with the data in the 

target domain and both domains respectively, are similar to that in 

Part A.  

(2) It can be seen by comparing the results in Part A and Part B 

that the models trained by only using the data in the source domain 

are not suitable for the regression task in the target domain. The 

performance of the models trained by using the data in the source 

domain is obviously inferior to the performance of those trained 

using the data in the target domain, even if the data in the target 

domain is insufficient. 

(3) By comparing the results in Part C with that in Part A and 

Part B, we can see that the generalization performance of the 

models is not effectively improved by training the models directly 

by using the data in both domains. While the performance of 

models trained by using the data in both domains is better than that 

of models trained by using only data in the source domain, the 

performance is still inferior to that of the models trained by using 

only the data in the target domain. Thus, the results show that it is 

usually not effective to use the data in both domains for situations 

where the data is insufficient in the target domain due to drifting 

between the source domain and the target domain. 

(4) From the results obtained by different inductive transfer 

learning methods as shown in Part D, we can see that the proposed 

knowledge-leveraged TGHRR algorithm has demonstrated an 

obvious advantage over the three classical inductive transfer 

learning regression algorithms, i.e., TrAdaBoost, HiRBF and 

SVR-AuD, which are developed to use the data of both source and 

target domains to realize transfer learning with some transfer 

learning strategies such as sample weighting.  

(5) The results in Part C and Part D show that models trained by 

the three classical algorithms, TrAdaBoost, HiRBF and 

SVR-AuD, demonstrated improved generalization performance 
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when compared to the models trained by directly using the data of 

both domains. However, the models trained by these classical 

inductive transfer learning algorithms are not significantly 

advantageous over the models trained with the data in the target 

domain only, as shown in Part B and Part D of Table IV. 

(6)  It is clear from the performance of the different models 

trained by GHRR and TGHRR that TGHRR outperforms GHRR in 

the training of neural networks, fuzzy systems and kernel methods 

in the situations where transfer learning is required due to the lack 

of training data in the target domain.  

To provide an intuitive illustration of the transfer learning 

abilities of TGHRR, the modeling effect of GHRR and TGHRR 

for training a TSKFLS with RBF-type membership functions, 

denoted by TSKFLS (RBF), is shown in Fig. 5. In the figure, the 

modeling effect of GHRR using the data in the source domain, 

target domain and both domains is presented together with that of 

TGHRR. Fig. 5(a) shows the effect of GHRR by only using the 

data in the source domain. Obviously, the model trained in the 

source domain is not suitable for the target domain. 

Fig. 5(b) shows the effect of GHRR by only using the data in the 

target domain. While the performance as shown in Fig. 5(b) is 

better than that in Fig. 5(a), since the data in the target domain is, 

after all, not sufficient for training, the performance can be further 

improved.  

Fig. 5(c) shows the effect of GHRR by using the data in both 

domains directly. By comparing Fig. 5(b) with Fig. 5(c), we see 

that it is not effective to use the data in both domains to make up 

the deficiency caused by data insufficiency in the target domain. 

This can be explained with two reasons. First, there exists a 

drifting phenomenon between the source and target domain, i.e., 

not all data in the source domain are useful for the modeling task of 

the target domain and some of them may even produce negative 

influence. Second, the size of the source domain is larger than that 

of the target domain, which makes the obtained model more apt to 

approximate the source domain rather than the target domain. 

Fig.5 (d) shows the effect of TGHRR by using the 

knowledge-leverage based transfer learning strategy. Compared 

with the other three non-transfer GHRR methods, TGHRR 

demonstrates the best modeling effect. The results indicate that 

TGHRR can effectively remedy the deficiency caused by data 

insufficiency in the target domain by leveraging the knowledge 

induced from the source domain. 
 

TABLE VI. REGRESSION PERFORMANCE (JREG) ON THE SYNTHETIC DATASETS AND THE BEST PARAMETER VALUES OF DIFFERENT ALGORITHMS. 

Performance index of non-transfer algorithms (Part A, B and C) 

 RBF-NN L2-TSKFLS LS-SVR 

GHRR 

SHFN 

(RBF) 

SHFN 

(Sigm) 

MHFN 

(RBF) 

MHFN 

(Sigm) 

TSKFLS 

(RBF) 

KRR 

(RBF) 

Part A 0.8491 0.8479 0.8475 0.8489 0.8479 0.8498 0.8489 0.8497 0.8486 

Part B 0.1294 0.1195 0.2269 0.1362 0.1481 0.1082 0.1478 0.1141 0.1507 

Part C 0.7636 0.5892 0.8133 0.7658 0.7765 0.7719 0.7725 0.7663 0.7603 

Performance index of transfer learning algorithms (Part D) 

 

TrAdBoost 

(LS-SVR 
+RBF) 

 

HiRBF 

SVR-AuD 

(LP-SVR 

+RBF) 

TGHRR 

SHFN 

(RBF) 

SHFN 

(Sigm) 

MHFN 

(RBF) 

MHFN 

(Sigm) 

TSK-FLS 

(RBF) 

KRR 

(RBF) 

Part D 0.6909 0.6177 0.8147 0.0721 0.0758 0.0973 0.0804 0.0839 0.0692 

*Part A, B and C are the results of models learned from the data in the source domain, the target domain and both domains, respectively. 
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Fig. 5 Modeling effect of TSKFLS(RBF) using GHRR and TGHRR: (a) TSKFLS(RBF) trained by GHRR based on the data in the source domain; (b) 

TSKFLS(RBF) trained by GHRR based on the data in the target domain; (c) TSKFLS(RBF) trained by GHRR based on the data in both domains; (d) 
TSKFLS(RBF) trained by TGHRR. 

 

 
Fig. 6 Generalized intelligence system of the glutamic acid fermentation 
process prediction model. 

C. On Real World Datasets for Biochemical Processing 

Modeling 

1) The Glutamic Acid Fermentation Process Modeling: To 

further evaluate the performance of the proposed GHRR and 

TGHRR algorithms, an experiment was conducted to apply the 

proposed algorithms to model a biochemical process [36, 41, 47]. 

The adopted real-world regression dataset originated from a 

glutamic acid fermentation process. The input variables of the 

dataset include the fermentation time h, glucose concentration 

S(h), thalli concentration X(h), glutamic acid concentration P(h), 

stirring speed R(h), and ventilation Q(h) at time h, where 

0  2  28h , , ,  . The output variable is glutamic acid concentration 

P(h+2) at a future time h+2. Fig. 6 illustrates a generalized 

intelligence system of the biochemical process prediction model. 

The data in this experiment were collected from 21 batches of 

fermentation processes with each batch extracting 14 effective 
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data samples. In this experiment, in order to match the situation 

concerned in this study, the data were divided into two domains, 

i.e., the source domain and the target domain, as described in 

Table VII. 
 

TABLE VII. THE FERMENTATION PROCESS MODELING DATASETS 

 
Data of Source 
Domain (D1) 

Data of Target Domain 

Training set (D2) 

* 

Testing set 

(D2_test) 

Batches 1-15 16-18 19-21 

Size of 

dataset 
210 21 42 

*For the training set in the target domain, there are missing information at 

sampling time h = 2, 6, 10, … , 28. 
 

TABLE VIII. MODELING PERFORMANCE (JREG ) OF DIFFERENT REGRESSION 

ALGORITHMS ON THE FERMENTATION PROCESS MODELING REGRESSION 

DATASETS.  

Performance index of non-transfer algorithms (Part A, B and C)* 

 
RBF- 

NN 

L2- 

TSKFLS 

LS- 

SVR 

GHRR 

SHFN 

(RBF) 

TSKFLS 

(RBF) 

KRR 

(RBF) 

Part A 0.4115 0.3618 0.4211 0.4105 0.3793 0.3654 

Part B 0.6297 0.4220 0.3827 0.5970 0.3444 0.4587 

Part C 0.3513 0.3463 0.3687 0.3729 0.3488 0.3262 

Performance index of transfer learning algorithms (Part D) 

 
TrAdBoost 

 (LS-SVR 

+RBF) 

HiRBF 

SVR-AuD 

(LP-SVR 

+RBF) 

TGHRR 

SHFN 

(RBF) 

TSKFLS 

(RBF) 

KRR 

(RBF) 

Part D  0.4823 0.5910 0.3608 0.3269 0.3184 0.2905 

*Part A, B and C are the results of models learned from the data in the source 
domain, the target domain and both domains respectively. 

 
2) Results and Discussion: In this subsection, the performance 

of the glutamic acid fermentation process modeling achieved by 

the proposed methods and the related methods is compared. For 

simplicity and to save space, the proposed GHRR and TGHRR 

methods are only used to train the following three representative 

models: SHFN(RBF), TKKFLS(RBF) and KRR(RBF). The 

experimental results are shown in Table VIII, which is again 

divided into four parts in the same way as discussed previously.  

As in Table VI, the adopted performance index in Table VIII is 

defined in Eq. (52.a), i.e., Jreg, for the biochemical modeling 

regression task. The lower the value of this index, the better the 

modeling effect. The following findings can be obtained from the 

experimental results given in Table VIII. 

(1) Part A shows that the generalization performance of the 

different models trained by GHRR, based only on the data in the 

source domain, are comparable with that of the models trained by 

the classical algorithms, RBF-NN, L2-TSKFLS and LS-SVR.  

(2) The results in Part B and Part C, where the models are 

trained by the data in the target domain and both domains 

respectively, give the similar conclusions as that in Part A.  

(3) It can be seen from the results in Part A and Part B that the 

performance of the models, trained with the data in the source 

domain only, is better than those trained using the data in the 

target domain only. This finding reveals that the data in the target 

domain are severely insufficient and transfer learning is needed. 

(4) By comparing Part C with Part A and B, it is found that the 

models trained by directly using the data in both the source and 

target domains could not satisfactorily improve the generalization 

performance of models. Although the performance is already 

better than the models trained by using the data in either the 

source domain or target domain, the improvement is indeed rather 

weak. 

(5) The results of the different inductive transfer learning 

regression methods in Part D clearly indicates that the proposed 

TGHRR algorithm demonstrates superior performance to the 

three existing inductive transfer learning algorithms, TrAdBoost, 

HiRBF and SVR-AuD.  

(6) It can be seen by comparing Part D with Part C that models 

trained by the classical transfer learning algorithms demonstrate 

improved performance when the data in both domains are used 

directly for the training. However, when the results in Part B and 

Part D are compared, it is found that the models trained by the 

existing inductive transfer learning algorithms do not perform 

better than the models trained by using only the data in the target 

domain.  

(7) The results of the different models trained by GHRR and 

TGHRR indicate that it is advantageous to use TGHRR for 

training neural networks, fuzzy systems and kernel methods when 

the training data in the target domain is insufficient. 

 

D. On Real World Datasets for Text Classification 

1) Email Spam Filtering Text Dataset: The proposed approach 

was also applied to text classification for email spam filtering. 

The aim of the experiment was to design a server-based spam 

filter learned from public sources and apply it to individual users 

with the aid of transfer learning. The email spam data set, released 

by the ECML/PKDD Discovery Challenge 2006 [46], was 

adopted in the experiment. The data contains a set of publicly 

available messages and three sets of email messages from three 

individual users. 4000 samples were taken from the publicly 

available messages and 2500 samples of different word 

distributions were obtained respectively from the email messages 

created by the three users. In this experiment, the task was to 

classify spam and non-spam emails. With reference to [46], the 

three settings shown in Table IX were considered, namely 

ESF-PubvsUser1, ESF-PubvsUser2 and ESF-PubvsUser3. In 

each setting, the dataset included all the 4000 samples taken from 

the public messages, which were labeled to constitute the source 

domain; whereas the target domain comprised of the 2500 

samples in which 2% were labeled as training data and the rest 

were unlabelled for testing. As in [46], each email message was 

characterized by using word-frequency features and 800 features 

with high frequency were selected in our experiment. As shown in 

the Table IX, in terms of the ratio of the training data and test data 

in the target domain, the whole dataset in the target domain were 

randomly partitioned and different algorithms were applied. The 

experiment was repeated 20 times to obtain the means and 

standard deviations of the classification accuracies. For 

classification task, the adopted performance index is defined in Eq. 

(52.b), i.e., Jclas. The higher the value of this index, the better the 

modeling effect. 
TABLE IX. DESCRIPTION OF THE ADOPTED EMAIL SPAM FILTERING DATASETS 

Datasets 
Source 

 Domain 

Target Domain 

 
Training 

set 
Test set 

ESF-PubvsUser1 

Public 
(size :4000) 

User1 

(size : 2500) 
2%   98%   

ESF-PubvsUser2 User2  
(size : 2500) 

2%   98%   

ESF-PubvsUser3 User3  

(size : 2500) 
2%   98%   

 

2) Results and Discussion: The results of the experiment are 

reported in Tables X-XII, which are also divided into four parts in 
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same way as described in the previous experiments. Note that the 

mean and standard deviations of the classification accuracies are 

given with the latter put inside brackets. The following 

observations can be made from the results. 

(1) The results in Part A of Tables X-XII show that the 

generalization performance of the models trained by the proposed 

GHRR based on the data in the source domain are comparable 

with the performance of the models trained by the classical 

algorithms.  

(2) Comparing Part A and Part B of Tables X-XII respectively, 

we can see that the models trained by using only the data in the 

source domain are not suitable for the classification task in the 

target domain. The performance of the models trained by using 

the data in the source domain is obviously inferior to those trained 

by using the data in the target domain, even if the size of data in 

the target domain is small. 

(3) Besides, by comparing the results in Part C with that in Part 

A and Part B of Tables X-XII respectively, it is found that the 

models trained by directly using the data in both domains cannot 

effectively improve the classification performance when 

compared with the performance of the models trained by using the 

data in either the source or the target domain. Furthermore, we can 

also see that the performance of models trained by using data in 

both domains is also inferior to the performance of models trained 

by only using data in the target domain. This reveals that the data 

in the source domain have negative effect on the models when the 

data in both domains are used simultaneously. 

(4) The results of different inductive transfer learning methods 

in Part D of Tables X-XII show that the performance of the 

proposed TGHRR algorithm is better than that of the three 

classical inductive transfer learning regression algorithms, 

TrAdBoost, HiRBF and SVR-AuD.  

(5) Again, the results obtained from the different models 

trained by GHRR and TGHRR clearly show that TGHRR is 

advantages over GHRR because of its ability to effectively 

leverage the knowledge from the source domain even when the 

data in the target domain is insufficient for training. 
TABLE X. CLASSIFICATION PERFORMANCE OF THE EMAIL SPAM FILTERING 

WITH TEXT DATA ESF-PUBVSUSER1 

Performance index of non-transfer algorithms (Part A, B and C)* 

 RBF-NN KNN C-SVC 

GHRR 

SHFN 

(RBF) 

TSKFLS 

(RBF) 

KRR 

(RBF) 

Part 

A 

0.5632 

(0.0021) 

0.6099 

(0.0011) 

0.4791 

(0.0012) 

0.5057 

(0.0388) 

0.5232 

(0.0101) 

0.5117 

(0.0006) 

Part 

B 

0.855 

(0.0352) 

0.7932 

(0.0567) 

0.4986 

(0.0006) 

0.8420 

(0.0960 

0.8653 

(0.0488) 

0.8589 

(0.0287) 

Part 

C 

0.7730 

(0.0312) 

0.7039 

(0.0284) 

0.5925 

(0.1269) 

0.7099 

(0.0334 

0.7714 

(0.0411) 

0.7937 

(0.0240) 

Performance index of transfer learning algorithms (Part D) 

 

TrAdBoost 

(LS-SVC 

+RBF) 

SVC-AuD 

LP-SVR 
KNN-AuD 

TGHRR 

SHFN 

(RBF) 

TSKFLS 

(RBF) 

KRR 

(RBF) 

Part 

D 

0.8285 

(0.0423) 

0.7730 

(0.0866) 

0.7714 

(0.0999) 

0.8684 

(0.0230) 

0.8761 

(0.0450) 

0.8714 

(0.0226) 

*Part A, B and C are the results of models learned from the data in the source 
domain, the target domain and both domains, respectively. 

 

TABLE XI. CLASSIFICATION PERFORMANCE OF THE EMAIL SPAM FILTERING 

WITH TEXT DATA ESF-PUBVSUSER2 

Performance index of non-transfer algorithms (Part A, B and C)* 

 RBF-NN KNN C-SVC 

GHRR 

SHFN 

(RBF) 

TSKFLS 

(RBF) 

KRR 

(RBF) 

Part 

A 

0.5730 

 (0.0012) 

0.5793 

(0.0011) 

0.5820 

(0.0014) 

0.5710 

(0.0168) 

0.5952 

(0.0051) 

0.5937 

(0.0020) 

Part 

B 

0.8677 

(0.0304) 

0.8382 

(0.0417) 

0.8346 

(0.0004) 

0.8453 

(0.0236) 

0.8624 

(0.0261) 

0.8741 

(0.0269) 

Part 

C 

0.8155 

(0.0449) 

0.7022 

(0.0368) 

0.5000 

(0.0012) 

0.7801 

(0.0150) 

0.8182 

(0.0280) 

0.8378 

(0.0276) 

Performance index of transfer learning algorithms (Part D) 

 

TrAdBoost 

(LS-SVC 

+RBF) 

SVC-AuD 

LP-SVR 
KNN-AuD 

TGHRR 

SHFN 

(RBF) 

TSKFLS 

(RBF) 

KRR 

(RBF) 

Part 

D 

0.8212 

(0.0584) 

0.7357 

(0.1241) 

0.8532 

(0.0153) 

0.8678 

(0.0186) 

0.8802 

(0.0243) 

0.8910 

(0.0106 

*Part A, B and C are the results of models learned from the data in the source 
domain, the target domain and both domains, respectively. 

 

TABLE XII. CLASSIFICATION PERFORMANCE OF THE EMAIL SPAM FILTERING 

WITH TEXT DATA ESF-PUBVSUSER3 

Performance index of non-transfer algorithms (Part A, B and C)* 

 RBF-NN KNN 
C- 

SVC 

GHRR 

SHFN 

(RBF) 

TSKFLS 

(RBF) 

KRR 

(RBF) 

Part 

A 

0.3106 

(0.0022) 

0.6346 

(0.0009) 

0.6698 

(0.0015) 

0.6310 

(0.0119) 

0.2827 

(0.063) 

0.5000 

(0.0007) 

Part 

B 

0.8653 

(0.0265) 

0.8763 

(0.0159) 

0.4987 

(0.0004) 

0.8262 

(0.0751) 

0.9020 

(0.0233) 

0.9130 

(0.0277) 

Part 

C 

0.7510 

(0.0165) 

0.7722 

(0.0105) 

0.5000 

(0.0014) 

0.8046 

(0.0245) 

0.8282 

(0.0360) 

0.8635 

(0.0074) 

Performance index of transfer learning algorithms (Part D) 

 

TrAdBoost 

(LS-SVC 

+RBF) 

SVC-AuD 

LP-SVR 
KNN-AuD 

TGHRR 

SHFN 

(RBF) 

TSKFLS 

(RBF) 

KRR 

(RBF) 

Part 

D 

0.6828 

(0.0423) 

0.8364 

(0.0092) 

0.8693 

(0.0188) 

0.8814 

(0.0303) 

0.9212 

(0.0222) 

0.9408 

(0.0137) 

*Part A, B and C are the results of models learned from the data in the source 

domain, the target domain and both domains, respectively. 

VI. DISCUSSIONS 

In this section, further discussions on the comprehensive 

experiments presented and potential future work are given. 

From the results in section V, although it is apparent that the 

transfer learning algorithm TGHRR outperforms the non-transfer 

counterparts and other related algorithms, the degrees of 

improvement are different on different datasets. For example, the 

performance improvement on the text classification dataset 

ESF-PubvsUser3 is much obvious than that on the datasets 

ESF-PubvsUser1 and ESF-PubvsUser2. There are two possible 

reasons for this observation: (1) the real-world datasets could be 

so complicated that it may not be in accordance with the scene 

considered in this study. That is, if the data and knowledge in the 

source is really useful for the target domain, the performance 

improvement will be more significant; otherwise, the effect will 

be much weaker; (2) the transfer learning abilities of the proposed 

knowledge-leverage based transfer learning strategy, as shown in 

Eq. (36.a) or (36.b), are probably not effective enough, suggesting 

that there are rooms for further improvement of more advanced 

knowledge-leverage based transfer learning strategy.  

Although TGHRR has demonstrated promising performance, 

there are still many issues requiring in-depth investigation in the 

future. Here, two potential improvements can be made for 

TGHRR. First, the adopted knowledge-leverage term, as shown in 

the objective function in Eq. (36.a) or (36.b), is relatively simple. 

More information, such as the statistical information [48], can 

indeed be introduced into the knowledge-leverage term, which is 

expected to further enhance the transfer learning abilities. In 

general, different strategies can be tried out to develop the 

objective functions of the modified methods. Although it may be 

much more difficult to directly adopt the developed objective 

functions in the experiments, this approach can potentially give 

rise to useful strategies for improving the performance of the 

proposed TGHRR method and thus deserve further investigation.  

Second, in the learning procedure of the proposed TGHRR, only 

the labeled data in the target domain are used while the unlabeled 
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data in the target domain is omitted. To deal with this issue, 

learning strategies in transductive transfer learning methods can 

be introduced to enhance the transfer learning abilities. For 

example, the strategy of minimizing the projected distribution 

distance between the source and target domains can be adopted 

for the design of knowledge-leverage term in the objective 

function of TGHRR [49]. 

VII. CONCLUSIONS  

In this study, the GHRR method is introduced for the training 

of several types of classical intelligence models, including neural 

networks, fuzzy logical system and kernel methods. Further, the 

knowledge-leverage based transfer learning mechanism is 

introduced for the proposed GHRR to develop the TGHRR 

algorithm, which has been evaluated comprehensively with a 

number of experiments performed on synthetic and real world 

datasets for classification and regression tasks. The results show 

that the TGHRR demonstrate better performance and adaptability 

than the existing state-of-the-art inductive transfer learning 

algorithms for regression and classification.  

While the proposed TGHRR is a promising machine learning 

algorithm, as discussed in section VI, there are still many issues to 

be solved and further in-depth study is required. For example, it is 

very important to develop new transfer GHRR methods by 

introducing stronger and more robust knowledge-leverage 

mechanism. This will be a main direction of our future research. 
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