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Scheduling with learning effects has been widely studied. However, there are situations where the learning effect might accelerate.
In this paper, we propose a newmodel where the learning effect accelerates as time goes by. We derive the optimal solutions for the
single-machine problems to minimize the makespan, total completion time, total weighted completion time, maximum lateness,
maximum tardiness, and total tardiness.

1. Introduction

In classical scheduling, the processing times of the jobs are
assumed to be constant over the entire planning horizon
[1]. However, this assumption may not be appropriate for
all the cases [2–5]. In many realistic situations, because
the employees do the same job repeatedly, they learn how
to do similar jobs more efficiently. As a result, the actual
processing time of a job is shorter if it is scheduled later, rather
than earlier in the sequence. This phenomenon is known
as the “learning effect” and has been applied in scheduling
problems. Dondeti and Mohanty [6], Biskup [7], Cheng and
Wang [8], and Gawiejnowicz [9] are among the pioneers
that incorporate the learning effect into scheduling problems.
Dondeti andMohanty [6] consider a single-machine schedul-
ing problem in which the machine experiences learning
as it continues to work. Biskup [7] points out that the
learning effect in scheduling may arise in firms that produce
similar jobs. Cheng and Wang [8] study a single-machine
scheduling problem in which the job processing times will
decrease as a result of learning. Since then, a number of
researchers have considered the effects of learning in different
scheduling settings, including single-machine scheduling,
two-machine flowshop scheduling, and parallel machine
scheduling. Cheng et al. [10], Gawiejnowicz [11], Biskup
[12], and Rustogi and Strusevich [13] provide comprehensive

reviews of scheduling models with time-dependent process-
ing times.

Recently, Janiak and Rudek [14] introduce a new learning
effect model into the scheduling field where learning is
generalized in two ways. First, they allow each job to have a
different learning effect to the operator. Second, they assume
that the job processing time is a nonincreasing 𝑘-stepwise
function, which in general is not restricted to a certain
learning curve; hence, it can accurately fit every possible
shape of a learning function. Wang et al. [15] consider some
single-machine problems with a time-dependent learning
effect. They find the optimal solutions or derive the worst-
case error bounds for some proposed heuristic algorithms.
Janiak and Rudek [16] consider and analyze a learning effect
model in which the learning curve is S-shaped. They provide
the NP-hard proofs for two cases of the problem to minimize
the makespan. Lee and Wu [17] observe that robots with
neural networks are used in computers, motor vehicles, and
many assembly lines. The actions of a robot are constantly
modified through self-learning in processing jobs. On the
other hand, the operators in the control centre learn how
to give commands efficiently through work experience. This
motivates the consideration of both “position-based” and
“sum-of-processing-time-based” learning effects simultane-
ously. Combining the models of Biskup [7] and Koulamas
and Kyparisis [18], Cheng et al. [19] introduce a model with
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position-based and sum-of-processing-timed-based learning
effects in which the actual processing time of a job is a
function of the total normal processing times of the jobs
already processed and of the job position in a schedule.
Wu and Lee [20] study the problem with learning effects to
minimize the total completion time in a multiple machine
permutation flowshop. Janiak and Rudek [21] suggest a new
approach, called multiability learning, which generalizes the
existing ones and models more precisely real-life settings.
They focus on the problem with the proposed learning
model to minimize the makespan and provide optimal
polynomial time algorithms for some special cases. Cheng
et al. [22] develop a learning effect model where the actual
job processing time is a logarithm function of the normal
processing time of jobs already processed. They provide the
optimal solutions for some single-machine problems. Lee
et al. [23] consider a single-machine bi-criterion problem
with learning effects and job release times. Wang et al. [24]
study some single-machine problems with past-sequence-
dependent setup times. Lee et al. [25] investigate a single-
machine problem with the learning effect and release times
to minimize the makespan. Ji and Cheng [26] consider
a scheduling problem with job-dependent learning effects
and multiple rate-modifying activities. They show that the
problem tominimize the total completion time remains poly-
nomially solvable. Wu and Lee [27] and Yin et al. [28] further
generalize the model proposed by Cheng et al. [19]. Zhang
and Yan [29] modify the models of Cheng et al. [19] and
Wu and Lee [27] and provide the optimal solutions for some
single-machine and flowshop problems. Wang et al. [30]
and Wang and Wang [31] provide the optimal solutions for
some single-machine problems with an exponential sum-of-
actual-processing-time-based learning effect. Okołowski and
Gawiejnowicz [32] consider a parallel-machine scheduling
problem with DeJong’s learning effect. For the makespan
problem, they propose a sequential branch-and-bound algo-
rithm and a parallel branch-and-bound algorithm. Wang et
al. [33] consider resource allocation scheduling with learning
effects where the processing time of a job is a function of
the job’s position in a sequence and its resource allocation.
They provide a polynomial algorithm to find the optimal job
sequence and resource allocation. Hsu et al. [34] and Kuo et
al. [35] study the total completion time problem on unrelated
parallel machines with past-sequence-dependent setup times
and learning effects. Zhu et al. [36] investigate some single-
machine group scheduling problems with resource allocation
and learning effects. Rudek [37] provide the computational
complexity and solution algorithms for flowshop scheduling
problems with the learning effect. Lai and Lee [38] propose
a learning effect model where the actual processing time of a
job is a general function of the normal processing times of the
jobs already processed and the job’s own scheduled position.

Biskup [12] classifies the existing models into two dif-
ferent approaches, namely, position-based learning effect
and sum-of-processing-time-based learning effect models.
He points out that position-based learning corresponds to
situations where learning arises from processing-time inde-
pendent operations like setting upmachines.This is a realistic
assumption for the case because the actual processing times of

the jobs are mainly machine-driven.The sum-of-processing-
time-based approach takes into account the experience that
workers gain from producing the jobs. This might, for
example, be the case for offset printing, where running the
press itself is a highly complicated and error-prone process.
In some precision manufacturing environments, such as the
aircraft manufacturing industry, new employees must spend
long time to become skilled workers. In this case, the learning
effect is not evident in the early stage because of the low
learning rate at that stage, but the learning rate will gradually
increase as employees become skilled. In other words, the
learning rate accelerates over time. This phenomenon also
exists in labour-intensive industries, such as hand-made
umbrellas, fans, and embroidery, in which craftsmen need
to learn and perfect their crafts over a long period of time
practising their skills. In this study we propose a scheduling
model with the learning effect that might accelerate.

The remainder of this paper is organized as follows. We
present the solution procedures for the single-machine prob-
lems to minimize the makespan, total completion time, total
weighted completion time, maximum lateness, maximum
tardiness, and total tardiness in Section 2. We conclude the
paper in Section 3.

2. Some Single-Machine Problems

There are 𝑛 jobs ready to be processed on a single machine.
For each job 𝑗, there is a normal processing time 𝑝𝑗, a due
date 𝑑𝑗, and a weight𝑤𝑗. Due to the learning effect as in [39],
the actual processing time of job 𝑗 if it is scheduled in the 𝑟th
position of a sequence is

𝑝𝑗[𝑟] = 𝑝𝑗(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

, (1)

for 𝑟 = 1, 2, . . . ,𝑛, where 𝑎 < 0, 𝑝[𝑘] denotes the normal
processing time of the job scheduled in the 𝑘th position of
the sequence and 𝛼𝑟,𝑖 ≤ 𝛼𝑟,𝑗 if 𝑖 < 𝑗 and 𝛼𝑟,𝑗 ≥ 𝛼𝑟 ,𝑗 ≥ 0

if 𝑟 > 𝑟
. Throughout the paper, let 𝐶𝑗, 𝐿𝑗 = 𝐶𝑗 − 𝑑𝑗,

and 𝑇𝑗 = max{0, 𝐶𝑗 − 𝑑𝑗} denote the completion time,
lateness, and tardiness of job 𝑗, respectively. In addition, we
let 𝐶max = max{𝐶𝑗}, 𝐿max = max{𝐿𝑗}, and 𝑇max = max{𝑇𝑗}.
Using the well-known three-field notation for describing
scheduling problems, we denote the problems under study
as 1|𝑝𝑗[𝑟] = 𝑝𝑗(1 + ∑

𝑟−1
𝑘=1 𝛼𝑟,𝑘𝑝[𝑘])

𝑎
|𝐶max, 1|𝑝𝑗[𝑟] = 𝑝𝑗(1 +

∑
𝑟−1
𝑘=1 𝛼𝑟,𝑘𝑝[𝑘])

𝑎
| ∑𝐶𝑖, 1|𝑝𝑗[𝑟] = 𝑝𝑗(1 + ∑

𝑟−1
𝑘=1 𝛼𝑟,𝑘𝑝[𝑘])

𝑎
| ∑𝑤𝑖𝐶𝑖,

1|𝑝𝑗[𝑟] = 𝑝𝑗(1 + ∑
𝑟−1
𝑘=1 𝛼𝑟,𝑘𝑝[𝑘])

𝑎
|𝐿max, 1|𝑝𝑗[𝑟] = 𝑝𝑗(1 +

∑
𝑟−1
𝑘=1 𝛼𝑟,𝑘𝑝[𝑘])

𝑎
|𝑇max, and 1|𝑝𝑗[𝑟] = 𝑝𝑗(1+∑

𝑟−1
𝑘=1 𝛼𝑟,𝑘𝑝[𝑘])

𝑎
| ∑𝑇𝑖,

respectively.
Before presenting the main results, we first state some

lemmas that will be used in the proofs in the sequel.

Lemma 1. (𝜃−1)(1+𝑐+𝑢)𝑎−𝜃(1+𝑢+𝜆𝑡)𝑎+(1+𝑢+𝜆𝜃𝑡)𝑎 ≥ 0

for 𝑎 < 0, 𝜃 ≥ 1, 𝜆 ≥ 0, 𝑐 < 0, 𝑡 ≥ 0, 𝑢 > 0, and 1 + 𝑐 + 𝑢 ≥ 0.
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Proof. Let 𝐹(𝑡) = (𝜃 − 1)(1 + 𝑐 + 𝑢)
𝑎
− 𝜃(1 + 𝑢 + 𝜆𝑡)

𝑎
+

(1 + 𝑢 + 𝜆𝜃𝑡)
𝑎. Taking the first derivative of 𝐹(𝑡)with respect

to 𝑡, we have

𝐹

(𝑡) = 𝑎𝜆𝜃 {(1 + 𝑢 + 𝜆𝜃𝑡)

𝑎−1
− (1 + 𝑢 + 𝜆𝑡)

𝑎−1
} ≥ 0. (2)

Since 𝑎 < 0 and 𝜃 ≥ 1, 𝐹(𝑡) is a nondecreasing function so
𝐹(𝑡) ≥ 𝐹(0) ≥ 0. This completes the proof.

Lemma 2. (1 + 𝑢 + 𝑐)
𝑎
(1 − 𝜃) + 𝜆2𝜃(1 + 𝑢 + 𝜆𝑡)

𝑎
− 𝜆1(1 +

𝑢 + 𝜆𝜃𝑡)
𝑎
≤ 0 for 𝑎 < 0, 𝜃 ≥ 1, 𝜆 ≥ 0, 𝑐 < 0, 𝑡 ≥ 0, 0 ≤ 𝜆2 ≤

𝜆1 ≤ 1, 𝑢 > 0, and 1 + 𝑐 + 𝑢 ≥ 0.

Proof. Let 𝐹(𝜃) = (𝜃−1)(1+𝑢+𝑐)
𝑎
+𝜆1(1+𝑢+𝜃𝑡)

𝑎
−𝜆2𝜃(1+

𝑢 + 𝑡)
𝑎. To show that 𝐹(𝜃) is nonnegative, it suffices to show

that𝐹(𝜃) ≥ 0 because 𝐹(1) = (1+𝑢+𝑡)
𝑎
(𝜆1−𝜆2) ≥ 0. Taking

the first derivative of 𝐹(𝜃) with respect to 𝜃, we have

𝐹

(𝜃) = (1 + 𝑢 + 𝑐)

𝑎
+ 𝑎𝜆1𝑡(1 + 𝑢 + 𝜃𝑡)

𝑎−1

− 𝜆2(1 + 𝑢 + 𝑡)
𝑎
.

(3)

Since 𝑎 < 0, 𝑢 > 0, 𝑡 ≥ 0, and 𝜆1 ≥ 0, we have

𝐹

(𝜃) ≥ (1 + 𝑢 + 𝑐)

𝑎
+ 𝑎𝜆1𝑡(1 + 𝑢 + 𝑡)

𝑎−1

− 𝜆2(1 + 𝑢 + 𝑡)
𝑎
= 𝐹

(1) .

(4)

To show that 𝐹(1) ≥ 0, we define the following function:

𝐺 (𝜉, 𝜂) = (1 + 𝑢 + 𝑐)
𝑎
+ 𝑎𝑡𝜂(1 + 𝑢 + 𝑡)

𝑎−1
− 𝜉(1 + 𝑢 + 𝑡)

𝑎
.

(5)

First, we claim that 𝐺(1, 1) ≥ 0. We have

𝐺 (1, 1) = (1 + 𝑢 + 𝑐)
𝑎
+ 𝑎𝑡(1 + 𝑢 + 𝑡)

𝑎−1
− (1 + 𝑢 + 𝑡)

𝑎

= (1 + 𝑢 + 𝑐)
𝑎
− (1 + 𝑢)

𝑎
+ (1 + 𝑢)

𝑎

− (1 + 𝑢 + 𝑡)
𝑎
+ 𝑎𝑡(1 + 𝑢 + 𝑡)

𝑎−1
.

(6)

By the mean value theorem, there exists a 𝜎 with 0 ≤ 𝜎 ≤ 1

such that

(1 + 𝑢)
𝑎
− (1 + 𝑢 + 𝑡)

𝑎
= −𝑡𝑎(1 + 𝑢 + 𝜎𝑡)

𝑎−1
. (7)

It follows that

𝐺 (1, 1) = (1 + 𝑢 + 𝑐)
𝑎
− (1 + 𝑢)

𝑎
− 𝑡𝑎(1 + 𝑢 + 𝜎𝑡)

𝑎−1

+ 𝑎𝑡(1 + 𝑢 + 𝑡)
𝑎−1

.

(8)

Since 𝑎 < 0, we have (1 + 𝑢 + 𝑐)
𝑎
≥ (1 + 𝑢)

𝑎 and (1 + 𝑢 +

𝜎𝑡)
𝑎−1

≥ (1 + 𝑢 + 𝑡)
𝑎−1 for 0 ≤ 𝜎 ≤ 1. Thus, 𝐺(1, 1) ≥ 0 and

the claim is proved.
Since 𝐺(𝜉, 𝜂) is nonincreasing with respect to 𝜉 and 𝜂,

we have 𝐺(𝜉, 𝜂) ≥ 𝐺(1, 1) ≥ 0. This implies that 𝐹(1) =

𝐺(𝜆2, 𝜆1) is nonnegative. Thus, we have 𝐹(𝜃) ≥ 𝐹

(1) ≥ 0

and the proof is completed.

We prove the following properties using the pairwise job
interchange technique. Suppose that 𝑆 and 𝑆

 are two job

schedules and the difference between 𝑆 and 𝑆
 is a pairwise

interchange of two adjacent jobs 𝑖 and 𝑗. That is, 𝑆 =

(𝜋, 𝑖, 𝑗, 𝜋

) and 𝑆


= (𝜋, 𝑗, 𝑖, 𝜋


), where 𝜋 and 𝜋

 each denote a
partial sequence. Furthermore, we assume that there are 𝑟−1
jobs in 𝜋. In addition, let 𝐴 denote the completion time of
the last job in 𝜋. Under the proposed model, the completion
times of jobs 𝑖 and 𝑗 in 𝑆 and 𝑆

 are

𝐶𝑖 (𝑆) = 𝐴 + 𝑝𝑖(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

, (9)

𝐶𝑗 (𝑆) = 𝐴 + 𝑝𝑖(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

+ 𝑝𝑗(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟+1,𝑘𝑝[𝑘] + 𝛼𝑟+1,𝑟𝑝𝑖)

𝑎

,

(10)

𝐶𝑗 (𝑆

) = 𝐴 + 𝑝𝑗(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

, (11)

𝐶𝑖 (𝑆

) = 𝐴 + 𝑝𝑗(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

+ 𝑝𝑖(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟+1,𝑘𝑝[𝑘] + 𝛼𝑟+1,𝑟𝑝𝑗)

𝑎

.

(12)

Property 1. An optimal schedule for the 1|𝑝𝑗[𝑟] = 𝑝𝑗(1 +

∑
𝑟−1
𝑘=1 𝛼𝑟,𝑘𝑝[𝑘])

𝑎
|𝐶max problem is obtained by sequencing the

jobs in the shortest processing time (SPT) order.

Proof. Suppose that 𝑝𝑗 ≥ 𝑝𝑖. To show that 𝑆 dominates 𝑆,
it suffices to show that 𝐶𝑗(𝑆) ≤ 𝐶𝑖(𝑆


). Taking the difference

between (10) and (12), we have

𝐶𝑖 (𝑆

) − 𝐶𝑗 (𝑆) = (𝑝𝑗 − 𝑝𝑖)(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

+ 𝑝𝑖(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟+1,𝑘𝑝[𝑘] + 𝛼𝑟+1,𝑟𝑝𝑗)

𝑎

− 𝑝𝑗(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟+1,𝑘𝑝[𝑘] + 𝛼𝑟+1,𝑟𝑝𝑖)

𝑎

.

(13)

Substituting 𝑢 = ∑
𝑟−1
𝑘=1 𝛼𝑟+1,𝑘𝑝[𝑘], 𝜃 = 𝑝𝑗/𝑝𝑖, 𝑐 = ∑

𝑟−1
𝑘=1(𝛼𝑟,𝑘 −

𝛼𝑟+1,𝑘)𝑝[𝑘], 𝑡 = 𝑝𝑖, and 𝜆 = 𝛼𝑟+1,𝑟 into (13), we have from
Lemma 1 that 𝐶𝑗(𝑆


) ≥ 𝐶𝑖(𝑆). This completes the proof.

Similar to the proof of Property 1, we have the following
result.

Property 2. An optimal schedule for the problem 1|𝑝𝑗[𝑟] =

𝑝𝑗(1+∑
𝑟−1
𝑘=1 𝛼𝑟,𝑘𝑝[𝑘])

𝑎
| ∑𝐶𝑖 is obtained by sequencing the jobs

in the SPT order.

Rudek [40] shows that the total weighted completion
time problem with sum-of-processing-time-based learning
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effects is at least NP-hard. Since it is a special case of our
proposed model, the problem to minimize the total weighted
completion time under the proposed model is at least
NP-hard. Thus, the weighted shortest processing time first
(WSPT) rule does not yield the optimal solution under the
proposed model. However, we show in the next property that
the WSPT rule provides an optimal solution for the total
weighted completion time problem if the normal processing
times and the weights are agreeable; that is, 𝑝𝑖 ≤ 𝑝𝑗 implies
that 𝑤𝑖 ≥ 𝑤𝑗 for all jobs 𝑖 and 𝑗.

Property 3. An optimal schedule for the 1|𝑝𝑗[𝑟] = 𝑝𝑗(1 +

∑
𝑟−1
𝑘=1 𝛼𝑟,𝑘𝑝[𝑘])

𝑎
| ∑𝑤𝑖𝐶𝑖 problem is obtained by sequencing the

jobs in the WSPT order if the normal processing times and
the weights are agreeable.

Proof. Suppose that 𝑝𝑖 ≤ 𝑝𝑗. From Property 1, we have
𝐶𝑗(𝑆) ≤ 𝐶𝑖(𝑆


). Thus, to show that 𝑆 dominates 𝑆, it suffices

to show that

𝑤𝑖𝐶𝑖 (𝑆) + 𝑤𝑗𝐶𝑗 (𝑆) ≤ 𝑤𝑗𝐶𝑗 (𝑆

) + 𝑤𝑖𝐶𝑖 (𝑆


) . (14)

From (9) to (12), we have

𝑤𝑖𝐶𝑖 (𝑆) + 𝑤𝑗𝐶𝑗 (𝑆) − [𝑤𝑗𝐶𝑗 (𝑆

) + 𝑤𝑖𝐶𝑖 (𝑆


)]

= 𝑤𝑖(𝐴 + 𝑝𝑖(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

)

− 𝑤𝑗(𝐴 + 𝑝𝑗(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

)

+𝑤𝑗(𝐴 + 𝑝𝑖(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

+ 𝑝𝑗 (1 +

𝑟−1

∑

𝑘=1

𝛼𝑟+1,𝑘𝑝[𝑘] + 𝛼𝑟+1,𝑟𝑝𝑖)

𝑎

)

− [𝑤𝑖(𝐴 + 𝑝𝑗(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

+ 𝑝𝑖 (1 +

𝑟−1

∑

𝑘=1

𝛼𝑟+1,𝑘𝑝[𝑘] + 𝛼𝑟+1,𝑟𝑝𝑗)

𝑎

)]

= (𝑤𝑖 + 𝑤𝑗) 𝑝𝑖 [(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

(1 −
𝑝𝑗

𝑝𝑖

)

+
𝑤𝑗

𝑤𝑖 + 𝑤𝑗

𝑝𝑗

𝑝𝑖

× (1 +

𝑟−1

∑

𝑘=1

𝛼𝑟+1,𝑘𝑝[𝑘] + 𝛼𝑟+1,𝑟𝑝𝑖)

𝑎

−
𝑤𝑖

𝑤𝑖 + 𝑤𝑗

× (1 +

𝑟−1

∑

𝑘=1

𝛼𝑟+1,𝑘𝑝[𝑘] + 𝛼𝑟+1,𝑟𝑝𝑗)

𝑎

] .

(15)

Substituting 𝜃 = 𝑝𝑗/𝑝𝑖, 𝜆1 = 𝑤𝑖/(𝑤𝑖 +𝑤𝑗), 𝜆2 = 𝑤𝑗/(𝑤𝑖 +𝑤𝑗),
𝑢 = ∑

𝑟−1
𝑘=1 𝛼𝑟+1,𝑘𝑝[𝑘], 𝑡 = 𝑝𝑖, 𝑐 = ∑

𝑟−1
𝑘=1(𝛼𝑟,𝑘 − 𝛼𝑟+1,𝑘)𝑝[𝑘], and

𝜆 = 𝛼𝑟+1,𝑟 into (15), we have

𝑤𝑖𝐶𝑖 (𝑆) + 𝑤𝑗𝐶𝑗 (𝑆) − [𝑤𝑖𝐶𝑖 (𝑆

) + 𝑤𝑗𝐶𝑗 (𝑆


)]

= (𝑤𝑖 + 𝑤𝑗) 𝑝𝑖 [(1 + 𝑢 + 𝑐)
𝑎
(1 − 𝜃)

+ 𝜆2𝜃(1 + 𝑢 + 𝜆𝑡)
𝑎

−𝜆1(1 + 𝑢 + 𝜆𝜃𝑡)
𝑎
] .

(16)

From Lemma 2, we have 𝑤𝑖𝐶𝑖(𝑆) + 𝑤𝑗𝐶𝑗(𝑆) − [𝑤𝑖𝐶𝑖(𝑆

) +

𝑤𝑗𝐶𝑗(𝑆

)] ≤ 0.Therefore, repeating this job interchange argu-

ment for all the jobs not sequenced in the WSPT order com-
pletes the proof for the 1|𝑝𝑗[𝑟] = 𝑝𝑗(1+∑

𝑟−1
𝑘=1 𝛼𝑟,𝑘𝑝[𝑘])

𝑎
| ∑𝑤𝑖𝐶𝑖

problem.

Next, we show that the earliest due date (EDD) rule yields
an optimal solution under the proposedmodels if the normal
processing times and due dates are agreeable; that is, 𝑑𝑖 ≤ 𝑑𝑗
implies that 𝑝𝑖 ≤ 𝑝𝑗 for all jobs 𝑖 and 𝑗.

Property 4. An optimal schedule for the 1|𝑝𝑗[𝑟] = 𝑝𝑗(1 +

∑
𝑟−1
𝑘=1 𝛼𝑟,𝑘𝑝[𝑘])

𝑎
|𝐿max problem is obtained by sequencing the

jobs in the EDD order if the normal processing times and due
dates are agreeable.

Proof. Suppose that 𝑑𝑖 ≤ 𝑑𝑗, which implies that 𝑝𝑖 ≤ 𝑝𝑗. The
maximum lateness among the first 𝑟−1 jobs is the same since
they are processed in the same order. Since the makespan
is minimized by the SPT rule (Property 1), the maximum
lateness in the partial sequence 𝜋 of 𝑆will not be greater than
that in the partial sequence 𝜋 of 𝑆. Thus, to prove that the
maximum lateness of 𝑆 is less than or equal to that of 𝑆, it
suffices to show that max{𝐿 𝑖(𝑆), 𝐿𝑗(𝑆)} ≤ 𝐿 𝑖(𝑆


).

From (9) to (12), we can derive that the lateness of jobs 𝑖
and 𝑗 in 𝑆 is

𝐿 𝑖 (𝑆) = 𝐴 + 𝑝𝑖(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

− 𝑑𝑖,

𝐿𝑗 (𝑆) = 𝐴 + 𝑝𝑖(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

+ 𝑝𝑗(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟+1,𝑘𝑝[𝑘] + 𝛼𝑟+1,𝑟𝑝𝑖)

𝑎

− 𝑑𝑗.

(17)
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Similarly, the lateness of jobs 𝑗 and 𝑖 in 𝑆
 is

𝐿𝑗 (𝑆

) = 𝐴 + 𝑝𝑗(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

− 𝑑𝑗,

𝐿 𝑖 (𝑆

) = 𝐴 + 𝑝𝑗(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

+ 𝑝𝑖(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘] + 𝛼𝑟+1,𝑟𝑝𝑗)

𝑎

− 𝑑𝑖.

(18)

Thus, 𝐿 𝑖(𝑆) ≤ 𝐿 𝑖(𝑆

) since 𝑝𝑖 ≤ 𝑝𝑗 and 𝑝𝑖(1 + ∑

𝑟−1
𝑘=1 𝛼𝑟,𝑘𝑝[𝑘] +

𝛼𝑟+1,𝑟𝑝𝑗)
𝑎

≥ 0. From Property 1 and 𝑑𝑖 ≤ 𝑑𝑗, we see that
𝐿𝑗(𝑆) ≤ 𝐿 𝑖(𝑆


). Thus, 𝑆 dominates 𝑆. Therefore, repeating

this job interchange argument for all the jobs not sequenced
in the EDD order completes the proof of the result for the
1|𝑝𝑗[𝑟] = 𝑝𝑗(1 + ∑

𝑟−1
𝑘=1 𝛼𝑟,𝑘𝑝[𝑘])

𝑎
|𝐿max problem.

Similar to the proof of Property 4, we have the following
result.

Property 5. An optimal schedule for the 1|𝑝𝑗[𝑟] = 𝑝𝑗(1 +

∑
𝑟−1
𝑘=1 𝛼𝑟,𝑘𝑝[𝑘])

𝑎
|𝑇max problem is obtained by sequencing the

jobs in the EDD order if the normal processing times and due
dates are agreeable.

Property 6. An optimal schedule for the 1|𝑝𝑗[𝑟] = 𝑝𝑗(1 +

∑
𝑟−1
𝑘=1 𝛼𝑟,𝑘𝑝[𝑘])

𝑎
| ∑𝑇𝑖 problem is obtained by sequencing the

jobs in the EDD order if the normal processing times and due
dates are agreeable.

Proof. Suppose that 𝑑𝑖 ≤ 𝑑𝑗, which implies 𝑝𝑖 ≤ 𝑝𝑗.
The total tardiness of the first 𝑟 − 1 jobs is the same since
they are processed in the same order. Since the makespan is
minimized by the SPT rule (Property 1), the total tardiness
of the partial sequence 𝜋 in 𝑆 will not be greater than that
of the partial sequence 𝜋 in 𝑆

. Thus, to prove that the total
tardiness of 𝑆 is less than or equal to that of 𝑆, it suffices to
show that

𝑇𝑖 (𝑆) + 𝑇𝑗 (𝑆) ≤ 𝑇𝑗 (𝑆

) + 𝑇𝑖 (𝑆


) . (19)

From (9) to (12), we can derive that the tardiness of jobs 𝑖 and
𝑗 in 𝑆 is

𝑇𝑖 (𝑆) = max{𝐴 + 𝑝𝑖(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

− 𝑑𝑖, 0} ,

𝑇𝑗 (𝑆) = max{𝐴 + 𝑝𝑖(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

+𝑝𝑗(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟+1,𝑘𝑝[𝑘] + 𝛼𝑟+1,𝑟𝑝𝑖)

𝑎

− 𝑑𝑗, 0} .

(20)

Similarly, the tardiness of jobs 𝑗 and 𝑖 in 𝑆
 is

𝑇𝑗 (𝑆

) = max{𝐴 + 𝑝𝑗(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

− 𝑑𝑗, 0} ,

𝑇𝑖 (𝑆

) = max{𝐴 + 𝑝𝑗(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

+𝑝𝑖(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘] + 𝛼𝑟+1,𝑟𝑝𝑗)

𝑎

− 𝑑𝑖, 0} .

(21)

To compare the total tardiness of jobs 𝑖 and 𝑗 in 𝑆 and
𝑆
, we consider two cases. In the first case where 𝐴 + 𝑝𝑗(1 +

∑
𝑟−1
𝑘=1 𝛼𝑟,𝑘𝑝[𝑘])

𝑎
≤ 𝑑𝑗, the total tardiness of jobs 𝑖 and 𝑗 in 𝑆 and

in 𝑆
 is

𝑇𝑖 (𝑆) + 𝑇𝑗 (𝑆)

= max{𝐴 + 𝑝𝑖(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

− 𝑑𝑖, 0}

+max{𝐴 + 𝑝𝑖(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

+𝑝𝑗(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟+1,𝑘𝑝[𝑘] + 𝛼𝑟+1,𝑟𝑝𝑖)

𝑎

− 𝑑𝑗, 0} ,

𝑇𝑗 (𝑆

) + 𝑇𝑖 (𝑆


)

= max{𝐴 + 𝑝𝑗(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

+𝑝𝑖(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘] + 𝛼𝑟+1,𝑟𝑝𝑗)

𝑎

− 𝑑𝑖, 0} .

(22)

Suppose that neither𝑇𝑖(𝑆) nor𝑇𝑗(𝑆) is zero. Note that this
is the most restrictive case since it comprises the case where
either one or both 𝑇𝑖(𝑆) and 𝑇𝑗(𝑆) are zero. From Property 1
and 𝑑𝑖 ≤ 𝑑𝑗, we have

{𝑇𝑗 (𝑆

) + 𝑇𝑖 (𝑆


)} − {𝑇𝑖 (𝑆) + 𝑇𝑗 (𝑆)}

= (𝑝𝑗 − 𝑝𝑖)(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

+ 𝑝𝑖(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘] + 𝛼𝑟+1,𝑟𝑝𝑗)

𝑎

− 𝑝𝑗(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟+1,𝑘𝑝[𝑘] + 𝛼𝑟+1,𝑟𝑝𝑖)

𝑎

+ 𝑑𝑗 − 𝐴 − 𝑝𝑖(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

≥ 0.

(23)
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Thus, {𝑇𝑗(𝑆

) + 𝑇𝑖(𝑆


)} − {𝑇𝑖(𝑆) + 𝑇𝑗(𝑆)} ≥ 0 in the first case.

In the second case where 𝐴 + 𝑝𝑗(1 + ∑
𝑟−1
𝑘=1 𝛼𝑟,𝑘𝑝[𝑘])

𝑎
> 𝑑𝑗, the

total tardiness of jobs 𝑖 and 𝑗 in 𝑆 and 𝑆
 is

𝑇𝑖 (𝑆) + 𝑇𝑗 (𝑆)

= max{𝐴 + 𝑝𝑖(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

− 𝑑𝑖, 0}

×max{𝐴 + 𝑝𝑖(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

+ 𝑝𝑗(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟+1,𝑘𝑝[𝑘] + 𝛼𝑟+1,𝑟𝑝𝑖)

𝑎

−𝑑𝑗, 0} ,

𝑇𝑗 (𝑆

) + 𝑇𝑖 (𝑆


)

= 2𝐴 + 2𝑝𝑗(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

+ 𝑝𝑖(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘] + 𝛼𝑟+1,𝑟𝑝𝑗)

𝑎

− 𝑑𝑖 − 𝑑𝑗.

(24)

Suppose that neither 𝑇𝑖(𝑆) nor 𝑇𝑗(𝑆) is zero. From
Property 1, 𝑑𝑖 ≤ 𝑑𝑗 and 𝑝𝑖 ≤ 𝑝𝑗, we have

{𝑇𝑗 (𝑆

) + 𝑇𝑖 (𝑆


)} − {𝑇𝑖 (𝑆) + 𝑇𝑗 (𝑆)}

= 2 (𝑝𝑗 − 𝑝𝑖)(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘])

𝑎

+ 𝑝𝑖(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟,𝑘𝑝[𝑘] + 𝛼𝑟+1,𝑟𝑝𝑗)

𝑎

− 𝑝𝑗(1 +

𝑟−1

∑

𝑘=1

𝛼𝑟+1,𝑘𝑝[𝑘] + 𝛼𝑟+1,𝑟𝑝𝑖)

𝑎

≥ 0.

(25)

Thus, {𝑇𝑗(𝑆

) + 𝑇𝑖(𝑆


)} − {𝑇𝑖(𝑆) + 𝑇𝑗(𝑆)} ≥ 0 in the second

case. Thus, 𝑆 dominates 𝑆
. Therefore, repeating this job

interchange argument for all the jobs not sequenced in the
EDD order completes the proof of the result for the 1|𝑝𝑗[𝑟] =
𝑝𝑗(1 + ∑

𝑟−1
𝑘=1 𝛼𝑟,𝑘𝑝[𝑘])

𝑎
| ∑𝑇𝑖 problem.

3. Conclusions

In this paper, we propose a new scheduling model where the
learning effect accelerates. We derive the optimal solutions
for some single-machine problems. For the makespan and
the total completion time problems, we show that the SPT
rule yields the optimal schedules. For the total weighted
completion time problem, we show that theWSPT rule yields
the optimal schedule if the normal processing times and
weights are agreeable. Furthermore, we prove that the EDD
rule yields the optimal schedules for the maximum lateness,

maximum tardiness, and the total tardiness problems if the
normal processing times and due dates are agreeable.
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