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This study provides a comprehensive comparison of the performance
of the commonly used econometric and time-series models in fore-
casting seasonal tourism demand. The empirical study is carried out
based on the demand for outbound leisure tourism by UK residents
to seven destination countries: Australia, Canada, France, Greece,
Italy, Spain and the USA. In the modelling exercise, the seasonality
of the data is treated using the deterministic seasonal dummies,
seasonal unit root test techniques and the unobservable component
method. The empirical results suggest that no single forecasting
technique is superior to the others in all situations. As far as overall
forecast accuracy is concerned, the Johansen maximum likelihood
error correction model outperforms the other models. The time-series
models also show superior performance in dealing with seasonality.
However, the time-varying parameter model performs relatively poorly
in forecasting seasonal tourism demand. This empirical evidence
suggests that the methods of seasonality treatment affect the fore-
casting performance of the models and that the pre-test for seasonal
unit roots is necessary and can improve forecast accuracy.
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Seasonality is one of the most important features of tourism demand and has
important impacts on many aspects of the tourism industry. Accurate forecasts
of seasonal tourism demand are crucial for the formulation of effective
marketing strategies and tourism policies for both the private and public
sectors. In addition, seasonality has also been recognized as one of the important
tourism research areas (Rodrigues and Gouveia, 2004).

Modelling seasonal variation in international tourism demand has become an
important issue in tourism forecasting in recent years (Kulendran and Wong,
2005). However, most previous studies focused only on the time-series methods,
such as the seasonal naïve model, the traditional autoregressive integrated
moving average (ARIMA) model, the seasonal ARIMA (or SARIMA) model and
the basic structural time-series model (BSM) (see, for example, Goh and Law,
2002; Lim and McAleer, 2002; Kulendran and Wong, 2005; Vu, 2006). The
augmented BSM with explanatory variables, that is, the multivariate causal
structure time-series model (STSM), has also appeared in some published studies
that compare the forecasting performance of the above mentioned time-series
models (see, for instance, González and Moral, 1995 and 1996; Turner and
Witt, 2001). Other econometric techniques, such as the autoregressive
distributed lag (ADL) model, the error correction model (ECM), the vector
autoregressive (VAR) model and the time-varying parameter (TVP) model, are
often omitted from the forecasting competition of seasonal tourism demand
models, with only a few exceptions, such as González and Moral (1995),
Kulendran and King (1997), Kulendran and Wilson (2000) and Kulendran and
Witt (2001, 2003a,b), who compared the forecast accuracy of the ECM with
that of the time-series models; Veloce (2004) included both the VAR model
and ECM in their forecasting competition, while Smeral and Wüger (2005)
examined the forecasting performance of the seasonal naïve, ARIMA, SARIMA
and ADL models. It can be seen from these studies that, in seasonal tourism
demand forecasting comparisons, only a small number of econometric models
(very often one or two only) are selected in the forecasting competition and a
predominant focus is often given to the time-series models.

Meanwhile, some efforts have been made in evaluating the forecasting
performance of various econometric models as far as annual tourism demand is
concerned, such as Song et al (2003) and Li et al (2006). However, these studies
provided no empirical evidence on the ability of the econometric approaches
to deal with seasonality in tourism demand forecasting. There are only a few
exceptions, such as Kulendran and Witt (2001) and Wong et al (2007). In these
comparisons, no more than five forecasting models were included. In particular,
one of the most recently developed econometric models – the TVP model –
has not been considered. The TVP model has shown its superior performance
over the other econometric and time-series models in annual tourism demand
forecasting, especially in the short run (see Riddington, 1999; Song and Witt,
2000; Song and Wong, 2003; Song et al, 2003; Li et al, 2006). However, its
performance in seasonal tourism demand forecasting in comparison to other
econometric and time-series models has not been examined. An overview of the
tourism forecasting literature shows that there has been no systematic
comparison across all of the above models regarding their abilities in forecasting
seasonal tourism demand.

Seasonality is an important feature of tourism demand time series and
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requires careful treatment in modelling and forecasting seasonal (quarterly or
monthly) tourism demand (Kulendran and King, 1997). Kim and Moosa (2001,
p 382) noted that, ‘no conclusive evidence was found as to whether one should
treat seasonality as stochastic or deterministic’, though the assumption of
stochastic seasonality has been popular in recent studies (for example, Lim and
McAleer, 2002). Empirical evidence in both tourism (for example, Kim, 1999)
and general economic literatures (for example, Osborn et al, 1999) has suggested
that deterministic seasonality may be more appropriate in modelling and
forecasting the seasonal time series. This study will examine this issue further
in the tourism demand context.

The primary objective of this study is therefore to bridge the gap in the
literature by conducting a comprehensive comparison of the performance of the
econometric and time-series models in forecasting seasonal tourism demand.
Nine econometric and time-series forecasting models will be included in the
forecasting comparison. Particular attention is paid to the performance of the
modern econometric models such as the TVP model in dealing with seasonal
tourism demand.

Techniques of forecasting seasonal tourism demand

Seasonal time-series forecasting models

Three univariate time-series models are often included in seasonal demand
forecasting comparisons: the seasonal naïve model, the SARIMA model and the
BSM.

Seasonal naïve model. The seasonal naïve model is normally used to generate
baseline forecasts. As far as quarterly data are concerned, the forecast generated
by the seasonal naïve model for the period t + 4 is equal to the value of period
t, that is, 

^
Ft+4 = Ft. For example, forecasts of one and two quarters ahead are

obtained by using the values of the corresponding quarter in the previous year
(see Kulendran and Witt, 2001).

SARIMA model. As tourism demand series measured at regular calendar
intervals in a year may exhibit periodic behaviour, the general Box–Jenkins
model with seasonal difference (D), seasonal autoregressive term (P) and seasonal
moving average term (Q), can be represented by ARIMA (p, d, q) (P, D, Q)s:

φp(B)ΦP(B
s)∇d∇D

s Zt = θq(B)ΘQ(Bs)εt (1)

where Zt is a stationary data point at time t, B is the backshift operator, s is
the seasonal periodicity, εt is the disturbance at time t, φp(B) is the non-seasonal
AR operator, ΦP(B

s) is the seasonal AR operator, θq(B) is the non-seasonal MA
operator, ΘQ(Bs) is the seasonal MA operator, ∇d is the non-seasonal differencing
operator and ∇D

s is the seasonal differencing operator.
Identification is a critical step in estimating an ARIMA (p, d, q) (P, D, Q)s

model, where p is the AR order, which indicates the number of parameters of
φ, d is the number of times that the series needs to be differenced in order to
achieve a stationary series Z, q is the MA order, which indicates the number
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of parameters of θ, P is the seasonal AR order indicating the number of
parameters of Φ, Q is the seasonal MA order indicating the number of
parameters of Θ and D is the number of times that the series needs to be
seasonally differenced to arrive at a seasonally stationary series. However, it is
important that the data are properly processed before the estimation takes place,
as the ARIMA model requires the time series to be stationary. As most seasonal
time series exhibit increasing trend and/or seasonal variations, both seasonal and
non-seasonal differencing are often used to achieve a stationary time series.

BSM. A BSM is formulated by decomposing the time series into several
unobservable components as follows:

Yt = µt + γt + Ψt + εt (2)

where Yt is the actual tourism demand and µt, γt, Ψt and εt are the trend,
seasonal, cyclical and irregular components, respectively. Each component of the
series can be modelled in several ways (see González and Moral, 1996). With
respect to the seasonal component, the trigonometric form is the most
commonly used in the literature and will be applied in this empirical study as
well. The irregular component represents the transitory variations in tourism
demand which cannot be explained by the other components. A particular
feature of the BSM is that stochastic movements are permitted. For example,
a slowly changing seasonal component may indicate seasonality is stochastic.
More details of the BSM specifications can be found in Harvey and Todd (1983).

Econometric models

Five econometric models have been commonly used in the tourism demand
forecasting literature and they are the reduced autoregressive distributed lag
(RE-ADL) model, the Wickens–Breusch error correction model (WB-ECM), the
Johansen maximum likelihood error correction model (JML-ECM), the VAR
model and the TVP model. The specifications of these models are available in
Song et al (2003). In addition, the STSM has appeared recently in the seasonal
tourism demand forecasting literature. This model has shown relatively superior
forecasting performance, especially when it is compared with ECMs (González
and Moral, 1995). Three different techniques are applied to deal with seasonality
in this study: the deterministic seasonal dummies, the seasonal unit root test
and the unobservable components.

Deterministic seasonal dummies. For the RE-ADL, VAR and TVP models, seasonal
dummies are incorporated into the model specifications to capture seasonality.
The process generated by the seasonal dummies is normally called a pure
deterministic seasonal process. The parameters of the dummies are used to
describe the seasonal fluctuations and their effects on the dependent variable.
Normally, s–1 (s is the number of seasons in a one-year cycle, that is,
s = 4 for quarterly time series and s = 12 for monthly data) seasonal dummies are
included in a forecasting model. Seasonal dummies Dit (i = 1,2, . . ., s–1) are
defined as Dit = 1 if time t corresponds to season s and Dit = 0 otherwise. The
use of seasonal dummies implies that the seasonal pattern in a time series Yt

(for example, tourism demand) is constant over time.
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However, Abeysinghe (1994) shows that using the deterministic seasonal
dummies in removing seasonality in the time series is likely to result in
spurious regressions, as deterministic dummy variables do not reflect the dy-
namic nature of the seasonality inherent in the actual tourism demand. If the
seasonal effects changed gradually over time, this approach would lead to
misspecifications of the dynamic structure of the model because ‘the estimated
coefficients on the dummies reflect initial conditions plus the accumulation of
random shocks’ (Miron, 1994, p 217). As a result, the forecasts may be biased
and can cause inappropriate decision making.

Testing for seasonal unit roots. Although the patterns of seasonality can be
deterministic because of the calendar and weather effects, some fluctuations may
be caused by the behaviour of tourists and are unlikely to be constant. As
Franses (1996, p 299) noted, ‘non-durable consumption patterns may change
when preferences for certain holiday seasons change . . . sales can depend upon
the state of the economy’. Miron (1994, p 219) argues that ‘it does not make
sense to examine estimated seasonal dummy coefficients unless seasonal unit
roots can be treated as absent’. A model with seasonal dummies is likely to
misrepresent the seasonality as compared with the seasonal integrated process
proposed by Hylleberg et al (1990). A time-series model with seasonal unit roots
is an approximation that allows for changes in the seasonal pattern; that is, the
series is integrated at the seasonal frequencies. Such a model is subject to the
seasonal unit root test, which involves two steps. The first step is to test for
seasonal and non-seasonal unit roots in a time series; and the second step is
to apply different seasonal differencing filters to obtain a stationary series before
the normal cointegration procedure can be applied to estimate the model, as
suggested by the results of the seasonal unit root test. The construction of the
WB-ECM and JML-ECM depends on the results of the seasonal unit root test
when seasonal data are used in estimating the model.

The HEGY test (Hylleberg et al, 1990) has been commonly used to test for
seasonal and non-seasonal unit roots in a univariate series of a quarterly
frequency, and the test is based on the following auxiliary regression:

y4t = π1y1t–1 + π2y2t–1 + π3y3t–2 + π4y3t–1 + εt (3)

where

y4t = (1–B4)yt = yt – yt–4 ;

y1t–1 = (1+B+B2+B3)yt–1 = yt–1 + yt–2 + yt–3 + yt–4 ;

y2t–1 = –(1–B+B2–B3)yt–1 = –(1–B)(1+B2)yt–1 = –yt–1 + yt–2 – yt–3 + yt–4 ;

y3t–2 = –(1–B2)yt–2 = –(1–B)(1+B)yt–2 = –yt–2 + yt–4 ;

y3t–1 = –(1–B2)yt–1 = –yt–1 + yt–3 .

B is the backward shift operator, that is, B(xt) = xt–1, and εt is a normally and
independently distributed error term with zero mean and constant variance.
Deterministic components which include an intercept, three seasonal dummies
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and a time trend are also included in Equation (3), which can be estimated by
ordinary least squares (OLS). The three null and alternative hypotheses to be
tested are as follows:

H0 : π1 = 0, H1 : π1 < 0 ;

H0 : π2 = 0, H1 : π2 < 0 ;

H0 : π3 = π4 = 0, H1 : π3 ≠ 0 and/or π4 ≠ 0 .

The HEGY test involves the use of the t-test for the first two hypotheses and
an F-test for the third hypothesis. If the first hypothesis is not rejected, there
is a unit root at the zero frequency, or a non-seasonal unit root in the series.
Non-rejection of the second hypothesis implies that there is a seasonal unit root
at the semi-annual frequency. Finally, if the third hypothesis is not rejected,
there is a seasonal unit root at the annual frequency. These three null hypotheses
are tested separately. If none of the three null hypotheses is rejected, a quarterly
time series may have non-seasonal, semi-annual and/or annual unit roots. The
order of integration of the series would be I(1, 1, 1). The rejection of all three
null hypotheses implies that there is no non-seasonal or seasonal unit root, in
which case the series is a stationary one and the order of integration of the series
would be I(0, 0, 0).

According to the results of the seasonal unit root test, if the order of
integration of the series is I(1, 1, 1), it requires the filters (1 – B), (1 + B)
and (1 + B2), respectively, to achieve stationarity. In other words, the seasonal
differencing filter (1 – B4) should be applied to obtain a stationary series. If
the order of integration is I(0, 0, 0), it implies that the series has deterministic
or constant seasonality. In this case, it is sufficient to use dummy variables to
capture the seasonal variations in the time series.

Unobservable component. STSM treats seasonality as an unobservable component.
Based on the traditional econometric regression model, STSM additionally
includes the trend, seasonal, cyclical and irregular components:

Yt = λ1x1 + λ2x2 + . . . + λkxk + µt + γt + Ψt + εt (4)

where Yt is the actual tourism demand, x1,x2,. . .,xk are explanatory variables,
λ1,λ2,. . .,λk are unknown parameters and µt, γt, Ψt, εt are the trend, seasonal,
cyclical and irregular components, respectively. Such a treatment generally
assumes that seasonality evolves gradually over time, while the fixed seasonal
effect can be embodied in the specifications of the unobservable components
as a special case.

The data

The empirical study focuses on the demand for outbound leisure tourism by
UK residents to seven major destinations: Australia, Canada, France, Greece,
Italy, Spain and the USA. The tourism demand function can be written in the
following general form:
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TOUit = f(Yt, RRCPit, RSUBit, dummies) (5)

where TOUit is the UK outbound leisure tourism demand measured by quarterly
tourist arrivals to the destination country i; Yt is tourist income measured by
real gross domestic product (GDP) of the UK in constant prices (1995 = 100);
RRCPit represents the relative tourism price of destination i, which is calculated
by dividing the cost of tourism (measured by the consumer price index, CPIit)
in each destination by the UK CPI (CPIUK), adjusted by the appropriate
exchange rates (EXi and EXUK):

          CPIit/EXiRRCPit = –––––––– (6)
          CPIuk/EXuk

RSUBit represents the relative substitute price of the destination i, measured
by a weighted price index of the main alternative destinations for each of the
destinations relative to the tourism price in the UK, with the shares of tourist
arrivals in these potential substitute destinations being the weights. For short-
haul destinations, the four Western European countries (France, Spain, Greece
and Italy) are treated as substitute countries to each other; in the long-haul
cases, Australia, Canada and the USA are regarded as substitutes to each other.
New Zealand is also added to the long-haul substitution set as it is one of the
most popular long-haul destinations for UK tourists. Therefore, Canada,
Australia and New Zealand are substitute destinations for the USA; the USA,
Australia and New Zealand for Canada; and the USA, Canada and New Zealand
for Australia. The reason for choosing these countries as substitutions has been
justified by Divisekera (2003). In the case of France, the substitute price is
defined as:

          RRCPsp•TOUsp + RRCPit•TOUit + RRCPgr•TOUgrRSUBfr = ––––––––––––––––––––––––––––––––––––––– (7)
                    TOUsp + TOUit + TOUgr

Three dummy variables are included in the models to capture the effects of one-
off events on the UK outbound tourism demand. Among them, DUM86
represents the severe decline of the world oil prices in 1986 (DUM86 = 1 in
1986Q2 and 1986Q3, 0 otherwise). The severe decline of world oil prices was
due to disagreement in the oil cartel (OPEC), which soon led to its breakdown
(Trehan, 1986). The decline of world oil prices is supposed to have a positive
effect on UK outbound tourism demand. DUM90 captures the effect of the
invasion of Kuwait by Iraq in 1990 (DUM90 = 1 in 1990Q3 and 1990Q4,
0 otherwise). DUM91 is used to detect the effects of the Gulf War in 1991
(DUM91 = 1 in 1991Q1, 1991Q2 and 1991Q3, 0 otherwise). These two events
may have negative effects on UK outbound tourism demand.

Travel costs between the origin and destination countries may also affect
tourism demand to some extent. However, precise measurements of travel costs
are rarely available, especially at the aggregate level. The average economy-class
airfares between the origin and destination were used to represent travel costs
in past studies. However, due to the complex structure of airfares and the
low relevance of airfares to the overall price of all-inclusive package tours, only
in a few cases did the use of such a proxy result in significant coefficient
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Table 1. Results of unit root tests.

Destination country LTOUit LYt LRRCPit LRSUBit

Australia I(1,1,0) I(1,0,0) I(1,0,0) I(1,0,0)
France I(1,1,1) I(1,0,0) I(1,0,0) I(1,1,0)
Greece I(1,1,0) I(1,0,0) I(1,1,0) I(1,1,0)
Italy I(1,1,1) I(1,0,0) I(1,1,0) I(1,1,0)
Spain I(1,1,1) I(1,0,0) I(1,0,0) I(1,1,0)
Canada I(1,1,1) I(1,0,0) I(1,0,0) I(1,0,0)
USA I(1,0,1) I(1,0,0) I(1,0,0) I(1,1,0)

estimates (Li et al, 2005). Therefore, the travel costs variable is excluded from
this study.

The data cover the period 1984Q1–2004Q4. The series on GDP, exchange
rates and CPI are obtained from the International Financial Statistics Yearbooks
published by the International Monetary Fund (IMF). The tourist arrivals data
are obtained from the Tourism Statistical Yearbooks, published by the United
Nations’ World Tourism Organization (UNWTO).

Empirical results

The six econometric models and three time-series models outlined above are
used to generate individual ex post forecasts. The HEGY test developed by
Hylleberg et al (1990) is used to test for seasonal and non-seasonal unit roots
in the series. The results of unit root tests for the dependent and explanatory
variables related to UK tourists to the seven destinations under consideration
are presented in Table 1. The tests were carried out for each of the time series
for the period 1984Q1–2004Q4 using EVIEWS 5.0.

Performance of the individual forecasting methods

The results of the HEGY test show that the UK outbound tourist arrivals series
and some of the price variables exhibit trend and seasonality. The reduced ADL,
VAR and TVP models include seasonal dummy variables in the specification
of the models to account for deterministic seasonality, while seasonal difference
has been used in the WB-ECM and JML-ECM approaches in which seasonality
is regarded as stochastic. BSMs and STSMs are estimated using STAMP 7 and
the other models are estimated using EVIEW 5.0.

The demand models are estimated based on the data from 1984Q1 to
1996Q4 and the ex post forecasts are generated for the period 1997Q1–2004Q4.1

The recursive forecasting technique is used to generate forecasts; that is, the
models are estimated over the period 1984Q1–1996Q4 first and the estimated
models are used to forecast tourist arrivals over the period 1997Q1–2004Q4.
Subsequently, the models are re-estimated using the data from 1984Q1 to
1997Q1 and forecasts are generated for the period 1997Q2–2004Q4. Such a
procedure is repeated until all observations are exhausted. As a result, 32 one-
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quarter-ahead forecasts, 31 two-quarters-ahead forecasts, 30 three-quarters-ahead
forecasts, 29 four-quarters-ahead forecasts and 25 eight-quarters-ahead forecasts
are generated. With regard to the SARIMA model, a variety of SARIMA
models with different combinations of the orders of p, q, P, Q are estimated
first and the optimal model is selected based on such information criteria as
the Akaike information criterion (AIC) and Schwarz criterion (SC). The orders
of p, q, P and Q are chosen from 0 to 2, according to Pankratz (1983), who
states that in practice, all the orders (p, d, q, P, D, Q) tend to be small, often
no more than 1 or 2 (for SARIMA).

To be consistent with the previous tourism forecasting studies, the
forecasting accuracy comparison is carried out based on two measures of error
magnitude: the mean absolute percentage error (MAPE) and the root mean
square percentage error (RMSPE) (for detailed justification see Witt and Witt,
1992). According to the two error measures, the forecasting performances of
the alternative models are ranked and the results are shown in Tables 2 and 3.

Forecasting accuracy comparison across different destinations. The forecast errors of the
alternative models for each destination are presented in Table 2. It should be
noted that STSM collapses to BSM in four out of seven cases (France, Greece,
Italy and the USA), which suggests that after allowing for stochastic
determination of the various components of the time series, none of the
explanatory variables is statistically significant. The results of Table 2 show that
no single model is superior to other techniques across different destinations. For
example, the JML-ECM is ranked top overall in terms of both MAPE and
RMSPE in the Australia and Greece models. However, the seasonal naïve model
outperforms all the other models based on the two measures in the case of
France. The WB-ECM is the best performer among all competing models for
Italy. With respect to Spain and the USA, the JML-ECM and SARIMA models
take alternative turns to be the best based on different error measures.

With respect to the least accurate forecasts, the WB-ECM is outperformed
by its competitors in the Australia and Greece cases. The reduced ADL model
performs worst in the French and Spanish models according to both error
measures. In the USA case, the VAR model exhibits the poorest performance,
while for Italy the TVP model produces the least accurate forecasts.

The information above can help forecasters to decide which model to use
when forecasting UK tourist arrivals to specific destinations. Although the
forecasting performance of the alternative models varies across destinations, the
best performing models always treat seasonality as stochastic rather than
deterministic with respect to each destination except France. The implication
is that, although the demand for tourism to different destinations features
different seasonal patterns, to treat seasonality as stochastic is always favourable
as far as forecasting the future demand for tourism is concerned.

Forecasting accuracy comparison over different forecast horizons. At each forecast
horizon, aggregated error measures are calculated across seven destinations. The
results are shown in Table 3. It can be observed from the table that for
1-quarter-ahead and 2-quarters-ahead forecasts, JML-ECM outperforms all the
other models in terms of both error measures, followed by the naïve model and
BSM. For 3-quarters-ahead and 4-quarters-ahead forecasts, the naïve model
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generates the most accurate forecasts, followed by JML-ECM. The BSM and
SARIMA models generate more accurate forecasts than the rest of the models.
For 8-quarters-ahead forecasts, the SARIMA model turns out to be the top-
performing model, followed by JML-ECM and the naïve model in terms of both
error measures. The reduced ADL model and the VAR model perform
consistently poorly over different forecast horizons and are ranked among the
bottom three. The TVP model produces the least accurate forecasts for the short
forecast horizons (1-, 2- and 3-quarters-ahead); however, slightly better
performance is observed for the longer forecast horizons. BSM outperforms
STSM for all forecast horizons, which suggests that inclusion of explanatory
variables does not seem to improve the forecast accuracy of the structural time-
series model. This result is in line with the findings of previous studies, such
as Turner and Witt (2001).

The results highlighted above show that for short-term (one to two steps
ahead) forecasting, JML-ECM performs the best, which indicates that by
incorporating the short-run dynamics into the econometric modelling
procedure, the forecasting accuracy can be improved. However, the naïve model
and the BSM still outperform the other models, although they do not perform
as well as the JML-ECM. For medium-term forecasting (three and four steps
ahead), the naïve model generates the most accurate forecasts, followed by JML-
ECM. As far as the long-run forecasts are concerned, the SARIMA model
outperforms all of its counterparts, closely followed by the JML-ECM and the
naïve model. It is clear from the above analysis that the econometric models
outperform the time-series models in the short run, while the time-series
models are more accurate in the medium- to long-run forecasting.

Overall forecasting accuracy. The bottom rows of Table 3 present the aggregated
accuracy measures across all destinations and over all forecast horizons. The
results show that JML-ECM is superior to all other models when forecasting
UK outbound tourist arrivals to the seven major destination countries. The
results are contradictory to the conclusions drawn in previous studies (such as
Kulendran and King, 1997; Kulendran and Witt, 2001) in which the
econometric models are outperformed by simple univariate time-series models.
The time-series models perform well and rank second (the naïve model) and
third (the SARIMA model), respectively. The reduced ADL model generates the
least accurate forecasts, while the TVP model (or the VAR model) produces the
second least accurate forecasts based on either MAPE or RMSPE.

The superior performances of JML-ECM and the seasonal time-series models
might be explained by the way in which the seasonality in the data series is
treated. The nature of seasonality in the time series is regarded as either
deterministic or stochastic. When seasonality is stochastic, the time series needs
to be seasonally differenced to account for seasonal unit roots. If seasonality is
found to be deterministic, seasonal dummies could be used to capture seasonality
in the model. The specifications of JML-ECM and WB-ECM are based on the
results of the seasonal unit root test (HEGY hereby). The seasonal naïve model
and the SARIMA model assume that there are seasonal unit roots at
seasonal frequencies, while this assumption is consistent with the results of
the seasonal HEGY test, which indicate that UK outbound tourist
arrivals exhibit stochastic seasonality. By including stochastic seasonality as
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one of the main components, BSM and STSM allow for changing seasonal
patterns in tourism demand. However, the other three models use
seasonal dummies to account for seasonality in tourism demand. According to
Abeysinghe (1994), the use of seasonal dummies in removing seasonality in the
data is likely to produce spurious regressions. Moreover, such a simplification
is incapable of reflecting the dynamic nature of the seasonality in tourism
demand. Moosa and Kennedy (1998) draw a similar conclusion. That may also
explain the relatively poor forecasting performances of the reduced ADL, VAR
and TVP models.

It is necessary to examine the statistical significance of the forecast differences
between the above two groups of forecasting models, that is, JML-ECM,
WB-ECM, STSM, BSM and the SARIMA model, which all treat seasonality
as stochastic, and the reduced ADL, VAR and TVP models, which assume
deterministic seasonality. The Harvey–Leybourne–Newbold (HLN) test
proposed by Harvey et al (1997) is adopted for this purpose. The HLN test is
a modified version of the Diebold and Mariano (1995) test and is suitable for
small samples and multiple-step-ahead forecasts. The technical illustration of
the statistic is omitted here as it can be found in Harvey et al (1997). The results
of the tests are reported in Tables 4–6. The evidence clearly suggests that
treating seasonality as a stochastic process can improve forecast accuracy
significantly. The JML-ECM, WB-ECM, BSM, STSM and ARIMA models
outperform the reduced ADL, VAR and TVP models significantly in 70% of
the comparisons, with only WB-ECM showing relatively less satisfactory
performance.

A significant contribution of this study is that it has confirmed that different
treatments of seasonality can affect the forecasting performance of the tourism
demand forecasting models significantly and pre-tests for seasonal unit roots can
improve forecast accuracy. This finding is consistent with Alleyne (2006) and
Diebold and Kilian (2000).

 Conclusions

This study has provided a comprehensive comparison of the forecasting
performance of six econometric models and three time-series models related to
UK outbound tourism demand. The econometric models comprise a reduced
ADL model, two ECMs (WB-ECM and JML-ECM), an unrestricted VAR
model, a TVP model and an STSM. Five of these models represent the latest
developments of econometric modelling and forecasting methods in the tourism
context and have shown their advantages over the other models in previous
empirical studies. The time-series models include a naïve model, a SARIMA
model and a BSM. These time-series models have been used widely in
modelling seasonal time series.

As quarterly data were used in this study, three methods were used to treat
seasonality in the econometric modelling process – using seasonal dummies,
testing for seasonal roots (seasonal differencing) and decomposing the unobservable
components. The HEGY unit root test was employed to test for the nature of
seasonality in the time series. The forecasting accuracy of the different
forecasting techniques was compared based on two error magnitude measures,
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Table 4. Tests for equal forecast accuracy between RE-ADL model and other models with
stochastic seasonality.

Forecasting horizon SARIMA WB-ECM JML-ECM BSM STSM

1-quarter-ahead 2.250** 1.478 2.734*** 2.671*** 1.939*
2-quarters-ahead 2.038** 0.827 2.543** 2.398** 1.795*
3-quarters-ahead 2.495** 0.404 3.592*** 3.458*** 2.452**
4-quarters-ahead 2.102** 0.792 2.481** 2.525** 1.631
8-quarters-ahead 2.552** 1.906* 2.743*** 2.041** 1.437

Note: *, ** and *** represent 10%, 5% and 1% significant levels, respectively.

Table 5. Tests for equal forecast accuracy between TVP model and other models with
stochastic seasonality.

Forecasting horizon SARIMA WB-ECM JML-ECM BSM STSM

1-quarter-ahead 3.945*** 1.736* 5.778*** 5.976*** 4.909***
2-quarters-ahead 4.338*** 2.210** 5.932*** 5.414*** 4.851***
3-quarters-ahead 2.758*** 0.450 3.920*** 3.760*** 2.915***
4-quarters-ahead 0.289 –1.955* 0.591 0.214 0.736
8-quarters-ahead 2.592** –0.421 2.440** –0.118 0.556

Note: *, ** and *** represent 10%, 5% and 1% significant levels, respectively. The negative statistics
suggest that the TVP model outperforms its competitors.

Table 6. Tests for equal forecast accuracy between VAR model and other models with
stochastic seasonality.

Forecasting horizon SARIMA WB-ECM JML-ECM BSM STSM

1-quarter-ahead 2.838*** 0.836 4.328*** 5.116*** 3.975***
2-quarters-ahead 2.750*** 0.552 4.342*** 4.154*** 3.110***
3-quarters-ahead 2.536** 0.169 3.594*** 3.799*** 2.540**
4-quarters-ahead 2.034** 0.072 2.590** 2.624*** 1.857*
8-quarters-ahead 1.939* 0.654 1.916* 1.569 0.931

Note: *, ** and *** represent 10%, 5% and 1% significant levels, respectively.

that is, the MAPE and RMSPE. Rankings of these forecasting models over
different time horizons were provided.

The empirical results have shown that no single forecasting technique is
superior to the others in all situations as the performance of tourism forecasting
models tends to vary across destinations and forecast horizons. This finding is
in line with previous studies (for example, Fildes and Lusk, 1984; Makridakis,
1986; Wong et al, 2007).

With regard to the overall performance of the models in forecasting seasonal
tourism demand, the results show that JML-ECM is superior to all other
models, followed by the simple naïve model and the SARIMA model. BSM
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outperforms STSM, suggesting that the inclusion of explanatory variables does
not seem to improve the forecast accuracy of the basic structural time-series
model. The ADLM, VAR and TVP models, which include seasonal dummies
to account for seasonality, performed relatively poorly as compared with the
other models. This empirical evidence suggests that different treatment of
seasonality affects the forecasting performance of the econometric models. When
seasonality is regarded as stochastic, the time series needs to be seasonally
differenced, or seasonality should be treated as a stochastic component to
account for seasonal unit roots in the time series. To model seasonality as a
deterministic component by using seasonal dummies may result in model
misspecification. Therefore, the test for seasonal unit roots before estimating the
model is necessary and can improve forecast accuracy.

Although the applications of the TVP model have shown its superiority in
tourism demand forecasting as far as annual data are concerned, its performance
has been unsatisfactory when quarterly data are used and only deterministic
seasonal dummies are introduced. As the time-series models employed in this
study can treat seasonality as a stochastic component using BSM, the
combination of the TVP model and the BSM might improve the forecasting
performance with higher frequency data (monthly or quarterly). Further
research in this respect would certainly be of interest to both researchers and
practitioners.

Endnotes

1. The results are omitted here due to space constraints but are available from the authors on
request.
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