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Abstract 1 

Ultrasound imaging has been frequently used for the study of muscle contraction, 2 

including measurements of pennation angles and fascicle orientations. However, these 3 

measurements were traditionally conducted by manually drawing lines on the 4 

ultrasound images. In this study, we proposed a modified Hough transform (HT), 5 

aiming at automatically estimating orientations of straight-line-shaped patterns, such 6 

as muscle fibers and muscle-bone interface in ultrasound images. The new method 7 

first located the global maximum in the HT accumulator matrix, which corresponded 8 

to the most dominant collinear feature points globally, using the standard HT; then the 9 

pixels close to the detected line were removed from the edge map, the HT 10 

accumulator matrix was calculated again, i.e. revoting, and a new line was detected; 11 

the iteration was repeated until the predefined termination conditions were satisfied. 12 

The performance of the algorithm was tested using computer-generated images with 13 

different levels of noises as well as clinical ultrasound images and compared with that 14 

of the conventional method. It was found that the orientation estimation results 15 

obtained by the new algorithm were well correlated (R2 = 0.9902) with those obtained 16 

using the traditional method, i.e., drawing lines manually and reading the angles with 17 

the assistance of software. Further mean-difference plots revealed a difference of 18 

0.18±2.41 degree between the two methods at the 95% confidence level. In 19 

comparison with the traditional method, the new algorithm was more capable of 20 

handling with highly noisy data, and could avoid the aliasing problem, i.e., reporting 21 

multiple lines instead of single expected line. The results of this study suggested that 22 
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the proposed revoting Hough transform can be potentially used for the reliable and 1 

non-subjective automatic estimation of the orientations of muscle fibers in 2 

musculoskeletal ultrasound images. 3 

 4 

Keywords: Ultrasound, Muscle, Hough transform, Sonomyography  5 

 6 

 7 

Introduction 8 

Ultrasound imaging has been widely used to assess human muscles in both static and 9 

dynamic conditions. In recent years, it has been employed to measure the quantitative 10 

changes in muscle thickness (Misuri et al. 1997, Hodges et al. 2003), fiber pennation 11 

angle (Narici et al. 1996, Fukunaga et al. 1997, Ito et al. 1998, Maganaris et al. 2002), 12 

fascicle length (Misuri et al. 1997, Narici et al. 1996, Fukunaga et al. 1997, Ito et al. 13 

1998, Maganaris et al. 2002, Mademli and Arampatzis 2005), and cross-sectional area 14 

(Narici et al. 1996, Reeves et al. 2004, Maganaris et al. 2006) during isometric and 15 

dynamic contractions. Since these architectural parameters change obviously with 16 

contraction, they could potentially provide a noninvasive method of recording 17 

activities of various muscles. During the measurement of muscle fiber length and 18 

pennation angle as well as fascicle length, the detection of line structures is frequently 19 

involved. Traditionally, the lines and angles in musculoskeletal ultrasound images 20 

used to be detected manually, or interactively using software (Reeves et al. 1994, Itoii 21 

et al. 2001), such as NIH Image (National Institutes of Health, Bethesda, MD, USA, 22 
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http://rsb.info.nih.gov/nih-image). Using the software, the orientation of a manually 1 

drawn line on the studied image could be read. These methods were very 2 

time-consuming and the manual detecting process was subjective. Recently, we 3 

proposed the concept of sonomyography, which represents the signals about 4 

continuous changes of muscle thickness and pennation angle, which are detected from 5 

ultrasound images (Zheng et al. 2006, Shi et al. 2007a, 2007b, Guo et al. 2007). The 6 

manual detection of the orientation of muscle fiber and fascicle greatly hindered the 7 

real-time detection of muscle pennation angle for sonomyography. A real-time 8 

automatic orientation/angle estimation method for musculoskeletal ultrasound images 9 

is much desired for the further development and application of sonomyography 10 

techniques.  11 

 12 

The detection of a straight line in an image is a fundamental problem in computer 13 

vision. The Hough transform (HT) (Hough et al. 1962) of slope-intercept 14 

parameterization as well as its improved version, HT of angle-radius parameterization 15 

(Duda and Hart 1972, Immerkar 1998), has been an established solution to the 16 

problem. As a major extension of HT, the generalized Hough transform (Ballard 1981) 17 

managed to detect more complex shapes, such as circles. While the probabilistic 18 

Hough transform (Kiryati et al. 1991) only used a small number of edge/feature points, 19 

selected from the original edge map, so as to significantly save computational time, at 20 

the cost of slightly impaired detection performance. For the standard Hough transform 21 

(SHT), many attentions have been paid to the aliasing problem, caused by the discrete 22 
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nature of digital image and the discretization errors of HT (Kiryati and Bruckstein 1 

1991, Van Veen and Groen 1981), Brown 1983, Kiryati et al. 1991, Yuen and Ma 1997, 2 

Lam et al. 1994). Using image-splitting and grouping, Princen et al (1990) proposed a 3 

hierarchical approach to achieve a robust architecturally important solution to several 4 

problems associated with SHT line detection, including the aliasing problem. For 5 

large-sized images such as engineering drawings, Song and Lyu (2005) recently 6 

reported a more comprehensive solution, utilizing both Hough space and image space 7 

information. However, it is difficult to directly use these methods for the images with 8 

high noise levels, such as ultrasound images with significant speckle noises.    9 

 10 

In this study, we presented an improved HT method to identify the major muscle 11 

fascicles orientations in musculoskeletal ultrasound images, which may contain 12 

significant speckle noises. We proposed a revoting strategy to deal with the aliasing 13 

problem in the line detection for ultrasound images. A thresholding method using the 14 

data in HT space was proposed to control the detection of significant lines in the 15 

ultrasound image. We tested the performance of this new algorithm using 16 

computer-generated images with different levels of speckle noises and clinical 17 

musculoskeletal ultrasound images. 18 

 19 

Methods 20 

Standard Hough transform of angle-radius parameterization 21 

SHT uses the normal parameterization of a straight line in an image (Duda and Hart 22 
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1972),  1 

111 sincos ρθθ =+ yx               (1) 2 

where 1θ  is the angle between the normal of the line and the x-axis, 1ρ  is the 3 

distance of the coordinates origin to the line. The parameters of all straight lines going 4 

through a point (xi, yi) in the image space show up in the ),( θρ parameter space as a 5 

sinusoidal curve, given by 6 

ρθθ =+ sincos ii yx               (2) 7 

After transforming all edge/feature points to the ),( θρ space, the collinear points 8 

will cross each other and an array measuring the crossing situation is accumulated. 9 

Traditionally this array ),( θρH is called accumulator array. The next stage of the 10 

SHT is an exhaustive search for the maxima in the accumulator array, and a 11 

predefined threshold is set so that all local values of ),( θρH exceeding the threshold 12 

can be recognized as the evidence of straight lines existing in the original image 13 

space.  14 

 15 

In summary, in SHT, the collinear edge/feature points in the image space show up as 16 

peaks in the ),( θρ space. However, in the realization of SHT, there arise some issues: 17 

1) digital image is by nature discrete, 2) when mapped into ),( θρ space, θ also has 18 

to be sampled in a limited resolution and ρ has to be quantized, 3) ),( θρH is also 19 

represented on a discrete grid where only integer coordinates have values, 4) The 20 

original image can suffer from various noises. These issues could cause problems of 21 

aliasing, peak spreading or peak extension (Kiryati and Bruckstein 1991, Van Veen 22 
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and Groen 1981), Brown 1983, Kiryati et al. 1991, Yuen and Ma 1997, Lam et al. 1 

1994).  2 

 3 

Revoting Hough transform (RVHT)  4 

To test the feasibility of using HT methods for the line orientation detection in 5 

musculoskeletal sonograms which are usually degraded by speckle noises, a modified 6 

Hough transform named as revoting Hough transform (RVHT) was adopted in this 7 

paper. The global maximum in the accumulator array, voted by all the edge/feature 8 

points, was first detected. Then all the feature points close to this line were removed 9 

from the edge map. With the updated edge map, the new accumulator array was 10 

computed and used to detect the global maximum by voting again. More lines could 11 

be identified by repeating this revoting procedure, as shown in Fig. 1. When the image 12 

was very noisy, the removal width could be extended from the basic value, 1 pixel, to 13 

several pixels (6-12 pixels were selected for the musculoskeletal ultrasound images 14 

with resolutions of 10 pixels/mm to 12.5 pixels/mm in this study) to remove more 15 

neighboring feature points along the location of the detected line. The center of the 16 

image was used as the origin of the coordinate system in HT, as suggested by 17 

Immerkar (1998). 18 

 19 

Experiments and Results  20 

Comparison of SHT and RVHT using a computer-generated image 21 

A testing image (256x256), as shown in Fig. 2(a), was generated using Matlab 6.5. 22 
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The distances from the vertexes of the larger equilateral triangle (with a side length of 1 

200 pixels) to the left, right and up borders of the image are all 28 pixels, while the 2 

distances from the vertexes of the smaller equilateral triangle (with a side length of 3 

100 pixels) to the borders of the image are all 78 pixels. The base sides of both 4 

triangles are in horizontal direction. The gray level between the two equilateral 5 

triangles was uniformly set to 64 and the background gray level was 0. Next, a new 6 

image (Fig. 2(b)), was created by adding a Gaussian noise with a mean of 64 (gray 7 

level) and a standard deviation of 16 to the original image. The edge map of Fig. 2(b), 8 

acquired using the Sobel edge detector (Gonzalez and Woods 1992), is shown in Fig. 9 

2(c). Using all edge pixels in Fig. 2(c), the accumulator array was then generated as 10 

shown in Fig.2(d), where the x-axis stands for θ  (ranging from 0 to 360) and y-axis 11 

for ρ  (ranging from 0 to the image diagonal length, 362 in this image), the labels 12 

for hereinafter accumulator arrays had same setting and therefore were omitted. Since 13 

in this implementation, the ‘angle’ is defined as the angle between the detected line 14 

and the vector pointing from the image up-left corner to the bottom-left corner, 15 

therefore for one single straight line, two angles were detected, i.e., θ  and its 16 

inverted version along the same straight line, θ +180. Subsequently, the 12 brightness 17 

peaks in Fig. 2(d) corresponded to the 6 vertices of the 2 triangles, respectively. The 18 

specific correspondences would be further illustrated later when they were removed 19 

one by one from the most-voted one. For the purpose of a better display, the 20 

accumulator array brightness was rescaled in each iteration, i.e., the current most 21 

voted points were also displayed as 22 gray levels, therefore, Fig.2(i) seems to have 22 
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more sinusoidal curves than Fig.2(d), but it’s not the case. It’s only because of the 1 

rescaling of the displayed gray range after pixel removal was changed. The resolution 2 

of ),( θρH  is 1 degree in x-axis and 1 pixel in y-axis, which could satisfy the 3 

Yuen’s quantization schemes (Yuen and Ma 1997). When the SHT threshold was set 4 

to be 70% of the global maximum in ),( θρH , only the larger triangle was detected, as 5 

indicated in Fig. 2(e). And when the threshold was decreased to 50% of the global 6 

maximum to make the Hough voting procedure more sensitive, two sides of the inner 7 

triangle could be detected (Fig. 2(f)). However, in this case, some extra lines were 8 

also detected while the bottom side of the inner triangle was undetected, even though 9 

it is obvious in the image. The main reason was that some lines generated large values, 10 

i.e. bright region, in the accumulated array image. The maximum value was larger 11 

than double of the value generated by the bottom side of the inner triangle. To test a 12 

more noisy case, a Gaussian white noise with a mean of 64 and a standard deviation 13 

of 32 was added to Fig. 2(a), producing a new image of Fig. 2(g). Following above 14 

procedures, the corresponding new edge map and accumulator array were obtained 15 

(Fig. 2(h) and (i)). Fig. 2(j), (k) and (l) shows the new detection results acquired using 16 

threshold values of 70%, 50% and 40% of the global maximum 17 

in ),( θρH respectively. Under this noise condition, the right side of the smaller 18 

triangle could not be detected with a 50% threshold. In addition, some extra lines 19 

could be observed, such as those near the base side of the larger triangle. When the 20 

threshold was further decreased to 40% of the global maximum in ),( θρH , more 21 

extra lines were detected.  22 
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 1 

As a comparison, the results of applying our RVHT to the image of Fig. 2(g) are 2 

presented in Fig. 3. Fig. 3(a) shows the obtained accumulator array, where the marked 3 

locations correspond to the two directions of the same straight line. The detected 4 

angle, defined as the angle between the detected line and the vector pointing from the 5 

image up-left corner to the bottom-left corner as in the software of NIH Image 6 

(Reeves et al. 1994), is 150/330o, which is correct according to the value used for the 7 

image generation. Figure 3(b) shows the ‘original image’ (Fig. 2(g)) overlapped by 8 

the detected line and Fig. 3(c) the updated edge map where the edge/feature points 9 

corresponding to the detected line had been removed, with a removal width of 2 pixels. 10 

Similarly, using the RVHT, 30/210o and 90/270o directions of the larger triangle, and 11 

90/270o, 150/330o and 30/210o of the smaller triangle were detected and shown in the 12 

subsequent rows in Fig. 3 in turn. 13 

 14 

Application of RVHT on musculoskeletal ultrasound images 15 

From three healthy adult male volunteers, 45 ultrasound images on biceps and 16 

forearm muscles were acquired by an ultrasound image system (ATL HDI 5000, 17 

Philips Inc, Bothell, WA), and cropped to remove the imaging tags and retain the 18 

image content only. The human subject ethical approval was obtained from the 19 

relevant committee in the authors’ institution and informed consents were obtained 20 

from subjects prior to the experiment. Totally 168 lines were detected using RVHT, 21 

among which 165 were regarded as being valid according to visual verification. A 22 
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typical image and the corresponding products using RVHT are shown in Fig. 4, where 1 

(a) is the original image, (b) its Sobel edge map, (c) the HT accumulator array of (b), 2 

and (f) the detected lines after RVHT. The line detection results using SHT with 3 

thresholds of 80% and 60% were demonstrated in Fig. 4(d) and (e), respectively. 4 

Considering the complicated speckle noise conditions in the ultrasound images, the 5 

peaks in the corresponding HT accumulator array image were no longer as ‘sharp’ as 6 

those of the simulated image, as shown in Fig. 4(c). In such case, the removal width 7 

for RVHT could be set to 12 pixels and the angles detected were marked in the figure 8 

in the order they got detected.  9 

 10 

At the same locations where lines were detected using RVHT, two operators manually 11 

drew lines on the original images and read the drawn angles using software (NIH 12 

Image). The angles estimated by the RVHT, operator #1 and operator #2 were defined 13 

as ap, aa1 and aa2, respectively. To investigate how well the RVHT results fitted the 14 

manually drawn values, we compared the RVHT result ap with the mean value of the 15 

two operators (aa1 + aa2) / 2. As shown in Fig. 5, a very good linear correlation 16 

between the results of the two methods was obtained (R2 = 0.9902). Further mean – 17 

difference plots (Bland and Altman 1986) for the results as illustrated in Fig. 6 18 

showed that the difference between ap and (aa1 + aa2) / 2 was 0.18±2.41 degree for 19 

the 95% confidence level.  20 

 21 

The ratio of the feature points, counted by the number of pixels in the edge map, of 22 
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the last and first detected lines could be controlled by the users. In this study, we used 1 

a ratio of 25%, and 5 lines could be normally detected in each image. A smaller ratio 2 

would cause more lines to be detected. This ratio together with the number of lines to 3 

be detected could be used as iteration termination conditions. 4 

 5 

Discussions 6 

From the results obtained in the current experiments, it was observed that the 7 

proposed RVHT had some advantages for the line/angle detection in the noisy images. 8 

Compared to SHT, the RVHT was inherently anti-aliasing as the feature points which 9 

had voted for a line were removed when the line was detected. As stated earlier, once 10 

the favored candidate line won the global voting, voices of these feature points were 11 

ignored in the subsequent voting, and so were those in the nearby neighborhoods 12 

(depending on the removal width). In case the image was very noisy, such as in many 13 

ultrasound images, the manual detection became more subjective and difficult. As 14 

demonstrated in this study, the proposed RVHT method could detect the lines with a 15 

performance comparable to that of manual operation. Moreover, the RVHT was 16 

almost automatic and could potentially save lots of manual work in comparison with 17 

the traditional way of orientation estimation in musculoskeletal ultrasound images. 18 

Therefore, the proposed RVHT has great potential for future image-guided US 19 

musculoskeletal analysis, especially for the automatic estimation of the muscle 20 

thickness and fascicle length. Furthermore, this new method was inherently objective, 21 

and when the US images to be processed are massive, the proposed method could be 22 
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more advantageous than the manual method.  1 

 2 

In spite of the above advantages, the proposed RVHT could be improved in a number 3 

of aspects. Similar to the selection of the threshold value in SHT, RVHT faces a 4 

question of when to stop the revoting procedure. There are two possible solutions: 1) 5 

If the number of lines to be detected is given, the program can be stopped when that 6 

number is accomplished, 2) If we know the feature differences between the expected 7 

lines and the unexpected ones, a threshold can be set according to the feature 8 

differences. In this study, we used the ratio of the number of feature points in the last 9 

and first detected lines to control the algorithm. This ratio was set to be 25% in this 10 

study. We found that the larger this ratio, the better the feature points map of the 11 

image could be and the less time the algorithm would consume. The adaptive 12 

selection criteria of this ratio should be further investigated in the future studies. This 13 

is particularly important for the real-time detection of pennation angles in the 14 

sonomyography technique, where the pattern of ultrasound images may change 15 

significantly during muscle contractions.  16 

 17 

We also observed that there were several quite large values of the difference between 18 

the RVHT and the manual results. In those cases, it was noted that the detected lines 19 

represented image strips with relatively large widths. The current RVHT tended to 20 

locate the wide “line” along its edge, while the manual operation might more favor the 21 

skeleton of that “line”. Thus, when the direction of the central skeleton of a strip did 22 
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not match that of its edges, a larger difference was generated between the angles 1 

detected by the two methods. In addition, among the 168 lines detected from the 45 2 

ultrasounds images using RVHT, 3 lines did not correspond to any visibly identified 3 

lines in the image. According to our observation, the RVHT had counted together the 4 

edge/feature points belonging to different muscle fibers when the fiber image was 5 

quite blurred (subsequently the quality of the edge/feature points map was poor) or 6 

several short irrelative line segments happened to be collinear. SHT also has the 7 

similar defect, since detecting “broken line” in images is an inherent feature of the HT 8 

method. An HT method reported previously for the detection of broken lines (Song 9 

and Lyu 2005) could be integrated into the present method to solve this problem in the 10 

future.  11 

 12 

Conclusion 13 

In this paper we proposed a modified Hough transform using a revoting strategy, 14 

aiming at automatic estimation of the orientations of straight-line-shaped patterns in 15 

musculoskeletal ultrasound images. The method re-arranged the voting procedure of 16 

SHT to better locate the regional vote-leaders in the HT accumulator array under 17 

noisy situations. The results of both computer-generated images and clinical 18 

ultrasound images demonstrated that RVHT could provide an alternative approach for 19 

the orientation estimation for the lines in the ultrasound images. Further studies are 20 

required to achieve adaptive parameter selection for deciding the number of lines to 21 

be detected. Ultrasound image enhancement methods can also be used to make lines 22 
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easier to be detected using the proposed method.  1 

 2 
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Fig. 1 The diagram of the procedures of the proposed revoting Hough transform. 1 

 2 

Fig. 2 Line detection results of a computer-generated image, using SHT. (a) the 3 

original image (256x256), (b) the image after adding Gaussian noise with a mean of 4 

64 (gray level) and a standard deviation of 16, (c) the edge map acquired using Sobel 5 

edge detector, (d) the accumulator array, (e) the line detection results when the SHT 6 

threshold is set to 70% of the global maximum, (f) the results obtained with a 7 

threshold of 50% of the global maximum, (g) the noisier image obtained by adding to 8 

original image a Gaussian white noise with a mean of 64 and a standard deviation of 9 

32, (h) the edge map of (g), (i) the accumulator array of (g), and (j), (k) and (l) are the 10 

line detection results using SHT with the threshold set to 70%, 50%, 40% of the 11 

global maximum, respectively. In each accumulator array image, grey levels 0 and 12 

255 represent its minimum and maximum values.  13 

 14 

Fig. 3 Line detection results for the image of Fig.1(g) using RVHT. (a) the 15 

accumulator array, with the global maximum locations marked out, which correspond 16 

to the two directions of the same straight line, (b) the first detected line, (c) the 17 

updated edge map after the feature points corresponding to the 1st line were removed, 18 

(d) the new HT accumulator array, with the new global maximum locations marked 19 

out, (e) the second detected line, (f) the updated edge map, (g)-(r) were arranged in 20 

the same fashion. Totally 6 lines were detected. In each accumulator array image, grey 21 

levels 0 and 255 represent its minimum and maximum values. 22 
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Fig. 4 Angle estimation results of a typical musculoskeletal ultrasound image. (a) the 1 

original image, (b) the Sobel edge map, (c) the accumulator array, (d) and (e) the 2 

results using SHT with thresholds of 80% and 60% respectively, (f) lines detected 3 

using RVHT, totally 5 lines were detected and their angles (between the detected line 4 

and the vector pointing from the up-left to bottom-left corner of the image) were 5 

marked out. The removal width for RVHT was 12 pixels, and the ratio threshold of the 6 

feature points (counts by number of pixels in the edge map) of the last and first lines 7 

was set to be 25%. 8 

 9 

Fig. 5 The correlation between the angle estimation results obtained using RVHT and 10 

those drawn manually. The x-axis represents the mean of manual results by two 11 

operators and the y-axis represents the RVHT results. R is the Pearson product 12 

moment correlation coefficient.  13 

 14 

Fig. 6 Comparison of the results obtained using the RVHT and manual methods. ap, 15 

aa1 and aa2 represent the angle estimation results obtained by the RVHT method, 16 

operator 1 and operator 2, respectively. Mean and SD represent the mean value and 17 

standard deviation of the difference ap – (aa1+aa2)/2. 18 

 19 
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Fig. 3 1 
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Fig. 4 1 
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Fig. 5 1 
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Fig. 6 1 
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