

 1

Abstract—Inductive transfer learning has attracted increasing

attention for the training of effective model in the target domain

by leveraging the information in the source domain. However,

most transfer learning methods are developed for a specific

model, such as the commonly used support vector machine

(SVM), which makes the methods applicable only to the adopted

models. In this regard, the generalized hidden-mapping ridge

regression (GHRR) method is introduced in order to train various

types of classical intelligence models, including neural networks,

fuzzy logical systems and kernel methods. Furthermore, the

knowledge-leverage based transfer learning mechanism is

integrated with GHRR to realize the inductive transfer learning

method called Transfer GHRR (TGHRR). Since the information

from the induced knowledge is much clearer and more concise

than that from the data in the source domain, it is more

convenient to control and balance the similarity and difference of

data distributions between the source and target domains. The

proposed GHRR and TGHRR algorithms have been evaluated

experimentally by performing regression and classification on

synthetic and real world datasets. The results demonstrate that

the performance of TGHRR is competitive with or even superior

to existing state-of-the-art inductive transfer learning algorithms.

Index Terms—Generalized hidden-mapping ridge regression,

Inductive transfer learning, Knowledge-leverage, Neural

networks, Kernel methods, Fuzzy systems, Regression,

Classification.

I. INTRODUCTION

Transfer learning has been studied extensively for different

applications (e.g. web text classification) in recent years [1]. As

illustrated in Fig. 1, it is a learning procedure to develop an

effective model by using the data of the target domain and

leveraging the useful information from the source domains

simultaneously (definition of the domains is given in Table I). The

existing work about transfer learning can be categorized generally

into three main types: 1) transfer learning for classification [2-15];

2) transfer learning for regression [16-20]; and 3) transfer learning

for unsupervised learning [21-23] (e.g. clustering and

dimensionality reduction [14]). Besides, based on the differences

in settings, transfer learning can also be divided into inductive

transfer learning and transductive transfer learning. A few data in

This work was supported in part by the Hong Kong Research Grants Council

(PolyU 5134/12E), the National Natural Science Foundation of China
(61170122).

Z.H. Deng is with the Department of Biomedicine, University of California,

Davis and School of Digital Media, Jiangnan University, Wuxi, China. (e-mail:
zhdeng@ucdavis.edu).

K.S. Choi is with the Centre for Smart Health, the Hong Kong Polytechnic

University(e-mail: kschoi@ieee.org)
Y.Z. Jiang and S.T. Wang are with the School of Digital Media, Jiangnan

University, Wuxi 214122, China (e-mail: wxwangst@aliyun.com).

the target domain are labeled in the former approach while all the

data in the target domain are unlabeled in the latter. In this study,

we focus on inductive transfer learning.

Modeling task in the

Target Domain

 Useful information in the

Source Domain

Fig.1 An illustration of transfer learning for modeling in the target domain

TABLE I DEFINITION OF DOMAINS IN TRANSFER LEANING

Terms Explanations

Domain

A domain is a scene where a modeling task is to be

accomplished. It is usually characterized by the
data collected and the learning task to be

performed in this domain.

Target domain

In transfer learning, it is referred to as a domain

containing insufficient data or data that are difficult
to be used for proper modeling, while a modeling

task is required to be effectively implemented.

Source domain

It is the domain related to the target domain, with
similar data distribution and/or learning task to

some extent. There may be differences between the

target domain and the source domain, but it is
assumed that the source domain can provide some

useful information for the modeling task in the

target domain.

The use of inductive transfer learning in real world applications

is becoming more common. One of the examples is the modeling

of fermentation process [24]. In the target domain of certain

microbiological fermentation process, the data collected may be

insufficient for modeling. Some of the required data may be

missing due to deficiency of the sensor setup. Thus, we cannot

effectively model the fermentation process for this domain with the

data collected. However, if the data available from other similar

microbiological fermentation processes are available, they can be

considered as source domains for the target domain. Transfer

learning can then be exploited by making use of the information

from the source domain to improve the modeling result of the

target domain (see Fig. 1), thereby resulting in a model with better

generalization capability. In this case, inductive transfer learning is

an effective solution to the corresponding modeling task because it

can enhance the model by leveraging the information available

from the source domains, such as the data collected in other time

frames or with other setups.

Many modeling techniques have been adopted to implement

inductive transfer learning for modeling task based on different

intelligence models, including support vector machine (SVM),

neural networks, fuzzy logic systems and so on. For example,

SVM has been extensively used to develop different inductive and

transductive transfer learning methods [15, 27]. Although many

inductive transfer learning algorithms have been proposed and

shown to be effective in various applications, an obvious issue is

Zhaohong Deng, IEEE Senior Member, Kup-Sze Choi, IEEE Member, Yizhang Jiang, IEEE Member,

Shitong Wang

Generalized Hidden-mapping Ridge Regression,

Knowledge-leveraged Inductive Transfer Learning for Neural

Networks, Fuzzy Systems and Kernel Methods

The following publication Z. Deng, K. Choi, Y. Jiang and S. Wang, "Generalized Hidden-Mapping Ridge Regression, Knowledge-Leveraged Inductive
Transfer Learning for Neural Networks, Fuzzy Systems and Kernel Methods," in IEEE Transactions on Cybernetics, vol. 44, no. 12, pp. 2585-2599,
Dec. 2014 is available at https://dx.doi.org/10.1109/TCYB.2014.2311014.

This is the Pre-Published Version.

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

http://www.sciencedirect.com/science/article/pii/S089360801100267X#gs000010#gs000010
http://myweb.polyu.edu.hk/~hscidh

 2

that most of the algorithms are developed only for a specific model

that make it difficult to use the related transfer learning mechanism

for other models and restrict the applicability. Hence, there is a

demand for generalized transfer learning modeling methods that

can be readily used for most classical models, e.g. neural networks,

fuzzy systems and kernel methods. To meet this challenge, we

propose a generalized ridge regression learning method, the

generalized hidden-mapping ridge regression (GHRR), as well as

the associated transfer GHRR (TGHRR) established on the

knowledge-leverage based transfer learning mechanism in order to

realize inductive transfer learning for multiple classical models,

including neural networks, fuzzy systems and kernel methods.

Compared with most existing inductive transfer learning

methods, which usually implement transfer learning by using the

data in the source domain directly, the proposed

knowledge-leverage mechanism based TGHRR has the following

advantages: (1) while the data are the original information in a

source domain, the knowledge can be taken as the induced

information by some learning procedure from the source domain.

In practical applications, information obtained from the induced

knowledge is expected to be more apparent and concise than that

from the data in the source domain. (2) when the data in the source

domain are used directly, the data indeed may not be always

appropriate for the learning task in the target domain due to

potential drifting in data distributions between the source and

target domains, where controlling the balance of the similarity and

difference in data distributions between these two domains in the

learning procedure is an issue. However, compared with the direct

use of the data in the source domain, it is expected that, by using

the induced knowledge of the source domain for the target domain,

the influence of the source domain can be controlled more

conveniently. (3) For those scenes where inductive transfer

learning is required, there are usually plenty of labeled data in the

source domain but few in the target domain. In this case, if the data

in the source domain is directly used for the modeling task in the

target domain, the trained model will over approximate the scene

in the source domain, which should be avoided in the transfer

learning procedure. This is still a not well-solved problem in the

existing inductive transfer learning methods. In this study, since

the proposed methods do not need to directly use the data in the

source domain for most situations, the problem can be effectively

avoided to some extent.

 In conclusion, the proposed transfer learning algorithm

TGHRR has two distinctive characteristics: (1) TGHRR is not

restricted to a certain model but can taken as a more general

method applicable for various intelligent models, such as fuzzy

systems and neural networks; and (2) the knowledge-leverage

mechanism realizes transfer learning from the source domain to the

target domain, which makes it more convenient to control and

balance the similarity and difference of data distributions between

two domains.

The rest of this paper is organized as follows. Section II

describes the related work, including a review of the classical

inductive transfer learning methods, the existing ridge regression

learning methods and the knowledge-leverage based inductive

transfer learning framework. In Section III, the GHRR method is

introduced and the properties are discussed. The TGHRR method

is then proposed in Section IV by integrating the

knowledge-leverage based inductive transfer learning mechanism.

Experimental results and analyses are given in Section V. Further

discussions about the proposed methods and the potential

improvements are given in section VI. Finally, the paper is

concluded in section VII. For clarity, a list of acronyms used in this

paper is given Table II.

TABLE II THE ACRONYMS USED IN THIS PAPER

Acronym Description

RR, KRR, DRR,

GHRR, GHRR

Ridge Regression, Kernelized RR, Dual RR, Generalized

Hidden-mapping RR, Transfer GHRR

FLS, TSKFLS Fuzzy Logic Systems, Takagi-Sugeno-Kang FLS

MHFN Multiple Hidden-layer Feedforward Neural Networks

SVM Support Vector Machine

RKHS Reproducing Kernel Hilbert Space

RBF, RBF-NN Radial Basis Function, RBF-Neural Networks

KKT Karush–Kuhn–Tucker

II. RELATED WORK

In this section, we first review the classical inductive transfer

learning methods, followed by several existing ridge regression

learning methods. Finally, the knowledge-leverage based transfer

learning framework is introduced.

A. Inductive Transfer Learning

Definition (Inductive Transfer Learning) [1]. Given a source

domain DS and a learning task TS in DS, a target domain DT and a

learning task TT in DT, inductive transfer learning aims to improve

the learning of the target predictive function fT(.) in DT using the

knowledge in DS and TS, where TS TT.

Under inductive transfer learning setting, the target task is

different from the source task. In this case, some labeled data in the

target domain are required to induce an objective predictive model

for use in the target domain. Representative inductive transfer

learning algorithms can be summarized as follows [1]. (i)

Instance-transfer approach. Dai et al. [25] proposed a boosting

algorithm called TrAdaBoos, which is typical inductive transfer

learning algorithm by weighting the data in the source domain.

Jiang and Zhai [26] proposed a heuristic method to remove

“misleading” training examples from the source domain. Liao et al.

[2] proposed a new active learning method to select the unlabeled

data in a target domain, which are to be labeled with the help of the

source domain data. Wu and Dietterich [27] integrated the source

domain (auxiliary) data with the SVM framework to improve the

classification performance; (ii) Feature-representation-transfer

approach. This is similar to common feature learning in the field of

multitask learning [28]. If no labeled data in the source domain are

available, unsupervised learning methods are proposed to

construct the feature representation; (iii) Parameter-transfer

approach. Lawrence and Platt [6] proposed an efficient algorithm

known as MT-IVM, which is based on Gaussian Processes (GP) to

handle multitask learning. Bonilla et al. [29] also investigated

multitask learning in the context of GP. Schwaighofer et al. [7]

proposed to use hierarchical Bayesian framework (HB) together

with GP for multitask learning. Evgeniou and Pontil [30] applied

the idea of HB to SVMs for multitask learning. Gao et al. [8]

proposed a locally weighted ensemble learning framework to

combine multiple models for transfer learning. (iv)

Relational-knowledge-transfer approach. Mihalkova et al. [9]

proposed the TAMAR algorithm that transferred relational

knowledge with Markov Logic Networks (MLNs) across relational

domains. MLNs [31] is a powerful formalism for statistical

relational learning, which combines the compact expressiveness of

first-order logic with flexibility of probability. Mihalkova and

Mooney [10] extended TAMAR to the single-entity-centered

setting of transfer learning. Davis and Domingos [11] proposed an

approach to transfer relational knowledge based on a form of

second-order Markov logic.

 3

Although many approaches have been proposed to realize

inductive learning and they have demonstrated distinctive

effectiveness in different applications, there are still difficult issues

to be resolved:

(1) Many of the existing algorithms are developed for a specific

model only, e.g. SVM. These algorithms are thus infeasible for

other models. Even though some algorithms such as TrAdaBoost

are universal for different learners, the realization of this algorithm

on different models, including SVM and neural networks, is so

different that the use for other models is difficult and inconvenient.

(2) Most of the algorithms assume that the data in the source

domain are available and these data can be used for transfer

learning directly. Since drifting in data distributions between the

source and target domains can possibly exist, it is difficult to

maintain a balance in similarity and difference of data distributions

between these two domains in the learning procedure. Besides, due

to privacy protection, it may be forbidden to disclose the data in the

source domain.

In this study, we will develop a new method to deal with these

two issues from the viewpoint of ridge regression learning.

B. Classical Ridge Regression

Several existing ridge regression learning methods [32-34] are

briefly introduced in this section, including the basic methods,

kernel methods, and dual ridge regression methods. The network

structure of ridge regression is also discussed. For simplicity and

clarity, all the vectors in this paper are represented with the column

vectors. The notations used in the text are listed in Table I (S) of

the Supplementary material.

1) Basic Ridge Regression: For a given regression task and the

dataset ,i iyx , , ,d
i R y R x 1, ,i N , the idea of basic ridge

regression (BRR) [32] is to obtain a linear regression model

 () Ty f x x w (1)

with ,d dR R w x , by optimizing the following objective

2 21

min
2 2

w
Xw y w , (2)

where

 1 , ,
N

T
N dR

X x x (3)

 1[, ,]T N
Ny y R y . (4)

Taking the derivatives of Eq. (2) and equating them to zero gives

1

T T
N

 w X X I X y , (5)

where NI is an N N identity matrix.

The output of BRR is a linear function in the original space and

therefore BRR only realizes linear regression.

2) Kernel Ridge Regression: By introducing the kernel trick, the

kernel ridge regression (KRR) method aims to obtain a linear

regression model in the Reproducing Kernel Hilbert Space

(RKHS) [33, 34], i.e.,

 () ()Ty f x x w (6)

by optimizing the following objective

2 21

min
2 2

w

X w y w , (7)

where ()
d

R x is the image of x in the RKHS and

 1(), , ()
T N d

N R

 X x x . (8)

Similarly, the solution can be written as

1

T T
d

 w X X I X y . (9)

Since the dimension of the feature in the RKHS is usually

unknown, Eq. (9) cannot be solved directly. However, the

following identity can be adopted to tackle this issue.

1 1

1 1 1T T T T

 P B R B B R PB BPB R . (10)

In Eq.(10), P , B and R are three matrices. Let
1

d
P I ,

B X and NR I . With the identity of Eq. (10), the solution in

Eq. (9) can be then given by

1 1

T T T T
d N

 w X X I X y X X X I y . (11)

Here, d
I is a d d identity matrix. The same result can also be

obtained by the dual ridge regression method to be introduced in

the next subsection, as shown in Eq.(20.b). With Eq. (11), the

output function of KRR is

1

() () ()T T T T
Ny f

x x w x X X X I y . (12)

Since () x is usually unknown, Eq.(11) can be calculated by

introducing the Mercer kernel. Define a Mercer kernel matrix for

KRR as follows,

 T N N
KRR R

 Ω X X (13)

with , () () (,)T
KRR i j i j i jK x x x x , where (,)i jK x x is a

kernel function. Then, Eq.(12) can be written as

1

1
1

() () ()

(,)

.

(,)

T T T T
N

T

KRR N

N

y f

K

K

x x w x X X X I y

x x

Ω I y

x x

 (14)

When nonlinear kernel functions, such as radial basis function

(RBF), are adopted, KRR can be used for nonlinear regression.

Especially, if the kernel function is a linear kernel, i.e.,

(,) T
i j i jK x x x x , KRR is equivalent to BRR and is just linear

regression in the original space. Thus, BRR can be taken as a

special case of KRR.

3) Dual Ridge Regression: Instead of optimizing the primal cost

functions in BRR and KRR to obtain regression models, an

alternative optimization method is to solve the dual problem. Here,

Eq. (7) is equivalently formulated as [34]

22

1,

1
min

2 2

N

i
i

w ξ
w (15)

s.t. ()Ti i iy x w , 1, ,i N ,

where i is the training error, i.e., the slack variable, with respect

to the training sample ix . The Lagrangian function of Eq. (15) is

 22

1 1

1
(, ,) ()

2 2

N N
T

DRR i i i i i i i
i i

L y

 w w x w (16)

where , ,
T N

i N R α is the Lagrangian multiplier vector.

Using the Karush–Kuhn–Tucker (KKT) theorem, the following

optimality conditions are obtained.

1

1
0 ()

N

DRR i i
i

L

 w w x (17.a)

 0 DRR i i iL , 1, ,i N , (17.b)

 0 ()TDRR i i i iL y x β 0 , 1, ,i N . (17.c)

 4

Then, from Eqs. (17.a)-(17.c), we have

 T
 w X α , (18.a)

 ξ α , (18.b)

 X w y ξ 0 . (18.c)

By substituting Eqs. (18.a) and (18.b) into Eq. (18.c), we can get

the following equation.

 T
N

X X I α y (19.a)

Then, we have

1

 T
N

α X X I y . (20.a)

Furthermore, based on (17.a) ,
w can be obtained by

1

T T T
N

 w X α X X X I y . (20.b)

Note that Eq. (20.b) is the same as Eq. (11). Thus, if the feature in

the mapping space is unknown, the kernel trick can be used as in

KRR.

1

T

d

i i

i

y

w x

w x

1x

2x

dx

1w

iw

dw

1x

2x

dx

1w

iw

dw

1() x

()i x

()d
 x

1

()

 = ()

T

d

i i

i

y

w

w x

x

(a) (b)

Fig.2 Network structure of regression model learned by BRR and KRR. (a)

BRR; (b) KRR.

4) Network Structure of Ridge Regression

Ridge regression can be interpreted from the viewpoint of neural

networks [35], as illustrated in Fig. 2. From Fig. 2(a), we can see

that BRR can be used to learn a two-layer neural network, which

only realize linear regression. On the other hand, as shown in Fig.

2(b), KRR can be used to learn a three-layer neural network, where

the hidden layer consists of d hidden nodes. The value of d and

the form of the activation functions in the hidden layer are usually

unknown. According to the theory of neural networks, we know

that the network in Fig. 2(b) usually have strong nonlinear

approximation abilities with appropriate activation function. Since

the form of the hidden nodes is usually unknown for neural

networks associated with KRR, the kernel trick is needed for

solving KRR, as described previously in section II-B-2.

 Data of target domain

(insufficient)

Target

domain

Target

domain

 Knowledge of

Source domain

Knowledge-Leverage

Based Transfer Learning

Modeling/learning from the

data of target domain and the

knowledge of source domains

Models learned by the

knowledge-leverage based

transfer learning methods

Fig. 3 A framework of knowledge-leverage based transfer learning.

C. Knowledge-leverage based Transfer Learning

Most inductive transfer learning algorithms are developed to

learn directly from the data in the source domain with some

strategies. Rather than the original data, transfer learning from the

knowledge in the source domain is investigated recently with the

knowledge-leveraged based transfer learning framework [36, 47].

As shown in Fig. 3, a generalized learning framework was

proposed in [36] for knowledge-leverage based fuzzy system

transfer learning. Under this framework, the model in the target

domain can be learned from the data in the target domain and the

knowledge in the source domain simultaneously. In this study,

knowledge-leverage based inductive transfer learning for the

proposed GHRR will be studied accordingly.

III. GENERALIZED HIDDEN-MAPPING RIDGE REGRESSION

In this study, we extend BRR and KRR to propose the

generalized ridge regression method GHRR, where BRR and KRR

become a special case of GHRR. Especially, we will show that

GHRR can be used to train a wide range of intelligence models,

including forward-feed neural networks, Takagi-Sugeno-Kang

fuzzy logic systems (TSKFLS) and kernel methods. The properties

of GHRR are also discussed.

A. GHRR

In essence, the idea of GHRR is to obtain a linear regression

model in a hidden-mapping feature space, i.e.,

1

() () ()
dT

i i
i

y f w

 x x w x , (21)

with optimizing the following objective

2 21

min
2 2

w

X w y w , (22)

where

 1(), , ()
T N d

N R

 X x x . (23)

Here, ()
d

R x is the vector in the hidden-mapping space, which

is obtained from x by hidden-mapping.

The following explanation is provided to clarify the difference

between the proposed GHRR and the existing ridge regression

methods.

(1) BRR is a special case of GHRR with () dR x x , i.e., the

hidden-mapping feature space is just the original feature space.

(2) For KRR, the input variable is in the RKHS, i.e., ()
d

R x ,

where the dimension number in this space is usually unknown and

kernel trick is needed to solve the corresponding ridge regression.

Thus, when () () x x , KRR is reduced to a special case of

GHRR.

(3) For GHRR, ()
d

R x in a hidden-mapping feature space is

taken as the input variable, which can be known or unknown.

When ()
d

R x is unknown, the setting is similar to that of the

kernel-mapping space in KRR. However, in most situations the

hidden-mapping space may be known. For example, the

hidden-mapping feature space can be constructed by different

classical intelligence models, such as neural networks and fuzzy

logical system, which will be explained in the next subsection.

B. GHRR: A Unified Learning Method for Neural Networks,

Fuzzy Systems and Kernel Methods

In this section, we will show that classical intelligent models,

including neural networks, fuzzy systems and kernel methods, can

be learned by using GHRR. In other words, we will show that the

learning of these models can be transformed to the learning of a

 5

linear regression model in a hidden-mapping feature space.

1) GHRR for Feedforward Neural Networks: Consider a

multiple hidden-layer feedforward neural network (MHFN) with

single output, which includes an input layer, M hidden layers and

an output layer. This MHFN can be viewed as a generalized signal

hidden-layer feedforward neural network with more complicated

activation functions in the hidden layer. For a reduced single

hidden-layer feedforward neural network (SHFN), the output can

be formulated as

1

() (,)
MN T

i i i
i

y f g w

 x x θ . (24)

As proved in literature [37,38], if the activation

functions (,)i ig x θ are piecewise continuous, the hidden nodes can

be randomly generated independent of the training data and the

corresponding network still retain the universal approximation

capability. Thus, when the hidden parameters are fixed with the

randomly generated hidden nodes, the MHFN training can be

taken as a hidden-mapping linear regression problem. Let the

hidden mapping function () x be

 1 1
() [(,), , (,)] M

M M

NT

N N
g g R x x θ x θ , (25)

Eq. (24) can then be written as

() ()Ty f x x w , (26)

and it is can be solved directly by using the GHRR method as

discussed in Eqs. (21)-(23).

2) GHRR for TSKFLS: Next, we will show that classical

TSKFLS [39] can be trained by using the proposed GHRR. For

TSKFLS, the most commonly used fuzzy inference rules are

defined as follows.

TSK Fuzzy Rule kR :

1 1 2 2IF is is is k k k
d dx A x A x A (27)

 0 1 1Then k k k k
d df p p x p x x , 1k , ,K .

In Eq. (27), k
iA is a fuzzy subset subscribed by the input

variable ix for the kth rule; K is the number of fuzzy rules, and

is a fuzzy conjunction operator. Each rule is premised on the input

vector 1 2[, , ,]T d
dx x x R x , and maps the fuzzy sets in the

input space k dA R to a varying singleton denoted by kf x .

When multiplicative conjunction, multiplicative implication and

additive disjunction are employed respectively as the conjunction

operator, the implication operator and the disjunction operator, the

output of the TSKFLS can be formulated as

1 1

1

()
()

()

kK K
k k k

Kk kk

k

y f f f

x
x x x x

x

 (28)

where ()k x and ()k x denote the fuzzy membership and the

normalized fuzzy membership associated with the fuzzy set kA .

These two memberships can be calculated with

1

()k
i

d
k

iAi
x

x , (29.a)

1

Kk k k

k

 x x x . (29.b)

Here, clustering technique is commonly used to set the parameters

of the antecedents. When the antecedents of the TSKFLS are

determined, we can consider the learning of TSKFLS as the

hidden-mapping linear regression below,

() ()Ty f x x w (30)

with

 1 2 (1)() () ,() , ,()
T

T T K T K dR
x x x x (31.a)

 k k
ex x x , (31.b)

(1,)T T
e x x , (31.c)

1 2() ,() , , ()
T

T T K T
w p p p , (31.d)

0 1(, , ,)k k k k T
dp p pp . (31.e)

Thus, the TSKFLS can be solved directly by using the GHRR

method as described in Eqs. (21)-(23).

In particular, from the viewpoint of neural networks, TSKFLS

can be viewed as the corresponding fuzzy neural network. As in

the case of neural networks, we can transform TSKFLS into the

generalized SHFN with the specified hidden nodes, where the

activation functions in the hidden layer are defined as

 (,)= k
j j eig x x x ,

(1)(1) , 1, , , 1, , 1j k d i k K i d . (32)

Comparing Eq. (31.a) with Eq. (32), it is obvious that the following

equation is satisfied.

(1)
1 1 2 2 (1) (1)() (,), (,), , (,)

T K d
K d K dg g g R

x x x x .

It has been proved in literature [37, 38] that from the viewpoint

of neural networks, the activation functions can also be randomly

generated and the corresponding fuzzy neural networks are still

universal approximators. Thus, once the hidden nodes, i.e. the

antecedents of TSKFLS, are fixed by random generation or other

techniques such as clustering technique, the learning of TSKFLS

can be regarded as a hidden-mapping linear regression problem

and solved directly by using the GHRR method proposed in Eqs.

(21)-(23).

3) GHRR for Kernel Methods: Kernel methods have been

studied extensively and SVM is the most classical one. SVM is

used to solve a linear model in RKHS based on statistical learning

theory. For the proposed GHRR method, if the hidden-mapping is

unknown in the RKHS, we only need to solve the linear model in

RKHS in a way similar to that achieved by KRR [33,34] (see the

review of KBB in section II-B-2). In this case, the GHRR can be

easily used to train the kernel methods.

C. Optimization of GHRR

The objective function of GHRR in Eq. (22) can be solved

efficiently in various ways depending on the condition of the

hidden-mapping () x . Here, we discuss the different cases as

follows.

1) Case 1: () x is known: In this case, we can obtain explicit

values of the data () x in the hidden-mapping space. For

example, () x can be constructed by neural networks or fuzzy

logic systems. The solution for the model parameter w can then

be obtained in a similar form as that shown in Eqs. (5) and (9), i.e.,

1

T T
d

 w X X I X y , (33.a)

where T
d X X I is a d d matrix. If the d is small, the

computation of the inverse of this matrix is very efficient.

Otherwise, if the size of dataset is much smaller than the

dimensionality d , we can instead solve GHRR more efficiently

using the approach discussed in Eqs. (11) and (20), i.e.,

 6

1

 T
N

α X X I y , (33.b)

11 T T T

N

 w X α X X X I y , (33.c)

where T
N X X I is an N N matrix. If N is small, the

computation of the inverse of this matrix can be very efficient.

2) Case 2: () x is unknown: In this case, explicit formulation

of the data () x in the hidden-mapping space cannot be obtained

and thus w cannot be specified explicitly. Kernel trick is then

needed to obtain the final decision function f x . While the

introduction of kernel trick to the solution strategy in (33.a) is

difficult, it can be achieved conveniently with the solution strategy

in (33.c). Following the approach described in Eqs. (12)-(14), we

can obtain the decision function f x as follows,

1
 GHRR N

 α Ω I y , (34.a)

11
 T T

GHRR N

 w X α X Ω I y , (34.b)

1

1
1

() () ()

(,)

 .

(,)

T T T
GHRR N

T

GHRR N

N

f

K

K

x x w x X Ω I y

x x

Ω I y

x x

 (34.c)

where T
GHRR Ω X X with , () ()T

GHRR i j i j x x (,)i jK x x

and (,)i jK x x denotes the kernel function. Hence, GHRR is

equivalent to KRR in this particular case, as discussed in section

II-B-2.

D. Algorithm of the GHRR

Based on the solution of GHRR described above, the details of

the proposed algorithm for GHRR are given below.

Algorithm of the GHRR

Case 1: The hidden-mapping is known

Step 1: Calculate the model parameter
w using Eq. (33.a) or Eq.

(33.c).
Step 2: Calculate the output of the testing data using the decision

function () ()Tf x x w .

Case 2: The hidden-mapping is unknown and kernel trick is

adopted
Step 1: Calculate α using Eq. (34.a).

Step 2: Calculate the output of the testing data using the decision

function in Eq. (34.c).

Remark 1. For the proposed GHRR algorithm, if the

hidden-mapping is known, when the number of the training data is

larger than the number of features in the hidden-mapping space,

i.e., (N>> d), it is more efficient to use Eq. (33.a) rather than Eq.

(33.c) considering the computational complexity of matrix inverse;

otherwise, Eq. (33.c) is used.

E. Classification

GHRR is originally developed for regression. Similar to other

regression methods like radial basis function neural network

(RBF-NN), additional strategies are required when GHRR and the

proposed TGHRR (to be discussed in section IV) are used for

classification. One of the commonly used approaches is to use the

regression function to approximate the class labels in the

corresponding classification task. Once the model is trained, a

future testing sample can be tested and the label, which is nearest

to the model output, is taken as the label of the given testing

sample. Here, a more effective strategy enabling the use of

regression method for classification is introduced in detail as

follows.

The idea of the strategy is to use a multiple output function for

the classification task. For a given classification dataset including

m classes, ,i iyx , 1, ,iy m , 1, ,i N , we will construct a

multi-output regression dataset ,i ix y . If the original class label

is
iy p (1)p m for the ith training sample in ,i iyx , the

corresponding output vector containing m outputs in the

constructed multi-output regression dataset ,i ix y is defined as

[0, ,0, 1,0, ,0]
p

T m
i R y .

In this output vector, only the pth element of iy is one, while the

rest of the elements are set to zero.

With the corresponding multi-output regression dataset, a

multi-output regression model will be trained. Once the trained

model is obtained, for a given testing sample the output vector

obtained by the trained model can be expressed as
model model model model

,1 ,,
[, , ,]Ti i i mi l
y y yy .

Then the predicted class label of the testing sample is the index of

the element having the highest value in the output vector. For

example, if model
,i l

y (1)l m has the highest value among all the

elements in the vector model
iy , i.e., model

,{ }i jy , 1, ,j m , the final

predicted class label of the testing sample will be l .

IV. TGHRR

For the proposed GHRR, our ultimate goal is to develop the

corresponding transfer learning method TGHRR for the inductive

transfer learning task. In particular, the knowledge-leverage based

transfer learning mechanism is introduced to the GHRR and the

algorithm is presented below.

A. Objective Function for TGHRR

Based on the knowledge-leverage based transfer learning

framework described in section II-C, the following generalized

objective function is proposed for TGHRR.

 min ;TGHRR t sJ J J
Θ

Θ Θ Θ() + () , (35)

where Eq. (35) consists of two parts which are explained below.

(1) The first part,
tJ , inherits from the GHRR directly, which is

used to train the model by the data in the target domain.

(2) The second part,
sJ , is developed for knowledge leverage

from the source domain. For the design of the TGHRR, this part is

varied and depends on the specified knowledge-leverage strategies

adopted.

With the general objective in Eq. (35), we propose the explicit

objective function below

2 220 11

min
2 2 2

s

w

X w y w w w , (36.a)

or equivalently,

222 0 1

,
1

1
min

2 2 2

N

i s

i

w ξ

w w w , (36.b)

 s.t. ()Ti i iy x w , 1, ,i N .

In Eq. (36), the first two terms are inherited from the GHRR

directly, which are used to learn from the data in the target domain,

 7

while the third term is used to learn from the knowledge, i.e., the

model parameters sw , from the source domain, where the model

parameter sw is assumed to be knowledge available from the

source domain.

B. Optimization of TGHRR

For simplicity, we use Eq. (36.b) to derive the solutions of the

two proposed objective functions in Eqs. (36.a) and (36.b). The

corresponding Lagrangian function of Eq. (36.b) can be expressed

as

222 0 1

1

1

1
(, ,)

2 2 2

 (())

N

TGHRR i i i s
i

N T
i i i i

i

L

t

w w w w

ρ x w

. (37)

Based on the KKT theorem, the following KKT optimality

conditions are given:

0 1
1

0 () ()
N

TGHRR s i i
i

L

 w w w w ρ x 0 , (38.a)

0TGHRR iL α ξ , 1, ,i N , (38.b)

0 () 0T
TGHRR i i i iL y x w , 1, ,i N . (38.c)

Then, from Eqs. (38.a)-(38.c), we have

 1 0 1 0 1() ()T
s w w X α , (39.a)

 ξ α , (39.b)

 X w y ξ 0 , 1, ,i N . (39.c)

The solution of the proposed TGHRR can then be calculated

efficiently in different ways depending on the hidden mapping

() x and the training conditions.

1) Case 1: () x is known and the number of training data is

small.

In this case, the solution of TGHRR can be calculated efficiently

as follows. By substituting Eqs. (39.a) and (39.b) into Eq. (39.c),

we obtain

1

0 1 0 1

1 T
N s

X X I α y X w . (40)

With Eq. (40), the solution for α is given by

1

1

0 1 0 1

1 T
N s

α X X I y X w . (41.a)

Then, we can calculate w using (39.a) as follows.
1

1 1

0 1 0 1 0 1 0 1

1
1 1

0 1
0 1 0 1

1

 () .

T
Ts

N s

T Ts
N s

Xw
w X X I y X w

w
X X X I y X w

 (41.b)

The final output of the hidden-mapping linear regression model

can be formulated as

 () ()Tf x x w , (42)

with
w obtained in Eq. (41.b).

2) Case 2: () x is known and the number of dimensionality of

() x is small.

In this case, the solution of TGHRR can be calculated efficiently

by first obtaining ξ using Eqs. (39.a) and (39.b), i.e.,

 1
0 1

0 1

T s

w
ξ X w , (43)

with T

X as the pseudo-inverse of T

X . Substituting Eq. (43)

into Eq. (39.c), we have

 1
0 1

0 1

T s

w
X w y X w 0 , (44)

and then we can get

1

0 1 1
T T

d s

w X X I X y w . (45)

Furthermore, the output of the hidden-mapping linear regression

model can be formulated as

 () ()Tf x x w , (46)

with
w obtained in Eq. (45).

3) Case 3: () x is unknown.

When the hidden mapping () x is unknown,
w cannot be

calculated directly as in the two previous cases with Eq. (41.b) or

Eq. (45). However, when the Mercer kernel is adopted, the output

of the hidden-mapping linear regression model can be computed

accordingly. From Eq. (41.a), we know that

1

1

0 1 0 1

1 T
N s

α X X I y X w . (47)

Since sw is the parameter of the hidden-mapping linear model

learned in the source domain by GHRR, according to Eqs.

(33.a) and (33.b), it can be expressed as

 ,
T

s s s s w X α , (48.a)

1

, , T
s s s s s Ns s

α X X I y . (48.b)

Here, ,sX is the matrix constructed using the data in the source

domain by Eq. (23); s is the regularization parameter used in the

source domain. Since () x is unknown, we express Eq. (48.b) as

1

, s s GHRR s s Ns s

 α Ω I y , (48.c)

with , , ,(,)
s s

GHRR s i s j s
N N

K

Ω x x . Meanwhile, substituting Eq.

(48.a) into Eq. (47), we have
1

1
,

0 1 0 1

1 1T T
N s s

s

α X X I y X X α . (49.a)

Furthermore, as () x is unknown, Eq. (49.a) can be expressed as

1

1
, ,

0 1 0 1

1 1
GHRR t N GRRR ts s

s

α Ω I y Ω α (49.b)

with , , ,(,)
t t

GHRR t i t j t
N N

K

Ω x x and

, , ,(,)
t s

GRRR ts i t j s
N N

K

Ω x x . Then, according to Eq. (41.b), we

have

1 1
,

0 1 0 1 0 1 0 1

1 1
T

T Ts
s s

s

X αw
w X α X α . (50)

Finally, the decision function of the hidden-mapping linear model

can be expressed as

 8

1
,

0 1 0 1

1
,

0 1 0 1

1, 1,

1

0 1 0 1
, ,

1 1
() () () ()

1 1
 () ()

(,) (,)
1 1

(,) (

T

T T T T T
s s

s

T T

s s
s

s t

s
s

Ns s Nt t

f

K K

K K

x x w x X α x X α

X x α X x α

x x x x

α

x x x

.

,)

T

α

x

 (51)

C. Algorithm of TGHRR

Based on the solution of TGHRR above, the details of the

proposed algorithm of TGHRR are presented below.

Algorithm of TGHRR

Case 1: The hidden mapping is known

Step 1: Obtain the knowledge from the source domain, i.e., the

model parameter sw and the parameters of the hidden

nodes in the source domain.

Step 2: Calculate the model parameter
w in the target domain

by using Eq. (41.b) or Eq. (45).

Step 3: Calculate the output of the testing data by using Eq. (42)

or Eq. (46).

Case 2: The hidden mapping is unknown and kernel is

adopted

Step 1: Obtain the knowledge and data from the source domain,

i.e., ,s sα , and ,s i sD x .

Step 2: Calculate
α by using Eq. (49.b).

Step 3: Calculate the output of the testing data by using Eq. (51).

Remark2. For the proposed TGHRR algorithm, if the hidden

mapping is known, when the number of the training data is larger

than the number of dimensionality of the hidden-mapping features,

i.e., (N>> d), obtaining the solution with Eq. (41) is more

efficient than that with Eq. (45) considering the computational

complexity of matrix inverse; otherwise, Eq. (45) is more efficient.

Remark3. When the hidden mapping is known, only the

knowledge
sw is used for transfer learning and the data in the

source domain is not required. This means that the proposed

algorithm has good privacy protection ability for the data in the

source domain. However, if the hidden feature mapping is

unknown, the data in the source is also required, as shown in Eqs.

(50) and (51), in order to effectively implement transfer learning.

In this case, the proposed algorithm can no longer protect the

privacy of the data in the source domain.

V. EXPERIMENTS

Three sets of experiments were conducted to comprehensively

evaluate the performance of the proposed GHRR and TGHRR

algorithms. The first two experiments studied their performance on

two regression datasets, i.e., a synthetic dataset and a real-world

biomechanical process modeling dataset. The last experiment was

carried out on real-world text classification datasets, i.e., email

spam filtering text datasets.

A. Experimental Setup

1) Methods for Comparison: The performance of the proposed

algorithms were compared with a number of existing classical

non-transfer learning and inductive transfer learning algorithms

as listed in Tables III and IV, respectively.
TABLE III NON-TRANSFER LEARNING METHODS USED FOR PERFORMANCE

COMPARISON

Method Description Task

GHRR: SHFN(RBF) GHRR used for training single

hidden-layer neural networks with
RBF-type hidden nodes

Class

and

Reg*

GHRR: SHFN(Sigm) GHRR used for training single

hidden-layer neural networks with

Sigmoid-type hidden nodes

GHRR: MHFN(RBF) GHRR used for training multiple

hidden-layers neural networks with

RBF-type hidden nodes

GHRR: MHFN(Sigm) GHRR used for training multiple

hidden-layers neural networks with

Sigmoid -type hidden nodes

GHRR: TSKFLS(RBF) GHRR used for training TSK fuzzy
logic systems with the RBF-type

membership function

GHRR: RR(RBF) GHRR used for training kernel ridge
regression with the RBF-type kernel

function

RBF-NN [40] RBF neural network based on the back

propagation learning algorithm

Reg

L2-TSKFLS [41] L2-norm TSK-type fuzzy logic system

learning algorithm

LS-SVR [42] Least square support vector regression

KNN [43] K near neighbors classifier Class

C-SVM [44] C-support vector machine

*Class and Reg denote classification and regression respectively.

TABLE IV INDUCTIVE TRANSFER LEARNING METHODS USED FOR

PERFORMANCE COMPARISON

Method Description Task

TGHRR: SHFN(RBF)

Transfer version of GHRR used for
training different models.

Class

and

Reg*

TGHRR: SHFN(Sigm)

TGHRR: MHFN(RBF)

TGHRR: MHFN(Sigm)

TGHRR: TSKFLS(RBF)

TGHRR: KRR(RBF)

TrAdaBoost

(LS-SVR+RBF) [25]

Transfer AdaBoost based on the

LS-SVR learner with the RBF-type
kernel function for regression

Reg HiRBF [45]
Bayesian transfer learning for

nonlinear regression

SVR-AuD

(LP-SVR+RBF) [27]

Linear programming support vector
regression with the RBF-type kernel

function by using the auxiliary data

TrAdaBoost
(LS-SVC+RBF) [25]

Transfer AdaBoost based on the
LS-SVC learner with the RBF-type

kernel function for classification

Class SVC-AuD (LP-SVC))

[27]

Linear programming support vector

classification with the RBF-type kernel
function by using the auxiliary data

KNN-AuD [27] KNN classification with the auxiliary

data

* Class and Reg denote classification and regression respectively.

2) Parameter Setting: For all the algorithms, the hyper

parameters were determined with the five folds cross-validation

(CV) strategy based on the training sets. To save space, the

parameter sets are presented in Table II(S) of the Supplementary

material.

3) Datasets: In the experiments, synthetic and real-word

datasets were adopted for performance comparison. The synthetic

dataset was adopted for regression task, whereas the real-world

datasets were used for regression tasks in biomedical processing

modeling and classification tasks in email spam filtering. For all

the datasets, each of the attributes of the data inputs was

 9

normalized into the range [-1, 1]. For the regression datasets, the

attributes of the data outputs were also normalized into the range

[-1, 1]. The details of these datasets are described in the following

subsections respectively.

4) Evaluation Indices: In all the experiments, the performance

index

2 2

1 1

1 1
() ()

N N

reg i i i

i i

J y y y y
N N

 (52.a)

is adopted for performance evaluation of the regression tasks [35],

where N is the number of test data; iy is the output for the ith test

input; iy is the model output for the ith test input and

1

N

i
i

y y N

 . The smaller the value of Jreg, the better the

generalization performance.

For classification tasks, the performance index below, i.e.,

classification accuracy, is used to evaluate the classification

performance.

Number of the test samples classified correcly
=

Number of the test samples
clasJ . (52.b)

5) Other Settings: All the algorithms in the experiments were

implemented with Matlab on a computer with a 1.66 GHz CPU and

2GB RAM.

TABLE V THE SYNTHETIC DATASETS FOR REGRESSION

Source domain Target domain

Dataset (D1) Training set (D2) Testing set (D2_test)

Size Size Size

175 19 377

-10 -5 0 5 10
-15

-10

-5

0

5

10

15

x

f(
x
)

Model in SD

Model in TD

-10 -5 0 5 10
-15

-10

-5

0

5

10

15

x

f(
x
)

Training data in SD

Training data in TD

Test data in TD

(a) (b)
Fig. 4 Synthetic regression datasets: (a) two models used to generate the data in

the source domain (SD) and the target domain (TD); (b) the generated data in
SD and TD.

B. On Synthetic Datasets for Regression

1) Construction of Synthetic Regression Datasets: To simulate

the scenarios of the inductive transfer learning tasks discussed in

this study, the synthetic regression datasets should satisfy the

following requirements: 1) the source domain should be related to

the target domain, i.e., the source and target domains are different

but related; 2) the training data of the target domain are

insufficient, or part of the data are missing.

Based on these requirements, we generated the synthetic

datasets by making use of the function

() cos() (0,), [3 ,3]Y f x x x N x to define the source

domain. It was to generate the data in the source domain (D1),

where (0,)N denotes the Gaussian white noise with zero mean

and standard deviation . On the other hand, the function

() cos()* (0,), [3 ,3]y F x x x x N x was used to define

the target domain and generate the training dataset (D2) and testing

dataset (D2_test) of the target domain. Fig. 4(a) shows the two

functions used to simulate the related domains and Fig. 4(b) shows

the data generated in the source domain and the target domain,

where the standard deviations of Gaussian white noise in the

data of source domains and the training data of target domain were

both set to be 0.85, and the test data of target domain is noise-free.

2) Results and Discussion: Experiments were conducted to

evaluate the regression performance of the proposed methods and

the related methods on the synthetic datasets. The results are

divided into four parts, namely, Parts A to D, and presented in

Table VI. Parts A, B and C give the results of different non-transfer

learning algorithms obtained respectively by using (i) the data in

the source domain only, (ii) the data in the target domain only, and

(iii) the data in both domains. The best values of the parameters

were obtained by the CV strategy and the corresponding

generalization performance indices Jreg on the test data in the target

domain for these three cases are shown in Table IV with Part A, B

and C.

On the other hand, Part D gives the results of different inductive

transfer learning methods. Similarly, the corresponding

generalization performance indices, with the best parameter values

obtained by CV strategy, on the test data in the target domain are

shown in Part D of Table VI. In this table, the adopted performance

index, i.e., Jreg, is defined in Eq. (52.a) for the regression task. The

lower the value of this index, the better the modeling effect, i.e.,

the better generalization abilities. From the results in Table VI, the

following observations can be made.

(1) The results in Part A show that the generalization

performance of different models trained by the proposed GHRR

based only on the data in the source domain are comparable with

the performance of the classical learning algorithms, including

RBF-NN, L2-TSKFLS and LS-SVR. The results in Part B and Part

C of Table VI, where the models are trained with the data in the

target domain and both domains respectively, are similar to that in

Part A.

(2) It can be seen by comparing the results in Part A and Part B

that the models trained by only using the data in the source domain

are not suitable for the regression task in the target domain. The

performance of the models trained by using the data in the source

domain is obviously inferior to the performance of those trained

using the data in the target domain, even if the data in the target

domain is insufficient.

(3) By comparing the results in Part C with that in Part A and

Part B, we can see that the generalization performance of the

models is not effectively improved by training the models directly

by using the data in both domains. While the performance of

models trained by using the data in both domains is better than that

of models trained by using only data in the source domain, the

performance is still inferior to that of the models trained by using

only the data in the target domain. Thus, the results show that it is

usually not effective to use the data in both domains for situations

where the data is insufficient in the target domain due to drifting

between the source domain and the target domain.

(4) From the results obtained by different inductive transfer

learning methods as shown in Part D, we can see that the proposed

knowledge-leveraged TGHRR algorithm has demonstrated an

obvious advantage over the three classical inductive transfer

learning regression algorithms, i.e., TrAdaBoost, HiRBF and

SVR-AuD, which are developed to use the data of both source and

target domains to realize transfer learning with some transfer

learning strategies such as sample weighting.

(5) The results in Part C and Part D show that models trained by

the three classical algorithms, TrAdaBoost, HiRBF and

SVR-AuD, demonstrated improved generalization performance

 10

when compared to the models trained by directly using the data of

both domains. However, the models trained by these classical

inductive transfer learning algorithms are not significantly

advantageous over the models trained with the data in the target

domain only, as shown in Part B and Part D of Table IV.

(6) It is clear from the performance of the different models

trained by GHRR and TGHRR that TGHRR outperforms GHRR in

the training of neural networks, fuzzy systems and kernel methods

in the situations where transfer learning is required due to the lack

of training data in the target domain.

To provide an intuitive illustration of the transfer learning

abilities of TGHRR, the modeling effect of GHRR and TGHRR

for training a TSKFLS with RBF-type membership functions,

denoted by TSKFLS (RBF), is shown in Fig. 5. In the figure, the

modeling effect of GHRR using the data in the source domain,

target domain and both domains is presented together with that of

TGHRR. Fig. 5(a) shows the effect of GHRR by only using the

data in the source domain. Obviously, the model trained in the

source domain is not suitable for the target domain.

Fig. 5(b) shows the effect of GHRR by only using the data in the

target domain. While the performance as shown in Fig. 5(b) is

better than that in Fig. 5(a), since the data in the target domain is,

after all, not sufficient for training, the performance can be further

improved.

Fig. 5(c) shows the effect of GHRR by using the data in both

domains directly. By comparing Fig. 5(b) with Fig. 5(c), we see

that it is not effective to use the data in both domains to make up

the deficiency caused by data insufficiency in the target domain.

This can be explained with two reasons. First, there exists a

drifting phenomenon between the source and target domain, i.e.,

not all data in the source domain are useful for the modeling task of

the target domain and some of them may even produce negative

influence. Second, the size of the source domain is larger than that

of the target domain, which makes the obtained model more apt to

approximate the source domain rather than the target domain.

Fig.5 (d) shows the effect of TGHRR by using the

knowledge-leverage based transfer learning strategy. Compared

with the other three non-transfer GHRR methods, TGHRR

demonstrates the best modeling effect. The results indicate that

TGHRR can effectively remedy the deficiency caused by data

insufficiency in the target domain by leveraging the knowledge

induced from the source domain.

TABLE VI. REGRESSION PERFORMANCE (JREG) ON THE SYNTHETIC DATASETS AND THE BEST PARAMETER VALUES OF DIFFERENT ALGORITHMS.

Performance index of non-transfer algorithms (Part A, B and C)

 RBF-NN L2-TSKFLS LS-SVR

GHRR

SHFN

(RBF)

SHFN

(Sigm)

MHFN

(RBF)

MHFN

(Sigm)

TSKFLS

(RBF)

KRR

(RBF)

Part A 0.8491 0.8479 0.8475 0.8489 0.8479 0.8498 0.8489 0.8497 0.8486

Part B 0.1294 0.1195 0.2269 0.1362 0.1481 0.1082 0.1478 0.1141 0.1507

Part C 0.7636 0.5892 0.8133 0.7658 0.7765 0.7719 0.7725 0.7663 0.7603

Performance index of transfer learning algorithms (Part D)

TrAdBoost

(LS-SVR
+RBF)

HiRBF

SVR-AuD

(LP-SVR

+RBF)

TGHRR

SHFN

(RBF)

SHFN

(Sigm)

MHFN

(RBF)

MHFN

(Sigm)

TSK-FLS

(RBF)

KRR

(RBF)

Part D 0.6909 0.6177 0.8147 0.0721 0.0758 0.0973 0.0804 0.0839 0.0692

*Part A, B and C are the results of models learned from the data in the source domain, the target domain and both domains, respectively.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x

f(
x
)

Expected output of test data

output of GHRR:TSKFLS (RBF)+SD

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

x

f(
x
)

Expected output of test data

output of GHRR:TSKFLS (RBF)+TD

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

x

f(
x
)

Expected output of test data

output of GHRR:TSKFLS (RBF)+SD+TD

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

x

f(
x
)

Expected output

output of TGHRR:TSKFLS(RBF)

(a) (b) (c) (d)

Fig. 5 Modeling effect of TSKFLS(RBF) using GHRR and TGHRR: (a) TSKFLS(RBF) trained by GHRR based on the data in the source domain; (b)

TSKFLS(RBF) trained by GHRR based on the data in the target domain; (c) TSKFLS(RBF) trained by GHRR based on the data in both domains; (d)
TSKFLS(RBF) trained by TGHRR.

Fig. 6 Generalized intelligence system of the glutamic acid fermentation
process prediction model.

C. On Real World Datasets for Biochemical Processing

Modeling

1) The Glutamic Acid Fermentation Process Modeling: To

further evaluate the performance of the proposed GHRR and

TGHRR algorithms, an experiment was conducted to apply the

proposed algorithms to model a biochemical process [36, 41, 47].

The adopted real-world regression dataset originated from a

glutamic acid fermentation process. The input variables of the

dataset include the fermentation time h, glucose concentration

S(h), thalli concentration X(h), glutamic acid concentration P(h),

stirring speed R(h), and ventilation Q(h) at time h, where

0 2 28h , , , . The output variable is glutamic acid concentration

P(h+2) at a future time h+2. Fig. 6 illustrates a generalized

intelligence system of the biochemical process prediction model.

The data in this experiment were collected from 21 batches of

fermentation processes with each batch extracting 14 effective

 11

data samples. In this experiment, in order to match the situation

concerned in this study, the data were divided into two domains,

i.e., the source domain and the target domain, as described in

Table VII.

TABLE VII. THE FERMENTATION PROCESS MODELING DATASETS

Data of Source
Domain (D1)

Data of Target Domain

Training set (D2)

*

Testing set

(D2_test)

Batches 1-15 16-18 19-21

Size of

dataset
210 21 42

*For the training set in the target domain, there are missing information at

sampling time h = 2, 6, 10, … , 28.

TABLE VIII. MODELING PERFORMANCE (JREG) OF DIFFERENT REGRESSION

ALGORITHMS ON THE FERMENTATION PROCESS MODELING REGRESSION

DATASETS.

Performance index of non-transfer algorithms (Part A, B and C)*

RBF-

NN

L2-

TSKFLS

LS-

SVR

GHRR

SHFN

(RBF)

TSKFLS

(RBF)

KRR

(RBF)

Part A 0.4115 0.3618 0.4211 0.4105 0.3793 0.3654

Part B 0.6297 0.4220 0.3827 0.5970 0.3444 0.4587

Part C 0.3513 0.3463 0.3687 0.3729 0.3488 0.3262

Performance index of transfer learning algorithms (Part D)

TrAdBoost

 (LS-SVR

+RBF)

HiRBF

SVR-AuD

(LP-SVR

+RBF)

TGHRR

SHFN

(RBF)

TSKFLS

(RBF)

KRR

(RBF)

Part D 0.4823 0.5910 0.3608 0.3269 0.3184 0.2905

*Part A, B and C are the results of models learned from the data in the source
domain, the target domain and both domains respectively.

2) Results and Discussion: In this subsection, the performance

of the glutamic acid fermentation process modeling achieved by

the proposed methods and the related methods is compared. For

simplicity and to save space, the proposed GHRR and TGHRR

methods are only used to train the following three representative

models: SHFN(RBF), TKKFLS(RBF) and KRR(RBF). The

experimental results are shown in Table VIII, which is again

divided into four parts in the same way as discussed previously.

As in Table VI, the adopted performance index in Table VIII is

defined in Eq. (52.a), i.e., Jreg, for the biochemical modeling

regression task. The lower the value of this index, the better the

modeling effect. The following findings can be obtained from the

experimental results given in Table VIII.

(1) Part A shows that the generalization performance of the

different models trained by GHRR, based only on the data in the

source domain, are comparable with that of the models trained by

the classical algorithms, RBF-NN, L2-TSKFLS and LS-SVR.

(2) The results in Part B and Part C, where the models are

trained by the data in the target domain and both domains

respectively, give the similar conclusions as that in Part A.

(3) It can be seen from the results in Part A and Part B that the

performance of the models, trained with the data in the source

domain only, is better than those trained using the data in the

target domain only. This finding reveals that the data in the target

domain are severely insufficient and transfer learning is needed.

(4) By comparing Part C with Part A and B, it is found that the

models trained by directly using the data in both the source and

target domains could not satisfactorily improve the generalization

performance of models. Although the performance is already

better than the models trained by using the data in either the

source domain or target domain, the improvement is indeed rather

weak.

(5) The results of the different inductive transfer learning

regression methods in Part D clearly indicates that the proposed

TGHRR algorithm demonstrates superior performance to the

three existing inductive transfer learning algorithms, TrAdBoost,

HiRBF and SVR-AuD.

(6) It can be seen by comparing Part D with Part C that models

trained by the classical transfer learning algorithms demonstrate

improved performance when the data in both domains are used

directly for the training. However, when the results in Part B and

Part D are compared, it is found that the models trained by the

existing inductive transfer learning algorithms do not perform

better than the models trained by using only the data in the target

domain.

(7) The results of the different models trained by GHRR and

TGHRR indicate that it is advantageous to use TGHRR for

training neural networks, fuzzy systems and kernel methods when

the training data in the target domain is insufficient.

D. On Real World Datasets for Text Classification

1) Email Spam Filtering Text Dataset: The proposed approach

was also applied to text classification for email spam filtering.

The aim of the experiment was to design a server-based spam

filter learned from public sources and apply it to individual users

with the aid of transfer learning. The email spam data set, released

by the ECML/PKDD Discovery Challenge 2006 [46], was

adopted in the experiment. The data contains a set of publicly

available messages and three sets of email messages from three

individual users. 4000 samples were taken from the publicly

available messages and 2500 samples of different word

distributions were obtained respectively from the email messages

created by the three users. In this experiment, the task was to

classify spam and non-spam emails. With reference to [46], the

three settings shown in Table IX were considered, namely

ESF-PubvsUser1, ESF-PubvsUser2 and ESF-PubvsUser3. In

each setting, the dataset included all the 4000 samples taken from

the public messages, which were labeled to constitute the source

domain; whereas the target domain comprised of the 2500

samples in which 2% were labeled as training data and the rest

were unlabelled for testing. As in [46], each email message was

characterized by using word-frequency features and 800 features

with high frequency were selected in our experiment. As shown in

the Table IX, in terms of the ratio of the training data and test data

in the target domain, the whole dataset in the target domain were

randomly partitioned and different algorithms were applied. The

experiment was repeated 20 times to obtain the means and

standard deviations of the classification accuracies. For

classification task, the adopted performance index is defined in Eq.

(52.b), i.e., Jclas. The higher the value of this index, the better the

modeling effect.
TABLE IX. DESCRIPTION OF THE ADOPTED EMAIL SPAM FILTERING DATASETS

Datasets
Source

 Domain

Target Domain

Training

set
Test set

ESF-PubvsUser1

Public
(size :4000)

User1

(size : 2500)
2% 98%

ESF-PubvsUser2 User2
(size : 2500)

2% 98%

ESF-PubvsUser3 User3

(size : 2500)
2% 98%

2) Results and Discussion: The results of the experiment are

reported in Tables X-XII, which are also divided into four parts in

 12

same way as described in the previous experiments. Note that the

mean and standard deviations of the classification accuracies are

given with the latter put inside brackets. The following

observations can be made from the results.

(1) The results in Part A of Tables X-XII show that the

generalization performance of the models trained by the proposed

GHRR based on the data in the source domain are comparable

with the performance of the models trained by the classical

algorithms.

(2) Comparing Part A and Part B of Tables X-XII respectively,

we can see that the models trained by using only the data in the

source domain are not suitable for the classification task in the

target domain. The performance of the models trained by using

the data in the source domain is obviously inferior to those trained

by using the data in the target domain, even if the size of data in

the target domain is small.

(3) Besides, by comparing the results in Part C with that in Part

A and Part B of Tables X-XII respectively, it is found that the

models trained by directly using the data in both domains cannot

effectively improve the classification performance when

compared with the performance of the models trained by using the

data in either the source or the target domain. Furthermore, we can

also see that the performance of models trained by using data in

both domains is also inferior to the performance of models trained

by only using data in the target domain. This reveals that the data

in the source domain have negative effect on the models when the

data in both domains are used simultaneously.

(4) The results of different inductive transfer learning methods

in Part D of Tables X-XII show that the performance of the

proposed TGHRR algorithm is better than that of the three

classical inductive transfer learning regression algorithms,

TrAdBoost, HiRBF and SVR-AuD.

(5) Again, the results obtained from the different models

trained by GHRR and TGHRR clearly show that TGHRR is

advantages over GHRR because of its ability to effectively

leverage the knowledge from the source domain even when the

data in the target domain is insufficient for training.
TABLE X. CLASSIFICATION PERFORMANCE OF THE EMAIL SPAM FILTERING

WITH TEXT DATA ESF-PUBVSUSER1

Performance index of non-transfer algorithms (Part A, B and C)*

 RBF-NN KNN C-SVC

GHRR

SHFN

(RBF)

TSKFLS

(RBF)

KRR

(RBF)

Part

A

0.5632

(0.0021)

0.6099

(0.0011)

0.4791

(0.0012)

0.5057

(0.0388)

0.5232

(0.0101)

0.5117

(0.0006)

Part

B

0.855

(0.0352)

0.7932

(0.0567)

0.4986

(0.0006)

0.8420

(0.0960

0.8653

(0.0488)

0.8589

(0.0287)

Part

C

0.7730

(0.0312)

0.7039

(0.0284)

0.5925

(0.1269)

0.7099

(0.0334

0.7714

(0.0411)

0.7937

(0.0240)

Performance index of transfer learning algorithms (Part D)

TrAdBoost

(LS-SVC

+RBF)

SVC-AuD

LP-SVR
KNN-AuD

TGHRR

SHFN

(RBF)

TSKFLS

(RBF)

KRR

(RBF)

Part

D

0.8285

(0.0423)

0.7730

(0.0866)

0.7714

(0.0999)

0.8684

(0.0230)

0.8761

(0.0450)

0.8714

(0.0226)

*Part A, B and C are the results of models learned from the data in the source
domain, the target domain and both domains, respectively.

TABLE XI. CLASSIFICATION PERFORMANCE OF THE EMAIL SPAM FILTERING

WITH TEXT DATA ESF-PUBVSUSER2

Performance index of non-transfer algorithms (Part A, B and C)*

 RBF-NN KNN C-SVC

GHRR

SHFN

(RBF)

TSKFLS

(RBF)

KRR

(RBF)

Part

A

0.5730

 (0.0012)

0.5793

(0.0011)

0.5820

(0.0014)

0.5710

(0.0168)

0.5952

(0.0051)

0.5937

(0.0020)

Part

B

0.8677

(0.0304)

0.8382

(0.0417)

0.8346

(0.0004)

0.8453

(0.0236)

0.8624

(0.0261)

0.8741

(0.0269)

Part

C

0.8155

(0.0449)

0.7022

(0.0368)

0.5000

(0.0012)

0.7801

(0.0150)

0.8182

(0.0280)

0.8378

(0.0276)

Performance index of transfer learning algorithms (Part D)

TrAdBoost

(LS-SVC

+RBF)

SVC-AuD

LP-SVR
KNN-AuD

TGHRR

SHFN

(RBF)

TSKFLS

(RBF)

KRR

(RBF)

Part

D

0.8212

(0.0584)

0.7357

(0.1241)

0.8532

(0.0153)

0.8678

(0.0186)

0.8802

(0.0243)

0.8910

(0.0106

*Part A, B and C are the results of models learned from the data in the source
domain, the target domain and both domains, respectively.

TABLE XII. CLASSIFICATION PERFORMANCE OF THE EMAIL SPAM FILTERING

WITH TEXT DATA ESF-PUBVSUSER3

Performance index of non-transfer algorithms (Part A, B and C)*

 RBF-NN KNN
C-

SVC

GHRR

SHFN

(RBF)

TSKFLS

(RBF)

KRR

(RBF)

Part

A

0.3106

(0.0022)

0.6346

(0.0009)

0.6698

(0.0015)

0.6310

(0.0119)

0.2827

(0.063)

0.5000

(0.0007)

Part

B

0.8653

(0.0265)

0.8763

(0.0159)

0.4987

(0.0004)

0.8262

(0.0751)

0.9020

(0.0233)

0.9130

(0.0277)

Part

C

0.7510

(0.0165)

0.7722

(0.0105)

0.5000

(0.0014)

0.8046

(0.0245)

0.8282

(0.0360)

0.8635

(0.0074)

Performance index of transfer learning algorithms (Part D)

TrAdBoost

(LS-SVC

+RBF)

SVC-AuD

LP-SVR
KNN-AuD

TGHRR

SHFN

(RBF)

TSKFLS

(RBF)

KRR

(RBF)

Part

D

0.6828

(0.0423)

0.8364

(0.0092)

0.8693

(0.0188)

0.8814

(0.0303)

0.9212

(0.0222)

0.9408

(0.0137)

*Part A, B and C are the results of models learned from the data in the source

domain, the target domain and both domains, respectively.

VI. DISCUSSIONS

In this section, further discussions on the comprehensive

experiments presented and potential future work are given.

From the results in section V, although it is apparent that the

transfer learning algorithm TGHRR outperforms the non-transfer

counterparts and other related algorithms, the degrees of

improvement are different on different datasets. For example, the

performance improvement on the text classification dataset

ESF-PubvsUser3 is much obvious than that on the datasets

ESF-PubvsUser1 and ESF-PubvsUser2. There are two possible

reasons for this observation: (1) the real-world datasets could be

so complicated that it may not be in accordance with the scene

considered in this study. That is, if the data and knowledge in the

source is really useful for the target domain, the performance

improvement will be more significant; otherwise, the effect will

be much weaker; (2) the transfer learning abilities of the proposed

knowledge-leverage based transfer learning strategy, as shown in

Eq. (36.a) or (36.b), are probably not effective enough, suggesting

that there are rooms for further improvement of more advanced

knowledge-leverage based transfer learning strategy.

Although TGHRR has demonstrated promising performance,

there are still many issues requiring in-depth investigation in the

future. Here, two potential improvements can be made for

TGHRR. First, the adopted knowledge-leverage term, as shown in

the objective function in Eq. (36.a) or (36.b), is relatively simple.

More information, such as the statistical information [48], can

indeed be introduced into the knowledge-leverage term, which is

expected to further enhance the transfer learning abilities. In

general, different strategies can be tried out to develop the

objective functions of the modified methods. Although it may be

much more difficult to directly adopt the developed objective

functions in the experiments, this approach can potentially give

rise to useful strategies for improving the performance of the

proposed TGHRR method and thus deserve further investigation.

Second, in the learning procedure of the proposed TGHRR, only

the labeled data in the target domain are used while the unlabeled

 13

data in the target domain is omitted. To deal with this issue,

learning strategies in transductive transfer learning methods can

be introduced to enhance the transfer learning abilities. For

example, the strategy of minimizing the projected distribution

distance between the source and target domains can be adopted

for the design of knowledge-leverage term in the objective

function of TGHRR [49].

VII. CONCLUSIONS

In this study, the GHRR method is introduced for the training

of several types of classical intelligence models, including neural

networks, fuzzy logical system and kernel methods. Further, the

knowledge-leverage based transfer learning mechanism is

introduced for the proposed GHRR to develop the TGHRR

algorithm, which has been evaluated comprehensively with a

number of experiments performed on synthetic and real world

datasets for classification and regression tasks. The results show

that the TGHRR demonstrate better performance and adaptability

than the existing state-of-the-art inductive transfer learning

algorithms for regression and classification.

While the proposed TGHRR is a promising machine learning

algorithm, as discussed in section VI, there are still many issues to

be solved and further in-depth study is required. For example, it is

very important to develop new transfer GHRR methods by

introducing stronger and more robust knowledge-leverage

mechanism. This will be a main direction of our future research.

REFERENCES

[1] S.J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowledge Data Engineering, vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[2] X. Liao, Y. Xue, and L. Carin, “Logistic regression with an auxiliary data
source,” Proc. 21st Int. Conf. Machine Learning, pp. 505-512, Aug. 2005.

[3] J. Huang, A. Smola, A. Gretton, K.M. Borgwardt, and B. Schölkopf,
“Correcting sample selection bias by unlabeled data,” Proc. 19th Ann. Conf.
Neural Information Processing Systems, 2007.

[4] S. Bickel, M. Brückner, and T. Scheffer, “Discriminative learning for
differing training and test distributions,” Proc. 24th Int. Conf. Machine
Learning, pp. 81-88, 2007.

[5] M. Sugiyama, S. Nakajima, H. Kashima, P.V. Buenau, and M. Kawanabe,
“Direct importance estimation with model selection and its application to
covariate shift adaptation,” Proc. 20th Ann. Conf. Neural Information
Processing Systems, Dec. 2008.

[6] N.D. Lawrence and J.C. Platt, “Learning to learn with the informative
vector machine,” Proc. 21st Int. Conf. Machine Learning, July 2004.

[7] A. Schwaighofer, V. Tresp, and K. Yu, “Learning Gaussian process kernels
via hierarchical Bayes,” Proc. 17th Ann. Conf. Neural Information
Processing Systems, pp. 1209-1216, 2005.

[8] J. Gao, W. Fan, J. Jiang, and J. Han, “Knowledge transfer via multiple
model local structure mapping,” Proc. 14th ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining, pp. 283-291, Aug. 2008.

[9] L. Mihalkova, T. Huynh, and R.J. Mooney, “Mapping and revising markov
logic networks for transfer learning,” Proc. 22nd Assoc. for the
Advancement of Artificial Intelligence (AAAI) Conf. Artificial Intelligence,
pp. 608-614, July 2007.

[10] L. Mihalkova and R.J. Mooney, “Transfer learning by mapping with
minimal target data,” Proc. Assoc. for the Advancement of Artificial
Intelligence (AAAI ’08) Workshop Transfer Learning for Complex Tasks,
July 2008.

[11] J. Davis and P. Domingos, “Deep transfer via second-order Markov logic,”
Proc. Assoc. for the Advancement of Artificial Intelligence (AAAI ’08)
Workshop Transfer Learning for Complex Tasks, July 2008.

[12] S.J. Pan, I.W. Tsang, J.T. Kwok, and Q. Yang, “Domain adaptation via
transfer component analysis,” IEEE Trans. Neural Networks, vol. 22, no.2,
pp.199-210, 2011.

[13] L.X. Duan, D. Xu, I. W. Tsang, “Domain adaptation from multiple sources:
a domain-dependent regularization approach,” IEEE Trans. Neural Netw.
Learning Syst., vol. 23, no. 3, pp. 504-518, 2012.

[14] L.X. Duan, I.W. Tsang, D. Xu, “Domain Transfer Multiple Kernel
Learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no.3, pp.
465-479, 2012.

[15] H. Daumé III, D. Marcu, “Domain Adaptation for Statistical Classifiers,” J.

Artif. Intell. Res., 2006, vol. 26, pp. 101-126.

[16] P. Yang, Q. Tan, and Y. Ding, “Bayesian task-level transfer learning for
non-linear regression,” Proc. Int. Conf. on Computer Science and Software
Engineering, pp. 62-65, 2008.

[17] L. Borzemski and G. Starczewski, “Application of transfer regression to
TCP throughput prediction,” Proc. First Asian Conference on Intelligent
Information and Database Systems, pp. 28-33, 2009.

[18] W. Mao, G. Yan, J. Bai, and H. Li, “Regression transfer learning based on
principal curve,” Lecture Note on Computer Science 6063, pp. 365–372,
2010.

[19] J. Liu, Y. Chen, and Y. Zhang, “Transfer regression model for indoor 3D
location estimation,” Lecture Note on Computer Science 5916, pp. 603–613,
2010.

[20] D. Pardoe and P. Stone, “Boosting for regression transfer,” Proc. Int. Conf.
Machine Learning, pp. 863-870, 2010.

[21] W. Dai, Q. Yang, G. Xue, and Y. Yu, “Self-taught clustering,” Proc. 25th Int.
Conf. Machine Learning, pp. 200-207, July 2008.

[22] Z. Wang, Y. Song, and C. Zhang, “Transferred dimensionality reduction,”
Proc. European Conf. Machine Learning and Knowledge Discovery in
Databases (ECML/PKDD ’08), pp. 550-565, Sept. 2008.

[23] W.H. Jiang and F.L. Chung, “Transfer Spectral Clustering,” In Machine
Learning and Knowledge Discovery in Databases, pp. 789-803, Springer
Berlin Heidelberg, 2012.

[24] Z.H. Deng, K.S. Choi, F.L. Chung, S.T. Wang, “Scalable TSK fuzzy
modeling for very large datasets using minimal-enclosing-ball
approximation,” IEEE Trans. Fuzzy System, vol. 19, no.2, pp.210-226,
2011.

[25] W. Dai, Q. Yang, G. Xue, and Y. Yu, “Boosting for Transfer Learning,”
Proc. 24th Int’l Conf. Machine Learning, pp. 193-200, June 2007.

[26] J. Jiang and C. Zhai, “Instance Weighting for Domain Adaptation in NLP,”
Proc. 45th Ann. Meeting of the Assoc. Computational Linguistics, pp.
264-271, June 2007.

[27] P. Wu and T.G. Dietterich, “Improving SVM Accuracy by Training on
Auxiliary Data Sources,” Proc. 21st Int’l Conf. Machine Learning, July
2004.

[28] A. Argyriou, T. Evgeniou, and M. Pontil, “Multi-Task Feature Learning,”
Proc. 19th Ann. Conf. Neural Information Processing Systems, pp. 41-48,
Dec. 2007.

[29] N.D. Lawrence and J.C. Platt, “Learning to Learn with the Informative
Vector Machine,” Proc. 21st Int’l Conf. Machine Learning, July 2004.

[30] T. Evgeniou and M. Pontil, “Regularized Multi-Task Learning,” Proc. 10th
ACM SIGKDD Int’l Conf. Knowledge iscovery and Data Mining, pp.
109-117, Aug. 2004.

[31] M. Richardson and P. Domingos, “Markov Logic Networks,” Machine
Learning, vol. 62, nos. 1/2, pp. 107-136, 2006.

[32] A.E. Hoerl, R.W. Kennard, “Ridge regression: biased estimation for
nonorthogonal problems,” Technometrics, vol.12, no. 1, pp. 55–67, 1970.

[33] J. Li, “Linear, Ridge Regression, and Principal Component Analysis”,
http://www.stat.psu.edu/_jiali.

[34] C. Saunders, A. Gammerman, V. Vovk, “Ridge regression learning
algorithm in dual variables,” Proc. 5th International Conference on
Machine Learning, Madison, WI, July 24–27, 1998, pp. 515–521.

[35] J.S.R. Jang, C.T. Sun, and E. Mizutani, Neuro-fuzzy and soft-computing.
Upper Saddle River, NJ: Prentice-Hall, 1997.

[36] Z. H. Deng, Y.Z Jiang, F.L. Chung, S.T. Wang, “Knowledge-Leverage
Based Fuzzy System and Its Modeling”, IEEE Trans. on Fuzzy Systems, vol.
21, pp. 4, pp. 597-609, 2013.

[37] G.-B. Huang, L. Chen, and C.-K. Siew, “Universal approximation using
incremental constructive feedforward networks with random hidden
nodes,” IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879–892, Jul. 2006.

[38] G.-B. Huang and L. Chen, “Convex incremental extreme learning
machine,” Neurocomputing, vol. 70, pp. 3056–3062, 2007.

[39] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its
application to modeling and control,” IEEE Trans. Systems Man and
Cybernetics, vol.15, no.1, pp. 116-132, 1985.

[40] S. Chen, C.F.N. Cowan, and P. M. Grant, "Orthogonal Least Squares
Learning Algorithm for Radial Basis Function Networks," IEEE
Transactions on Neural Networks, vol. 2, no. 2, March 1991, pp. 302-309

[41] Z.H. Deng, K.S. Choi, F.L. Chung, S.T. Wang, “Scalable TSK fuzzy
modeling for very large datasets using minimal-enclosing-ball
approximation,” IEEE Trans. Fuzzy System, vol. 19, no.2, pp.210-226,
2011.

[42] J.A.K. Suykens and J. Vandewalle, “Least squares support vector machine
classifiers,” Neural Process. Lett., vol. 9, no. 3, pp. 293–300, Jun. 1999.

[43] R. Duda, P.Hart, andD. Stork, Pattern Classification. NewYork:Wiley,
2000.

[44] C. Cortes and V. Vapnik, “Support vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, 1995.

[45] P. Yang, Q. Tan, and Y. Ding, “Bayesian task-level transfer learning for
non-linear regression,” Proc. Int. Conf. on Computer Science and Software
Engineering, pp. 62-65, 2008.

[46] S. Bickel. ECML-PKDD Discovery Challenge 2006 Overview. In Proc.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/x/Xu:Dong.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tsang:Ivor_W=.html
http://www.informatik.uni-trier.de/~ley/db/journals/tnn/tnn23.html#DuanXT12
http://www.informatik.uni-trier.de/~ley/db/journals/tnn/tnn23.html#DuanXT12
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tsang:Ivor_W=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/x/Xu:Dong.html
http://www.informatik.uni-trier.de/~ley/db/journals/pami/pami34.html#DuanTX12
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Kup-Sze%20Choi.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Kup-Sze%20Choi.QT.&newsearch=partialPref

 14

ECML/PKDD Discovery Challenge Workshop, 2006.

[47] Z.H. Deng, Y.Z. Jiang, K.S. Choi, F.L. Chung and S.T. Wang,
“Knowledge-Leverage based TSK fuzzy system modeling,” IEEE Trans.
Neural Networks and Learning Systems, in press,vol. 24, no. 8, pp.
1200-1212, 2013.

[48] J.W. Tao, KF.L. Chung, S.T. Wang, “On minimum distribution discrepancy
support vector machine for domain adaptation.” Pattern Recognition, vol.
45, no.11, pp. 3962-3984, 2012.

[49] B. Quanz, J. Huan, “Large margin transductive transfer learning,” In
Proceedings of the 18th ACM conference on Information and knowledge
management, pp. 1327-1336, 2009.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chung:Korris_Fu=Lai.html
http://dblp.uni-trier.de/pers/hd/t/Tao:Jianwen.html
http://dblp.uni-trier.de/pers/hd/c/Chung:Korris_Fu=Lai.html
http://dblp.uni-trier.de/db/journals/pr/pr45.html#TaoCW12
http://dblp.uni-trier.de/db/journals/pr/pr45.html#TaoCW12

