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SNR-Invariant PLDA Modeling in Nonparametric
Subspace for Robust Speaker Verification
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Abstract—While i-vector/PLDA framework has achieved great
success, its performance still degrades dramatically under noisy
conditions. To compensate for the variability of i-vectors caused
by different levels of background noise, this paper proposes an
SNR-invariant PLDA framework for robust speaker verification.
First, nonparametric feature analysis (NFA) is employed to
suppress intra-speaker variation and emphasize the discrimina-
tive information inherited in the boundaries between speakers
in the i-vector space. Then, in the NFA-projected subspace,
SNR-invariant PLDA is applied to separate the SNR-specific
information from speaker-specific information using an identity
factor and an SNR factor. Accordingly, a projected i-vector in the
NFA subspace can be represented as a linear combination of three
components: speaker, SNR, and channel. During verification, the
variability due to SNR and channels are integrated out when
computing the marginal likelihood ratio. Experiments based on
NIST 2012 SRE show that the proposed framework achieves
superior performance when compared with the conventional
PLDA and SNR-dependent mixture of PLDA.

Index Terms—i-vector, PLDA, SNR-invariant, nonparametric
feature analysis, speaker verification.

I. INTRODUCTION

IN text-independent speaker verification [1], [2], most state-
of-the-art systems use an i-vector [3] to represent the

acoustic characteristics of an utterance. Unlike joint factor
analysis (JFA) [4], [5], [6] in which the channel and speaker
variabilities are compressed into two distinct subspaces respec-
tively, the i-vector framework learns a single low-dimensional
subspace called the total variability subspace, through which
utterances of variable-length can be represented as fixed-
length i-vectors whose elements are the latent variables of a
factor analyzer [7]. Such a representation greatly simplifies the
modeling process as the dimension of i-vectors is much lower
than that of GMM-supervectors [8], [9]. Statistical techniques,
such as linear discriminant analysis (LDA) [10], within-
class covariance normalization (WCCN) [11], and probabilistic
LDA (PLDA) [12], can be applied to suppress the channel-
and session-variability in i-vectors. Typically, LDA is applied
to the i-vectors followed by the WCCN. The former aims to
find a low-dimensional subspace of the total variability space
in which intersession variability is minimal, and the latter
further compensates for intersession variability by normalizing
the within-speaker covariance while maintaining the direction
of the subspace found by LDA. Cosine distance between the
target-speaker’s i-vector and test i-vector is then used as a
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similarity measure between the target speaker and the test
speaker. Alternatively, by assuming that the priors on the latent
variables of the PLDA model follow a Gaussian distribution
or Student’s t distribution, the Gaussian PLDA and heavy-
tailed PLDA [13] were proposed respectively. To deal with
the non-Gaussian behavior of i-vectors, length normalization
[14], [15], [16] is applied to the i-vectors so that the resulting
vectors are more amendable to Gaussian PLDA modeling.

In the i-vector/PLDA framework, the purpose of LDA is to
find a low-dimensional subspace for PLDA modeling. This is
achieved by finding a subspace that maximizes the between-
class separation and minimizes the within-class variation. LDA
assumes that the density of each class is a Gaussian and
that the classes share the same covariance structure. This
assumption results in the computation of two matrices: within-
class scatter matrix and between-class scatter matrix. The
accuracy of these matrices depends on a number of factors,
of which the accuracy of class-dependent mean vectors is of
fundamental importance. In the context of i-vector speaker
verification, these class-dependent means are the means of
speaker-dependent i-vectors, each of which is estimated from
the utterances (sessions) of a training speaker. In most practical
situations, the number of training speakers could be as large as
several hundred, but many of these speakers may only have a
few sessions. The limited number of sessions per speaker could
lead to inaccurate class-dependent mean vectors. As there is
no mechanism to suppress the effect of these inaccurate mean
vectors on the scatter matrices, the performance of LDA will
suffer.

To address the limitation of LDA, a nonparametric fea-
ture analysis (NFA) [17] approach was proposed and suc-
cessfully applied to face recognition. Instead of using the
class-dependent means to compute the within-class scatter
matrix, NFA replaces the class-dependent means by the nearest
neighbors to each training vector. Similarly, to compute the
between-class scatter matrix, NFA uses all of the training
vectors and their nearest neighbors from other classes rather
than utilizing the class-dependent means and the global mean.
This strategy is very effective in capturing the discriminative
class boundary information inherited in the training set.

Recently, noise robust speaker verification has received
increasing attention due to its great practical value [18],
[19], [20], [21]. Studies have shown that background noise
has severe effects on the performance of speaker recognition
systems [22], [23], [24]. A recent study [25] also found that
mismatches in radio channels could have detrimental effect on
performance.

Although traditional PLDA model addresses session mis-
match well, it does not consider the effect of noise at varying
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signal-to-noise ratio (SNR). To improve the robustness of i-
vector/PLDA systems, several methods have been proposed.
For example, Hasan and Hansen [26], [27] proposed a two
stage factor analysis scheme in which the posterior means and
covariances of acoustic factors in the first stage are used for i-
vector extraction in the second stage. Kheder et al. [28] clean
up noisy i-vectors by using an additive noise model in the
i-vector space.

Another direction is to pooled clean and noisy utterances
together to train a robust PLDA model [29], [30], [31], [32],
[33]. In particular, Garcia-Romero et al. [34] applied multi-
condition training to train multiple PLDA models, one for
each condition. A robust system was then constructed by
combining all of the PLDA models according to the posterior
probability of each condition. Mak [35] proposed an adaptive
multi-condition training algorithm called mixture of SNR-
dependent PLDA to handle test utterances with a wide range
of SNR. The main limitations of these multi-condition training
methods are that (1) the system performance degrades when
the distributions of SNR in the training set and the test set
are not consistent, (2) it is necessary to train multiple PLDA
models, which increases computation complexity during the
training and recognition stages, and (3) the noise level of
each test utterance should be estimated when computing the
verification score.

Motivated by the limitations of LDA and multi-condition
training in i-vector/PLDA framework, we propose a new
framework for SNR-invariant speaker verification by incor-
porating the SNR variability into PLDA modeling in the
reduced nonparametric subspace. As a preprocessor for PLDA
modeling, NFA aims to maximize inter-speaker separation and
emphasize the boundaries between speakers in the i-vector
space by constructing two nonparametric scatter matrices.
In the back-end modeling stage, we propose a noise robust
speaker verification method that can deal with the mismatch
caused by noise with a wide range of SNR. Inspired by
the hidden factor analysis [36] approach to age invariant
face recognition, we assume that the noise-related variability
and the speaker-related variability embedded in the NFA- or
LDA-projected i-vectors can be modeled by an SNR factor
and a speaker (identity) factor in a linear generative model.
We refer to it as SNR-invariant PLDA. In this model, the
identity component and the SNR component live in two
different subspaces which can be obtained by an expectation-
maximization (EM) algorithm. In the verification stage, both
target and test i-vectors are projected onto the nonparametric
subspace. Then, SNR variability and channel variability are
integrated out when the likelihood ratio is computed.

II. I-VECTOR/PLDA FOR SPEAKER VERIFICATION

Conventional i-vector/PLDA framework consists of three
parts: i-vector extraction, inter-session variability compensa-
tion, and PLDA modeling.

A. I-vector Extraction

Inspired by the observation that the channel subspace still
contains speaker-related information in joint factor analysis

(JFA), Dehak et al. [3] proposed to jointly model speaker and
channel variabilities in a combined subspace called the total
variability space. Using this subspace, a speaker- and channel-
dependent GMM-supervector Mi can be expressed as:

Mi = M + Txi (1)

where M is the speaker- and channel-independent GMM-
supervector obtained by stacking the mean vectors of a uni-
versal background model (UBM) [37], T is a low-rank matrix
whose columns define the bases of the total variability space,
and the loading factor xi is a low-dimensional identity vector
referred to as i-vector. The i-vector xi is assumed to follow
a standard normal distribution N (0, I). Given the centralized
Baum-Welch statistics from a set of training utterances, the
matrix T is estimated via an expectation maximization (EM)
algorithm identical to that of the joint factor analysis [4] but
with the speaker labels ignored. Given T and an utterance, the
posterior mean of the latent factor is estimated and considered
as the i-vector xi of the utterance.

B. Inter-Session Variability Compensation

As i-vectors comprise both speaker- and channel-
characteristics, it is important to compensate for inter-session
variability. Typically, this can be done by LDA projection
followed by WCCN.

1) Linear Discriminant Analysis: The main purpose of
LDA [10] is to reduce the dimensionality of i-vectors be-
fore PLDA modeling [13]. LDA is a parametric discriminant
analysis technique as it uses the parametric form of Gaussian
distributions to represent the scatter matrices. LDA aims
to determine an optimal projection W that maximizes the
between-class scatter and minimizes the within-class scatter of
the projected data. Specifically, the optimal projection matrix
Wlda is calculated as [38]:

Wlda = argmax
W

|W>SbW|
|W>SwW|

(2)

where Sw and Sb are the within-class scatter matrix and
between-class scatter matrix, respectively. The within-class
scatter matrix is defined as:

Sw =

S∑
i=1

Ni∑
j=1

(xij − µi)(xij − µi)> (3)

where xij is the j-th i-vector from speaker i, S is the number
of speakers, Ni denotes the number of i-vectors belonging to
speaker i, and µi is the mean of the i-vectors from speaker i.
The between-class scatter matrix is given by

Sb =

S∑
i=1

Ni(µi − µ)(µi − µ)> (4)

where µ is the global mean of all i-vectors. The solution of
Eq. 2 comprises the eigenvectors of S−1w Sb.

2) Within Class Covariance Normalization: Given the
LDA-projected i-vectors, WCCN [11] aims to further suppress
the intra-speaker variability in the reduced subspace. The
WCCN projection matrix can be calculated as the square-root
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of the inverse of the standard within-class covariance matrix:

Wwccn = S−1/2wccn (5)

where

Swccn =

S∑
i=1

1

Ni

Ni∑
j=1

(W>
ldaxij − µ̂i)(W>

ldaxij − µ̂i)> (6)

where µ̂i denotes the mean of the LDA-projected i-vectors
from speaker i.

C. Gaussian PLDA Modeling

Prince and Elder [39], [40] proposed a probabilistic LDA
(PLDA) approach to increasing the separability between the
facial images of different persons. Kenny [13] brought this idea
to the speaker recognition community by assuming that the i-
vectors follow a Student’s t distribution. The resulting model is
commonly referred to as heavy-tailed PLDA models. Shortly
after Kenny’s work, it was discovered that PLDA models with
Gaussian priors on the latent factors can achieve almost the
same performance as heavy-tailed PLDA if the i-vectors have
been length-normalized [14], [15], [16]. The resulting model
is known as Gaussian PLDA models in the literature.

In Gaussian PLDA, a length-normalised i-vector x̂ij from
the j-th session of speaker i is regarded as an observation
generated from a probabilistic model of the form:

x̂ij = m + Vhi + Grij + εij . (7)

In the model, m is the global mean of i-vectors, V defines
the speaker subspace with the speaker factor hi following a
standard normal distribution, G defines the channel subspace
with the channel factor rij that follows a standard normal
distribution, and εij is a residual term following a Gaussian
distribution with zero mean and diagonal covariance matrix
Σ.

According to [13], [14], the PLDA model in Eq. 7 can be
divided into two parts: (1) the speaker part (m + Vhi) that
depends on the i-th speaker only and (2) the channel part
(Grij + εij) that depends not only on the speaker but also on
his/her sessions. As i-vectors are of sufficiently low dimension,
the term Grij can be absorbed into Σ if the latter is a full
covariance matrix. Accordingly, the Gaussian PLDA model
can be simplified as follow:

x̂ij = m + Vhi + εij , (8)

where εij ∼ N (0,Σ) with Σ being a full covariance matrix.
This paper adopts this simplified model.

III. SNR-INVARIANT PLDA MODELING IN
NONPARAMETRIC SUBSPACE

In order to enhance the noise robustness of i-vector/PLDA
systems, several multi-condition training methods have been
proposed to generate multiple SNR-dependent PLDA models
[34], [35], [41]. In spite of the promising results obtained
by these methods, the systems work well only under some
restricted conditions. For example, the SNRs of training and
test utterances must be within the same range and it is

necessary to measure the SNRs of the test utterances during
verification. Moreover, computational complexity increases
significantly because multiple PLDA models must be trained.
To address these limitations, this paper proposes a framework
for SNR-invariant PLDA modeling in nonparametric subspace.
Before SNR-invariant PLDA modeling, nonparametric feature
analysis (NFA) is applied to the i-vectors to maximize the
discriminative information embedded in the i-vectors. Then,
an SNR-invariant PLDA model is constructed using the NFA-
projected i-vectors as input.

A. Nonparametric Feature Analysis
To address the limitations of LDA, a nonparametric feature

analysis (NFA) technique was proposed for face recognition
[17]. Inspired by this study, we applied NFA to i-vector based
speaker verification as follows. Denote xij as the j-th WCCN-
whitened and length-normalized i-vector from speaker i. The
nonparametric within-class scatter matrix and between-class
scatter matrix in NFA are calculated as follows:

SNFA
w =

S∑
i=1

k1−1∑
l=1

Ni∑
j=1

(xij−ψl(xij , i))(xij−ψl(xij , i))> (9)

SNFA
b =

S∑
i=1

S∑
r=1
r 6=i

k2∑
l=1

Ni∑
j=1

ω(i, r, l, j)(xij − ψl(xij , r))

(xij − ψl(xij , r))>
(10)

where S is the total number of speakers in the training set,
Ni is the number of i-vectors from speaker i, ψl(xij , r) is the
l-th nearest neighbor from speaker r to xij , and k1 − 1 and
k2 respectively denote the number of the nearest neighbors
selected during the computation of SNFA

w and SNFA
b . The

weighting term ω(i, r, l, j) in Eq. 10 is defined as:

ω(i, r, l, j) =
min{dα(xij , ψl(xij , i)), d

α(xij , ψl(xij , r))}
dα(xij , ψl(xij , i)) + dα(xij , ψl(xij , r))

=
1

1 + g(xij)α
, i 6= r

(11)
where d(x1,x2) is the Euclidean distance between vector x1

and vector x2, and α controls the rate of change of the weight
with respect to the distance ratio g(xij). In this paper, α is
set to 2.

Note that LDA is parametric in that the global mean µ
and class-dependent means µi in Eqs. 3 and 4 are parameters
of Gaussian distributions. On the other hand, NFA is non-
parametric in that the terms in Eqs. 9 and 10 are vectors
near the decision boundaries. They are not the parameters of
distributions.

In Eq. 11, if dα(xij , ψl(xij , i)) < dα(xij , ψl(xij , r)), then

g(xij) =
d(xij , ψl(xij , r))

d(xij , ψl(xij , i))
,

otherwise
g(xij) =

d(xij , ψl(xij , i))

d(xij , ψl(xij , r))
.

For a selected i-vector xij near a speaker boundary (e.g.,
xi1 and xi2 shown in Fig. 1), the between-class distance
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Fig. 1. Hypothetic example illustrating the between-class distance
d(xij , ψl(xij , r)) [dashed lines] and the within-class distance
d(xij , ψl(xij , i)) [solid lines] for the training i-vectors xij of speaker i.
For xi1 and xi2, the weighting function ω(·) in Eq. 11 approaches 0.5. For
xi3, ω(·) approaches 0.0.

d(xij , ψl(xij , r)) [dashed line] is comparable to the within-
class distance d(xij , ψl(xij , i)) [solid line], causing g(xij)
to approach 1.0. Therefore, the weighting function ω(·) in
Eq. 11 approaches 0.5. On the other hand, if the selected i-
vector xij is far away from a speaker boundary, e.g, xi3, the
between-class distance d(xij , ψl(xij , r)) will be much larger
than the between-class distance d(xij , ψl(xij , i)), causing the
weighting function ω(·) to approach 0.0. As a result, the
discriminative speaker boundary information in the training
set can be emphasized by the weighting function.

Similar to the standard LDA, the NFA projection matrix
comprises the eigenvectors of (SNFA

w )−1SNFA
b .

Compared with the traditional LDA, both the within-class
and between-class scatter matrices in NFA have a nonpara-
metric form. Instead of using the speaker-dependent i-vector
means, NFA selects some of the nearest samples from the
same speaker or from other speakers to calculate the scatter
matrices, making the NFA more capable of capturing the
structural information of speaker boundaries than LDA. More-
over, the contribution of each neighbor sample to the scatter
matrix is controlled by the ratio between the inter-speaker
distance to intra-speaker distance, which effectively increases
the influence of the i-vectors that are close to the inter-speaker
boundaries.

B. SNR-Invariant PLDA Modeling

In this section, we propose a new modeling approach,
namely SNR-invariant PLDA, for robust speaker verification.
Unlike Gaussian PLDA, SNR-invariant PLDA has two labeled
latent factors representing SNR-specific and identity-specific
information, respectively.

1) Generative Model: The SNR-invariant PLDA model is
inspired by the notion of Gaussian PLDA in which i-vectors
from the same speaker should share an identical latent identity
factor. Similarly, we assume that i-vectors derived from utter-
ances that fall within a narrow SNR range should share similar

SNR-specific information. From a modeling standpoint, both
SNR-specific and identity-specific information can be captured
using latent factors. We refer to these latent factors as SNR
factor and identity factor in the sequel.

Under the above assumptions, an NFA-projected1 i-vector
can be regarded as an observation generated from a linear
generative model that comprises three components: (1) SNR
component, (2) identity component, and (3) channel variability
and the remaining variability that cannot be captured by the
first two components. Assume that we have a set of D-
dimension reduced i-vectors X = {x̂kij |i = 1, . . . , S; j =
1, . . . ,Hi(k); k = 1, . . . ,K} obtained from S speakers in
NFA subspace, where x̂kij is the j-th sample from speaker i at
the k-th SNR sub-group. In the SNR-invariant PLDA model,
x̂kij can be expressed as:

x̂kij = m + Vhi + Uwk + εkij (12)

where m is a D × 1 vector representing the global offset,
hi is a P × 1 vector denoting the latent identity factor with
prior distribution N (0, I), wk is a Q× 1 vector denoting the
latent SNR factor with a prior distribution of N (0, I), εkij is a
D × 1 vector denoting the residual which follows a Gaussian
distribution N (0,Σ), V is a D × P matrix whose columns
span the speaker subspace, and U is a D × Q matrix whose
columns span the SNR subspace. hi and wk are assumed to
be statistically independent.

The proposed SNR-invariant PLDA is different from the
conventional PLDA in that the former makes use of multiple
labels (speaker IDs and SNR levels) for training the loading
matrices, whereas the latter only uses the speaker IDs. To
exploit the SNR information in the training utterances, the
SNR-invariant PLDA has an additional subspace called SNR
subspace, which results in an extra latent factor called SNR
factor. Unlike the term Grij in Eq. 7, which is speaker-
and session-dependent, the SNR component Uwk in Eq. 12
depends on the SNR sub-groups. For instance, i-vectors within
the k-th SNR sub-group will share the same SNR factor wk.

2) EM Algorithm: Denote θ = {m,V,U,Σ} as the pa-
rameters of the SNR-invariant PLDA model. These parameters
can be learned from a training set using maximum likelihood
estimation. Given an initial value θ, we aim to find a new
estimate θ′ that maximizes the auxiliary function:

Q(θ′|θ) = Eh,w

{
ln p(X ,h,w|θ′)

∣∣∣∣X ,θ}
= Eh,w

{∑
ijk

ln [p(x̂kij |hi,wk,θ
′)p(hi,wk)]

∣∣∣∣X ,θ}
(13)

To maximize Eq.13, we need to estimate the posterior distri-
butions of the latent variables given the model parameters θ.
Denote Ni =

∑K
k=1Hi(k) as the number of training samples

from the i-th speaker and Mk =
∑S
i=1Hi(k) as the number

of training samples falling in the k-th SNR group. Then the
E-step is as follows:

L1
i = I +NiV

>Φ−11 V i = 1, . . . , S (14)

1The same formulations also applied to LDA-projected i-vectors.
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L2
k = I +MkU

>Φ−12 U k = 1, . . . ,K (15)

〈hi|X 〉 = (L1
i )
−1V>Φ−11

K∑
k=1

Hi(k)∑
j=1

(x̂kij −m) (16)

〈wk|X 〉 = (L2
k)−1U>Φ−12

S∑
i=1

Hi(k)∑
j=1

(x̂kij −m) (17)

〈hihT
i |X 〉 = (L1

i )
−1 + 〈hi|X 〉〈hi|X 〉T (18)

〈wkw
T
k|X 〉 = (L2

k)−1 + 〈wk|X 〉〈wk|X 〉T (19)

〈wkh
T
i |X 〉 = 〈wk|X 〉〈hi|X 〉T (20)

〈hiwT
k|X 〉 = 〈hi|X 〉〈wk|X 〉T (21)

where
Φ1 = UU> + Σ, Φ2 = VV> + Σ

and 〈.〉 denotes expectation.
Given Eq. 14–Eq. 21, the model parameters θ′ can be

estimated via the M-step as follows:

m =
1

N

S∑
i=1

K∑
k=1

Hi(k)∑
j=1

x̂kij (22)

V′ =


S∑
i=1

K∑
k=1

Hi(k)∑
j=1

[
(x̂kij −m)〈hi|X 〉 −U〈wkh

T
i |X 〉

] S∑
i=1

K∑
k=1

Hi(k)∑
j=1

〈hihT
i |X 〉

−1
(23)

U′ =


S∑
i=1

K∑
k=1

Hi(k)∑
j=1

[
(x̂kij −m)〈wk|X 〉 −V〈hiwT

k|X 〉
] S∑

i=1

K∑
k=1

Hi(k)∑
j=1

〈wkw
T
k|X 〉

−1
(24)

Σ′ =
1

N

S∑
i=1

K∑
k=1

Hi(k)∑
j=1

[
(x̂kij −m)(x̂kij −m)>

−V〈hi|X 〉(x̂kij −m)> −U〈wk|X 〉(x̂kij −m)>
]
(25)

where N =
∑S
i=1Ni =

∑K
k=1Mk. Algorithm 1 shows the

procedures of applying the EM algorithm and APPENDIX A
shows the derivations of Eq. 14–Eq. 25.

C. Likelihood Ratio Scores

Given a test sample x̂t and a target sample x̂s in the
NFA subspace, the likelihood ratio score can be computed
as follows:

L(x̂s, x̂t) = ln
P (x̂s, x̂t|same-speaker)

P (x̂s, x̂t|different-speakers)

= const +
1

2
x̂>s Qx̂s +

1

2
x̂>t Qx̂t + x̂>s Px̂t

(26)

Algorithm 1 EM Algorithm for SNR-Invariant PLDA
Input:
Development data set consists of NFA-projected i-vectors
X = {x̂kij |i = 1, . . . , S; j = 1, . . . ,Hi(k); k = 1, . . . ,K},
with identity labels and SNR group labels.

Initialization:
Σ← 0.01× I;
V,U← eigenvectors of PCA projection matrix learned using
data set X ;

Parameter Estimation:
1) Compute m via Eq. 22;
2) Compute L1

i and L2
k according to Eq. 14 and Eq. 15;

3) Compute the sufficient statistics using Eq. 16 to Eq. 21;
4) Update the model parameters using Eq. 23 to Eq. 25;
5) Go to step 2 until convergence;
Return: the parameters of the SNR-invariant PLDA model
θ = {m,V,U,Σ}.

where

P = Σ−1totΣac(Σtot −ΣacΣ
−1
totΣac)

−1,

Q = Σ−1tot − (Σtot −ΣacΣ
−1
totΣac)

−1,

Σac = VV>, and Σtot = VV> + UU> + Σ.

See APPENDIX B for the derivations of Eq. 26.

IV. EXPERIMENTAL SETUP

A. Speech Data and Front-End Processing

All experiments were performed on the core set of NIST
2012 Speaker Recognition Evaluation (SRE)[42]. We divided
the speech data into three categories: (1) development data,
(2) enrollment data, and (3) test data.
• Development Data: The microphone and telephone

speech files from NIST 2005–2008 SREs were used as
development data to train the gender-dependent UBMs
and total variability matrices. The telephone and mi-
crophone speech files in 2006–2010 SREs, excluding
speakers with less than 2 utterances, were used to train the
PLDA and SNR-invariant PLDA models. Subsets of these
speakers were used to train the LDA, NFA, and WCCN
projection matrices. The composition of these subsets will
be elaborated in Section V. The speaker labels in the
development data were obtained from the target-speaker
table files in NIST 2012 SRE.2

• Enrollment Data: Enrollment data comprise the conver-
sations of target speakers, as defined by the speaker-table
files in NIST 2012 SRE. Each target speaker has one or
more conversations recorded over different channels and
with different durations. All of the 10-second utterances
and summed-channel utterances were removed from the
target segments. But we ensure that each target speaker
has at least one utterance for enrollment.

2Starting from 2012 SRE, it is legitimate to use target speakers as
development data. In fact, the speakers in the target-speaker table are speakers
from 2006–2010 SREs.
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• Test Data: All test data were extracted from NIST 2012
SRE, as defined by the core.ndx file in the evaluation
plan. This paper focuses on common conditions (CC)
2, 4, and 5 of the evaluation plan. Table I shows the
conditions of the test segments under these common
conditions.

A two-channel VAD [43], [44] was applied to detect the
speech regions of each utterance. 19 Mel frequency cepstral
coefficients together with log energy plus their 1st- and 2nd-
derivatives were extracted from the speech regions as detected
by the VAD, followed by cepstral mean normalization [45]
and feature warping [46] with a window size of 3 seconds.
A 60-dim acoustic vector was extracted every 10ms, using a
Hamming window of 25ms.

B. Creating Noisy Speech for Multi-Condition Training

The SNR distributions of test utterances in CC2, CC4, and
CC5 are shown in Fig. 2. Because the SNR range of the test
utterances in CC4 is much wider than that of CC2 and CC5,
the SNR mismatch between the training and the test utterances
has significant effect on the test trials in CC4. To address this
issue, we added noise to the telephone data of the training data.
Specifically, for each telephone speech file, a noise waveform
file was randomly selected from the 30 noise waveform files
in the PRISM data set [47] and added to the file at a target
SNR using the FaNT tool [48]. The target SNR was chosen
from a target SNR set {6dB, 7dB, . . . , 15dB} in turn so that
10 noise-corrupted files were produced for each clean file.

For experiments on CC4, 14,226 noise corrupted files from
male speakers and 22,356 noise corrupted files from female
speakers were selected randomly and combined with the
original (tel+mic) training data to train the gender-dependent
subspace projection matrices, SNR-invariant PLDA models
and Gaussian PLDA models. The ratio between the numbers
of selected noise corrupted files and original files is 1:1. As
shown in Fig.3, the selected noise corrupted files have a fairly
flat distribution of SNR. A flat SNR distribution is desirable
because it ensures that the resulting PLDA model will not bias
towards a specific SNR.

To measure the “actual” SNR of speech files (including the
original and noise contaminated ones), we used the voltmeter
function of FaNT and the speech/non-speech decisions of our
VAD [43], [44] as follows. Given a speech file, we passed the
waveform to the G.712 frequency weighting filter in FaNT and
then estimated the speech energy using the voltmeter function
(sv-p56.c from the ITU-T Software Tool Library [49]).
Then, we extracted the non-speech segments based on the
VAD’s decisions and passed the non-speech segments to the
voltmeter function to estimate the noise energy. The difference
between the signal and noise energies in the log domain gives
the measured SNR of the file. While the measured SNR is
close to the target SNR, they will not be exactly the same.
This explains why we have a continuous SNR distribution in
Fig. 3. Unless stated otherwise, all SNR in the sequel means
measured SNR.

TABLE I
TEST SEGMENT CONDITIONS FOR CC2, CC4, AND CC5 OF NIST 2012

SRE.

Common Condition Test Segment Conditions
CC2 Phone call speech.
CC4 Phone call speech with added

noise.
CC5 Phone call speech intentionally

collected in a noisy environ-
ment.
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Fig. 2. SNR distributions of test utterances in CC2, CC4 and CC5 of NIST
2012 SRE.

C. I-vector Preprocessing

I-vectors were extracted based on gender-dependent UBMs
with 1024 mixtures and total variability matrices with 500 total
factors. Similar to [50], we applied within-class covariance
normalization (WCCN) [11] to whiten the i-vectors, followed
by length normalization (LN) to reduce the non-Gaussian be-
havior of the 500-dimensional i-vectors. Then, nonparametric
feature analysis (NFA) or LDA was applied to reduce intra-
speaker variability and emphasize discriminative information.
This procedure projects the i-vectors onto a 200-dimensional
subspace so that the amount of training data should be
sufficient to estimate a reliable NFA-projected matrix or LDA-
projected matrix. Then SNR-invariant PLDA and Gaussian
PLDA models with 150 latent identity factors were trained.

In the following, we refer to the i-vector/PLDA
framework in which the i-vectors have gone through
WCCN+LN+LDA+WCCN as conventional PLDA system.
Similarly, we refer to the i-vector/PLDA framework in
which the i-vectors have gone through WCCN+LN+NFA
as N-PLDA. We used WCCN+LN+NFA rather than
WCCN+LN+NFA+WCCN because we found that the
transformation matrix corresponding to the last WCCN
in the processing pipeline is close to an identity matrix.
As a result, it does not have effect on the NFA-projected
i-vectors. The proposed framework of SNR-invariant PLDA
in nonparametric subspace is referred to as NS-PLDA. As a
comparison, SNR-invariant PLDA modeling in the subspace
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Fig. 3. SNR distribution of the noise corrupted utterances used in the training
data for the experiments on CC4.

reduced by WCCN+LN+LDA+WCCN is named as S-PLDA.
Also, the SNR-dependent mixture of PLDA in [35] was used
as a comparison, which is named as mPLDA in the sequel.
Table II summarizes the nomenclatures of various methods.

TABLE II
NOMENCLATURES OF VARIOUS PLDA MODELS. WCCN : WITHIN-CLASS
COVARIANCE ANALYSIS; LN : LENGTH NORMALIZATION; LDA: LINEAR
DISCRIMINANT ANALYSIS; NFA: NONPARAMETRIC FEATURE ANALYSIS;

mPLDA: SNR-DEPENDENT MIXTURE OF PLDA; SI-PLDA:
SNR-INVARIANT PLDA.

Method Name I-vector Preprocessing Generative Model

PLDA WCCN+LN+LDA+WCCN PLDA (Eq. 7)
mPLDA WCCN+LN+LDA+WCCN mPLDA in [35]
N-PLDA WCCN+LN+NFA PLDA (Eq. 7)
S-PLDA WCCN+LN+LDA+WCCN SI-PLDA (Eq. 12)

NS-PLDA WCCN+LN+NFA SI-PLDA (Eq. 12)

V. RESULTS AND ANALYSIS

In this section, we evaluate the performance of different sys-
tems using equal error rate (EER), minimum DCF (minDCF)
[42] and DET curves [51].

A. Effects of Nonparametric Feature Analysis

This experiment aims to investigate the contribution of
nonparametric feature analysis on the discriminative power of
preprocessed i-vectors. To this end, the performance of PLDA
and N-PLDA is compared using the experimental results on
CC2 and CC5 of NIST 2012 SRE. Because test utterances in
CC2 and CC5 have high SNRs (see Fig. 2), we only used the
original (tel+mic) utterances in NIST 2006–2010 SREs to train
the models, excluding speakers with less than two utterances.
For the NFA, we used a subset of the development data set in
which each speaker has at least 16 utterances, which amounts
to 431 male and 469 female speakers.

Results in Table III show that N-PLDA outperforms PLDA
on both common conditions, suggesting that NFA is a better i-
vector preprocessing method than LDA. In addition, N-PLDA
can achieve good performance with different numbers of
nearest neighbors. However, when k1 and k2 are very small or
very large (smaller than 3 or larger than 12), the performance
of N-PLDA degrades. The reason is that if k1 and k2 are too
small, there will not be enough within-class and between-class
neighboring i-vectors to estimate the scatter matrices in Eq. 9
and Eq. 10, leading to inaccurate NFA-projection matrices. On
the other hand, when the number of nearest neighbors is too
large (say k1 = k2 = 16), the merit of nearest neighbours in
NFA is lost. This is because a large value of k1 means that
the within-speaker scatter matrix in Eq. 9 is based on intra-
speaker distances rather than the distances between the closest
i-vectors of the same speaker. Similarly, a large value of k2
means that the between-speaker scatter matrix in Eq. 10 will
be based on some non-boundary i-vectors, which defeats the
purpose of NFA.

Note that k1 and k2 are speaker-independent. Therefore,
by selecting a value for these parameters within a legitimate
range, the value can be applied to all training speakers.
Possible range for k1 and k2 is [1,min(Ni)], where Ni is
the number of sessions from speaker i. Because we used
speakers with at least 16 sessions for training the NFA-
projected matrices, min(Ni) = 16. We found that the middle
of this range (i.e., k1 = k2 = 8) is appropriate for Eq. 9 and
Eq. 10 to obtain good estimates of the scatter matrices.

Table III shows that the gain of NFA is higher for male than
for female. This is primarily caused by the abundant of female
data available for estimating the LDA and NFA projection ma-
trices. According to Eqs. 3 and 4, LDA requires estimating the
speaker-dependent means µi’s for all speakers. Any speakers
with a limited number of sessions will lead to inaccurate µi
and thus inaccurate covariance. On the other hand, because
NFA does not compute speaker-dependent means, it is still
effective even if the number of sessions of some speakers is
small. For female, the effect of data scarcity on LDA is less
prominent because the number of female speakers is 469, as
opposed to 431 male speakers. Therefore, benefit of NFA is
less prominent for female.

B. Performance of SNR-Invariant PLDA

In this subsection, we report results on CC2, CC4 and CC5
to compare the proposed framework with the state-of-the-art
framework.

For experiments on CC4, the original (tel+mic) in NIST
2006–2010 SREs together with the selected noise corrupted
telephone utterances described in Section IV-A were used
to train the gender-dependent SNR-invariant PLDA models
and conventional PLDA models. Speakers with less than two
utterances were excluded in the training data. For the training
of gender-dependent NFA projection matrices, we used a
subset of the corresponding training data set in which each
speaker has at least 24 utterances (including both original and
noise contaminated ones). The numbers of nearest neighbors
(k1 and k2 in Eq. 9 and Eq. 10) used for computing the
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TABLE III
PERFORMANCE OF PLDA AND N-PLDA ON CC2 AND CC5 OF NIST 2012 SRE CORE SET. k1 AND k2 ARE THE PARAMETERS IN EQ. 9 AND EQ. 10,

WHICH CONTROL THE NUMBERS OF THE NEAREST NEIGHBORS IN NFA.

Method k1&k2

Male Female
CC2 CC5 CC2 CC5

EER(%) minDCF EER(%) minDCF EER(%) minDCF EER(%) minDCF

PLDA – 2.40 0.332 2.80 0.303 2.19 0.335 2.34 0.331

N-PLDA

4 2.12 0.301 2.54 0.303 1.90 0.341 2.30 0.325
8 2.04 0.304 2.48 0.302 1.88 0.334 2.21 0.321
12 2.17 0.296 2.54 0.325 1.91 0.333 2.26 0.321
16 2.25 0.332 2.57 0.322 2.10 0.353 2.28 0.323

TABLE V
PERFORMANCE OF PLDA, MPLDA, N-PLDA, S-PLDA, AND NS-PLDA ON CC4 OF NIST 2012 SRE (CORE SET). K IS THE NUMBER OF SNR
SUB-GROUPS AND Q IS THE DIMENSION OF SNR FACTORS IN SNR-INVARIANT PLDA. SEE TABLE II FOR THE I-VECTOR PREPROCESSING FOR

DIFFERENT METHODS.

Training Data Method K Q Male Female
EER(%) minDCF EER(%) minDCF

Original (tel+mic) PLDA – – 3.93 0.375 3.83 0.423

Original (tel+mic)
and noise
corrupted tel

PLDA – – 3.39 0.325 3.10 0.354
mPLDA in [35] – – 2.88 0.329 2.71 0.332

N-PLDA – – 3.13 0.312 2.82 0.341

S-PLDA

3 40 3.20 0.300 2.95 0.327
5 40 3.10 0.296 2.97 0.326
6 40 3.02 0.296 2.93 0.320
7 30 3.13 0.302 2.93 0.326
8 30 3.24 0.306 2.89 0.329

NS-PLDA

3 40 2.72 0.289 2.36 0.314
5 40 2.67 0.291 2.38 0.322
6 10 2.63 0.288 2.44 0.320
6 40 2.63 0.287 2.43 0.319
6 50 2.67 0.289 2.45 0.318
7 30 2.63 0.294 2.32 0.316
8 10 2.72 0.291 2.24 0.313
8 30 2.70 0.292 2.29 0.313
8 50 2.76 0.290 2.33 0.318

NFA projection matrix were set to 12 and 10 for male and
female, respectively. Based on the argument in Section V-A,
these numbers are half of the minimum number of sessions
per training speakers.

In order to verify the effectiveness of SNR invariant PLDA,
the same preprocessing and NFA projection were applied in
both N-PLDA systems and NS-PLDA systems. To train the
SNR-invariant PLDA models in S-PLDA systems and NS-
PLDA systems, the training data set (including the original
and the noise corrupted utterances in Fig. 3) was divided into
K groups according to the measured SNRs of the utterances.
Specifically, the measured SNRs of the whole training data
set were divided into K intervals such that each interval
corresponds to one SNR sub-group. The k-th SNR sub-group
comprises the i-vectors whose corresponding utterances have
SNR falling in the k-th SNR interval. For example, when
K = 8, the SNR divisions for the training data and the number
of training utterances falling in each of the divisions are shown
in Table IV. The intervals were set such that they progressively
increase when SNR increases.

In our experiments, we make sure that the number of

speaker factors plus SNR factors is no more than 200. Because
the speaker factor was set to 150, we set the SNR factor (Q) to
40 or 30 according to the number of SNR sub-groups (K). To
investigate the effect of varying the number of SNR factors,
we set Q = 10 and Q = 50 for fixed K. The results suggest
that the performance does not vary significantly when we vary
Q from 10 to 50.

Results in Table V show that incorporating noise corrupted
telephone utterances into the training data can improve the
system performance on CC4. Comparing different methods,
we observed that N-PLDA, mPLDA, S-PLDA, and NS-PLDA
outperform the PLDA, and the best result was achieved by
NS-PLDA. Moreover, the performance of S-PLDA and NS-
PLDA stays stable when the number of SNR groups increases
from 5 to 8. Comparing mPLDA and S-PLDA, we can see that
S-PLDA achieves a lower minDCF, while, mPLDA achieves
a lower EER. The results also suggest that NFA can improve
the performance of PLDA and SNR-invariant PLDA when it
is used as a preprocessor and that S-PLDA and NS-PLDA can
address SNR mismatch under noisy conditions.

For SNR-invariant PLDA, it is important to determine an



JOURNAL OF LATEX CLASS FILES 9

TABLE VI
PERFORMANCE OF PLDA, MPLDA, N-PLDA, S-PLDA, AND NS-PLDA ON CC2 AND CC5 OF NIST 2012 SRE (CORE SET). K IS THE NUMBER OF

SNR SUB-GROUPS IN SNR-INVARIANT PLDA. SEE TABLE II FOR THE I-VECTOR PREPROCESSING FOR DIFFERENT METHODS.

Method K
Male Female

CC2 CC5 CC2 CC5
EER(%) minDCF EER(%) minDCF EER(%) minDCF EER(%) minDCF

PLDA – 2.40 0.332 2.80 0.303 2.19 0.335 2.34 0.331
mPLDA – 2.47 0.283 2.80 0.287 2.07 0.328 2.46 0.342
N-PLDA – 2.04 0.304 2.48 0.302 1.88 0.334 2.21 0.321

S-PLDA
3 2.38 0.316 2.80 0.302 1.90 0.303 2.37 0.319
6 2.47 0.314 2.93 0.304 1.91 0.311 2.42 0.318

NS-PLDA
3 1.96 0.277 2.47 0.273 1.74 0.290 2.07 0.294
6 1.99 0.278 2.48 0.275 1.72 0.290 2.04 0.294
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Fig. 4. The DET Performance of PLDA, N-PLDA, S-PLDA (K = 6), and
NS-PLDA (K = 6) for male speakers on CC4 of NIST 2012 SRE (core set).
See Table II for the nomenclatures in the legend.

appropriate value of K. In particular, in the two extreme cases
where K is either very small (≤ 3) or very large (same as
the number of training i-vectors), the SNR-invariant PLDA
will not be effective. This is because for the former, each of

TABLE IV
SNR SUB-GROUP DIVISIONS FOR THE TRAINING DATA SET WHEN
K = 8. THE NUMBER OF TRAINING UTTERANCES IN THE SNR

SUB-GROUPS (K = 8 IN EQ. 12), WHERE AN SNR SUB-GROUP IS DEFINED
BY THE SNR RANGE IN DB. THE TRAINING UTTERANCES WERE

PRODUCED BY ADDING BABBLE NOISE TO THE ORIGINAL (CLEAN)
TRAINING UTTERANCES AT SNR BETWEEN 6 TO 15 DB.

Sub-Group SNR Range (dB) No. of Utterances
Male Female

1 2–4 3556 3866
2 4–6 3748 4346
3 6–8 4246 4734
4 8–11 5064 5224
5 11–15 5457 5889
6 15–20 3047 4684
7 20–35 3918 6020
8 > 35 4194 8534
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Fig. 5. The DET Performance of PLDA, N-PLDA, S-PLDA (K = 6), and
NS-PLDA (K = 8) for female speakers on CC4 of NIST 2012 SRE (core
set). See Table II for the nomenclatures in the legend.

the SNR factors (wk in Eq. 12) will need to represent the i-
vectors with a wide range of SNR. On the other hand, for the
latter case, there will be so many SNR factors in Eq. 12 that
each i-vectors are considered to be obtained from a unique
SNR. This means that in such situation the SNR-invariant
PLDA model reduces to the traditional Gaussian PLDA, which
only considers the session variability instead of the variability
caused by different levels of SNR.

Fig. 4 and Fig. 5 show the DET curves of different methods
under CC4. For the curves of S-PLDA and NS-PLDA, we
reported the results of male speakers for K = 6 in Table V.
For female speakers, the results for K = 6 and K = 8 in
Table V were reported. Again, NS-PLDA performs the best at
all of the operating points in Fig. 4 and Fig. 5.

Because the test utterances in CC2 and CC5 have high SNRs
and the corresponding SNR ranges are narrower than that in
CC4, only the original (tel+mic) utterances in NIST 2006–
2010 SREs were used to train the gender-dependent models for
the experiments on CC2 and CC5. Results of different methods
are listed in Table VI. For N-PLDA, the results were obtained
when the number of nearest neighbors was set to 8, i.e., k1 =
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k2 = 8 in Eqs. 9 and 10. The dimension of the SNR factor in
S-PLDA and NS-PLDA was set to 40. Evidently, NS-PLDA
achieves the best performance among all methods. S-PLDA
outperforms PLDA when the number of SNR subgroups was
set to 3, but its performance becomes poor when K = 6. The
reason is that the SNR range of CC2 and CC5 is narrower than
that of CC4, which does not require as many SNR sub-groups
as that in CC4.

VI. CONCLUSION

A new framework, namely SNR-invariant PLDA, in which
the pre-processed i-vectors are assumed to live in a non-
parametric subspace has been proposed. The framework is
designed to address the SNR mismatch in practical speaker
verification. This work has two main contributions.

1) Nonparametric feature analysis was introduced to extract
effective feature subset and discriminative boundary in-
formation. This is achieved by constructing two nonpara-
metric scatter matrices.

2) An SNR-invariant PLDA modeling was proposed to deal
with the mismatch caused by different levels of back-
ground noise. By assuming that the i-vectors share the
same SNR-specific information when the corresponding
utterances’ SNRs fall within a narrow range, we incorpo-
rate an SNR factor to the conventional Gaussian PLDA
model. In this model, both SNR-specific and identity-
specific factors are learned by supervised learning and
are compressed into two different subspaces.

The proposed framework was compared against state-of-the-
art i-vector/PLDA systems on the NIST SRE 2012 data set.
NFA outperformed LDA on three common conditions and was
shown to be a suitable preprocessor for PLDA algorithm.
The proposed NS-PLDA framework achieves much better
performance than PLDA, N-PLDA, mPLDA, and S-PLDA
systems in noisy situation. It is worth noting that the SNR-
invariant PLDA model can be used to deal with cross channel
problems as well.

APPENDIX A
To simplify notations, we use xkij instead of x̂kij in Eq. 12

to represent LDA- or NFA-projected i-vectors.
The posterior density of hi can be obtained according to

the Bayesian rule:

p(hi|X ,θ) =
p(X|hi,θ)p(hi)

p(X )
∝ p(X|hi,θ)p(hi)

=

K∏
k=1

Hi(k)∏
j=1

[
p(xkij |hi,θ)p(hi)

]

=

K∏
k=1

Hi(k)∏
j=1

[
N (xkij |m + Vhi,Φ1)N (hi|0, I)

]

∝ exp

{
h>i V>Φ−11

K∑
k=1

Hi(k)∑
j=1

(xkij −m)

−1

2
h>i (I +NiV

>Φ−11 V)hi

}
(27)

where Φ1 = UU> + Σ and Ni =
∑K
k=1Hi(k) is the

number of i-vectors from the i-th speaker. Suppose h follows a
Gaussian distribution N (h|µ,C), we can obtain the following
property:

N (h|µ,C) ∝ exp
{
− 1

2
(h− µ)>C−1(h− µ)

}
∝ exp

{
h>C−1µ− 1

2
h>C−1h

}
.

(28)

Let us define
L1
i ≡ I +NiV

>Φ−11 V. (29)

Then, comparing Eq. 27 and Eq. 28, the posterior mean and
2nd-order posterior moment of hi can be estimated as:

〈hi|X 〉 = (L1
i )
−1V>Φ−11

K∑
k=1

Hi(k)∑
j=1

(xkij −m) (30)

〈hihT
i |X 〉 = (L1

i )
−1 + 〈hi|X 〉〈hi|X 〉T. (31)

Similarly, to compute the posterior mean and posterior moment
of wk, we define

L2
k ≡ I +MkU

>Φ−12 U (32)

where Φ2 = VV>+Σ and Mk =
∑S
i=1Hi(k) is the number

of i-vectors falling in the k-th SNR group. The posterior mean
and 2nd-order posterior moment of wk can be obtained as
follows:

〈wk|X 〉 = (L2
k)−1U>Φ−12

S∑
i=1

Hi(k)∑
j=1

(xkij −m) (33)

〈wkw
T
k|X 〉 = (L2

k)−1 + 〈wk|X 〉〈wk|X 〉T (34)

To maximize Q(θ′|θ) in Eq. 13, we first maximize the log-
likelihood function L(X ;θ′) with respect to θ′:

L(X ;θ′) ≡ ln p(X ,h,w|θ′) = ln
[
p(X|h,w,θ′)p(h,w)

]
=
∑
i,k,j

ln
[
p(xkij |hi,wk,θ

′)p(hi)p(wk)
]

=
∑
i,k,j

[
lnN (xkij |m + V′hi + U′wk,Σ

′)

+ lnN (hi|0, I) + lnN (wk|0, I)
]

∝ −1

2

∑
i,k,j

[
ln |Σ′|+ (xkij −m−V′hi −U′wk)>

Σ′
−1

(xkij −m−V′hi −U′wk) + h>i hi + w>k wk

]
(35)

Differentiating Eq. 35 with respect to V′, U′, and Σ′, fol-
lowed by setting 〈 ∂L∂V′ |X ,θ〉 = 0, 〈 ∂L∂U′ |X ,θ〉 = 0, and
〈 ∂L∂Σ′ |X ,θ〉 = 0, we obtain Eq. 23–Eq. 25.

APPENDIX B

To simplify notations, we use xs and xt instead of x̂s and
x̂t in Eq. 26 to represent the NFA-projected i-vectors. If xs
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and xt are from the same speaker, then we have[
xs
xt

]
=

[
m
m

]
+

[
V U 0
V 0 U

] h
ws

wt

+

[
εs
εt

]
(36)

where h represents the speaker factor shared by both i-
vectors and ws and wt represent the SNR factors of the two
utterances, respectively. Eq. 36 can be written in a compact
form:

x̃st = m̃ + Ãz̃st + ε̃st

where the tilde denotes the stacking of vectors and

Ã =

[
V U 0
V 0 U

]
.

Assuming that the NFA-projected i-vectors follow a Gaus-
sian distribution, the distribution of x̃st can be obtained by
marginalizing over all possible latent factors as follows:

p(x̃st|same-speaker) =

∫
p(x̃st|z̃st)p(z̃st)dz̃st

=

∫
N (x̃st|m̃ + Ãz̃st, Σ̃)N (z̃st|0, I)dz̃st

= N (x̃st|m̃, ÃÃT + Σ̃)

= N
([

xs
xt

] ∣∣∣∣ [mm
]
,

[
Σtot Σac

Σac Σtot

])
(37)

where Σ̃ = diag{Σ,Σ}, Σtot = VVT+UUT+Σ and Σac =
VVT. If xs and xt are from the utterances of two different
speakers, we have

[
xs
xt

]
=

[
m
m

]
+

[
V 0 U 0
0 V 0 U

]
hs
ht
ws

wt

+

[
εs
εt

]
(38)

which can be compactly written as

x̃st = m̃ + Āz̄st + ε̃st.

The distribution of x̃st is obtained by marginalizing over z̄st:

p(x̃st|diff-speaker) =

∫
p(x̃st|z̄st)p(z̄st)dz̄st

=

∫
N (x̃st|m̃ + Āz̄st, Σ̃)N (z̄st|0, I)dz̄st

= N (x̃st|m̃, ĀĀT + Σ̃)

= N
([

xs
xt

] ∣∣∣∣ [mm
]
,

[
Σtot 0

0 Σtot

])
(39)

Combining Eq. 37 and Eq. 39, we have the log-likelihood ratio
score:

SLR(xs,xt) = ln

N
([

xs
xt

] ∣∣∣∣ [mm
]
,

[
Σtot Σac

Σac Σtot

])
N
([

xs
xt

] ∣∣∣∣ [mm
]
,

[
Σtot 0

0 Σtot

])
=

1

2

[
xT
s xT

t

] [Q P
P Q

] [
xs
xt

]
+ const

=
1

2
[xT
s Qxs + 2xT

s Pxt + xT
t Qxt] + const

(40)

where

P = Σ−1totΣac(Σtot −ΣacΣ
−1
totΣac)

−1,

Q = Σ−1tot − (Σtot −ΣacΣ
−1
totΣac)

−1.
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Delacrétaz, and D. A. Reynolds, “A tutorial on text-independent speaker
verification,” EURASIP journal on applied signal processing, vol. 2004,
pp. 430–451, 2004.

[2] T. Kinnunen and H. Li, “An overview of text-independent speaker
recognition: from features to supervectors,” Speech communication,
vol. 52, no. 1, pp. 12–40, 2010.

[3] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end
factor analysis for speaker verification,” IEEE Trans. on Audio, Speech,
and Language Processing, vol. 19, no. 4, pp. 788–798, May 2011.

[4] P. Kenny, “Joint factor analysis of speaker and session variability: Theory
and algorithms,” CRIM, Montreal,(Report) CRIM-06/08-13, 2005.

[5] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel, “Improvements
in factor analysis based speaker verification,” in Acoustics, Speech
and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE
International Conference on, vol. 1. IEEE, 2006, pp. I–I.

[6] P. Kenny, P. Ouellet, N. Dehak, V. Gupta, and P. Dumouchel, “A study of
inter-speaker variability in speaker verification,” IEEE Trans. on Audio,
Speech and Language Processing, vol. 16, no. 5, pp. 980–988, 2008.

[7] N. Dehak, R. Dehak, P. Kenny, N. Brümmer, P. Ouellet, and P. Du-
mouchel, “Support vector machines versus fast scoring in the low-
dimensional total variability space for speaker verification.” in Inter-
speech, vol. 9, 2009, pp. 1559–1562.

[8] W. M. Campbell, D. E. Sturim, D. A. Reynolds, and A. Solomonoff,
“SVM based speaker verification using a GMM supervector kernel and
NAP variability compensation,” in Proc. ICASSP, vol. 1, Toulouse,
France, May 2006, pp. 97–100.

[9] N. Dehak, R. Dehak, P. Kenny, and P. Dumouchel, “Comparison
between factor analysis and GMM support vector machines for speaker
verification.” in Odyssey, 2008.

[10] C. Bishop, Pattern Recognition and Machine Learning. New York:
Springer, 2006.

[11] A. Hatch, S. Kajarekar, and A. Stolcke, “Within-class covariance nor-
malization for SVM-based speaker recognition,” in Proc. of the 9th
International Conference on Spoken Language Processing, Pittsburgh,
PA, USA, Sep. 2006, pp. 1471–1474.

[12] S. J. Prince and J. H. Elder, “Probabilistic linear discriminant analysis
for inferences about identity,” in Computer Vision, 2007. ICCV 2007.
IEEE 11th International Conference on. IEEE, 2007, pp. 1–8.

[13] P. Kenny, “Bayesian speaker verification with heavy-tailed priors,” in
Proc. of Odyssey: Speaker and Language Recognition Workshop, Brno,
Czech Republic, June 2010.

[14] D. Garcia-Romero and C. Espy-Wilson, “Analysis of i-vector length
normalization in speaker recognition systems,” in Interspeech’2011,
2011, pp. 249–252.

[15] P.-M. Bousquet, D. Matrouf, and J.-F. Bonastre, “Intersession compensa-
tion and scoring methods in the i-vectors space for speaker recognition.”
in INTERSPEECH, 2011, pp. 485–488.

[16] P.-M. Bousquet, A. Larcher, D. Matrouf, J.-F. Bonastre, and O. Pl-
chot, “Variance-spectra based normalization for i-vector standard and
probabilistic linear discriminant analysis,” in Odyssey: The Speaker and
Language Recognition Workshop, 2012, pp. 157–164.

[17] Z. Li, D. Lin, and X. Tang, “Nonparametric discriminant analysis for
face recognition,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 31, no. 4, pp. 755–761, 2009.

[18] D. A. Reynolds, “Channel robust speaker verification via feature map-
ping,” in Acoustics, Speech, and Signal Processing, 2003. Proceed-
ings.(ICASSP’03). 2003 IEEE International Conference on, vol. 2.
IEEE, 2003, pp. II–53.

[19] R. Saeidi, K.-A. Lee, T. Kinnunen, T. Hasan, B. Fauve, P.-M. Bousquet,
E. Khoury, P. Sordo Martinez, J. M. K. Kua, C. You et al., “I4U
submission to NIST SRE 2012: A large-scale collaborative effort for
noise-robust speaker verification,” in Proc. Interspeech, 2013.



JOURNAL OF LATEX CLASS FILES 12

[20] X. Zhao, Y. Wang, and D. Wang, “Robust speaker identification in noisy
and reverberant conditions,” IEEE/ACM Transactions on Audio, Speech
and Language Processing, vol. 22, no. 4, pp. 836–845, 2014.

[21] Y. Lei, L. Burget, and N. Scheffer, “A noise robust i-vector extractor
using vector taylor series for speaker recognition,” in Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE International Conference
on. IEEE, 2013, pp. 6788–6791.

[22] M. I. Mandasari, M. McLaren, and D. A. van Leeuwen, “The effect of
noise on modern automatic speaker recognition systems,” in Acoustics,
Speech and Signal Processing (ICASSP), 2012 IEEE International
Conference on. IEEE, 2012, pp. 4249–4252.

[23] R. Togneri and D. Pullella, “An overview of speaker identification:
Accuracy and robustness issues,” Circuits and systems Magazine, IEEE,
vol. 11, no. 2, pp. 23–61, 2011.

[24] J. Ming, T. J. Hazen, J. R. Glass, and D. A. Reynolds, “Robust
speaker recognition in noisy conditions,” Audio, Speech, and Language
Processing, IEEE Transactions on, vol. 15, no. 5, pp. 1711–1723, 2007.

[25] W. Zhu, S. O. Sadjadi, and J. W. Pelecanos, “Nearest neighbor based
i-vector normalization for robust speaker recognition under unseen
channel conditions,” in Proc. Int. Conf. on Acoustics, Speech and Signal
Processing (ICASSP), 2015, pp. 4684–4688.

[26] T. Hasan and J. Hansen, “Acoustic factor analysis for robust speaker ver-
ification,” Audio, Speech, and Language Processing, IEEE Transactions
on, vol. 21, no. 4, pp. 842–853, 2013.

[27] ——, “Maximum likelihood acoustic factor analysis models for robust
speaker verification in noise,” IEEE Transactions on Audio, Speech, And
Language Processing, vol. 22, no. 2, pp. 381–391, 2014.

[28] W. B. Kheder, D. Matrouf, J.-F. Bonastre, M. Ajili, and P.-M. Bousquet,
“Additive noise compensation in the I-vector space for speaker recog-
nition,” in Proc. Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP), 2015, pp. 4190–4194.

[29] D. A. van Leeuwen and R. Saeidi, “Knowing the non-target speakers:
The effect of the i-vector population for PLDA training in speaker
recognition,” in Acoustics, Speech and Signal Processing (ICASSP),
2013 IEEE International Conference on. IEEE, 2013, pp. 6778–6782.

[30] Y. Lei, L. Burget, L. Ferrer, M. Graciarena, and N. Scheffer, “Towards
noise-robust speaker recognition using probabilistic linear discriminant
analysis,” in Proc. ICASSP 2012, Kyoto, Japan, March 2012, pp. 4253
– 4256.

[31] T. Hasan, S. O. Sadjadi, G. Liu, N. Shokouhi, H. Boril, and J. H.
Hansen, “CRSS systems for 2012 NIST speaker recognition evaluation,”
in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on. IEEE, 2013, pp. 6783–6787.

[32] P. Rajan, T. Kinnunen, and V. Hautamäki, “Effect of multicondition
training on i-vector PLDA configurations for speaker recognition,” in
Proc. Interspeech, 2013, pp. 3694–3697.

[33] G. Liu and J. Hansen, “An investigation into back-end advancements
for speaker recognition in multi-session and noisy enrollment scenarios,”
IEEE/ACM Trans. on Audio, Speech, and Language Processing, vol. 22,
no. 12, pp. 1978–1992, 2014.

[34] D. Garcia-Romero, X. Zhou, and C. Espy-Wilson, “Multicondition
training of gaussian PLDA models in i-vector space for noise and
reverberation robust speaker recognition,” in Acoustics, Speech and
Signal Processing (ICASSP), 2012 IEEE International Conference on,
2012, pp. 4257–4260.

[35] M. W. Mak, “SNR-dependent mixture of PLDA for noise robust speaker
verification,” in Interspeech’2014, 2014, pp. 1855–1859.

[36] D. Gong, Z. Li, D. Lin, J. Liu, and X. Tang, “Hidden factor analysis for
age invariant face recognition,” in Computer Vision (ICCV), 2013 IEEE
International Conference on. IEEE, 2013, pp. 2872–2879.

[37] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification
using adapted Gaussian mixture models,” Digital Signal Processing,
vol. 10, no. 1–3, pp. 19–41, Jan. 2000.

[38] K. Fukunaga, Introduction to Statistical Pattern Recognition. Boston,
MA: Academic, 1990.

[39] S. Prince and J. Elder, “Probabilistic linear discriminant analysis for
inferences about identity,” in Computer Vision, 2007. ICCV 2007. IEEE
11th International Conference on, 2007, pp. 1–8.

[40] S. J. Prince, Computer vision: models, learning, and inference. Cam-
bridge University Press, 2012.

[41] X. M. Pang and M. W. Mak, “Fusion of SNR-dependent PLDA models
for noise robust speaker verification,” in ISCSLP’2014, 2014, pp. 619–
623.

[42] NIST, “The NIST year 2012 speaker recognition evaluation plan,”
http://www.nist.gov/itl/iad/mig/sre12.cfm, 2012.

[43] M. W. Mak and H. B. Yu, “A study of voice activity detection
techniques for NIST speaker recognition evaluations,” Computer, Speech
and Language, vol. 28, no. 1, pp. 295–313, Jan 2014.

[44] H. Yu and M. Mak, “Comparison of voice activity detectors for interview
speech in nist speaker recognition evaluation,” in Interspeech, 2011, pp.
2353–2356.

[45] B. S. Atal, “Effectiveness of linear prediction characteristics of the
speech wave for automatic speaker identification and verification,” J.
Acoust. Soc. Am., vol. 55, no. 6, pp. 1304–1312, Jun. 1974.

[46] J. Pelecanos and S. Sridharan, “Feature warping for robust speaker
verification,” in Proc. Odyssey: The Speaker and Language Recognition
Workshop, Crete, Greece, Jun. 2001, pp. 213–218.

[47] L. Ferrer, H. Bratt, L. Burget, H. Cernocky, O. Glembek, M. Graciarena,
A. Lawson, Y. Lei, P. Matejka, O. Plchot et al., “Promoting robustness
for speaker modeling in the community: The PRISM evaluation set.”

[48] “http://dnt.kr.hsnr.de/download.html.”
[49] S. F. D. C. Neto, “The itu-t software tool library,” International journal

of speech technology, vol. 2, no. 4, pp. 259–272, 1999.
[50] M. McLaren, M. Mandasari, and D. Leeuwen, “Source normalization for

language-independent speaker recognition using i-vectors,” in Odyssey
2012: The Speaker and Language Recognition Workshop, 2012, pp. 55–
61.

[51] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki,
“The DET curve in assessment of detection task performance,” in Proc.
Eurospeech’97, 1997, pp. 1895–1898.

Na Li received the B.S. degree in Environmental
Engineering, M.S. and Ph.D. degrees in Acoustics
from Northwestern Polytechnical University (NPU),
Xi’an, China, in 2007, 2010, and 2015, respectively.
From 2011 to 2013, she served as a Research
Assistant in Shenzhen Institutes of Advanced Tech-
nology, Chinese Academy of Sciences, China. She
is currently a Research Associate in the Department
of Electronic and Information Engineering at The
Hong Kong Polytechnic University. Her current re-
search interests include speaker recognition, voice

conversion, and machine learning.

Man-Wai Mak (M’93–SM’15) received a PhD
in Electronic Engineering from the University of
Northumbria in 1993. He joined the Department of
Electronic and Information Engineering at The Hong
Kong Polytechnic University in 1993 and is currently
an Associate Professor in the same department. He
has authored more than 150 technical articles in
speaker recognition, machine learning, and bioin-
formatics. Dr. Mak also coauthored a postgradu-
ate textbook Biometric Authentication: A Machine
Learning Approach, Prentice Hall, 2005 and a re-

search monograph Machine Learning for Protein Subcellular Localization
Prediction, De Gruyter, 2015. He served as a member of the IEEE Machine
Learning for Signal Processing Technical Committee in 2005-2007. He has
served as an associate editor of IEEE Trans. on Audio, Speech and Language
Processing. He is currently an editorial board member of Journal of Signal
Processing Systems and Advances in Artificial Neural Systems. He also served
as Technical Committee Members of a number of international conferences,
including ICASSP and Interspeech. Dr. Mak’s research interests include
speaker recognition, machine learning, and bioinformatics.




