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Abstract. Multiscale error diffusion (MED) is superior to conven-
tional error diffusion algorithms as it can eliminate directional hys-
teresis completely. However, due to its frame-oriented processing
nature, the computational complexity is comparatively high. Further-
more, though theoretically MED can remove directional hysteresis
by eliminating predefined scanning paths and causal filters, no com-
prehensive quantitative analysis on this issue can be found in the
literature. A fast MED algorithm is proposed and a detailed analysis
on the performance of various MED algorithms including the pro-
posed one are provided. Analysis and simulation results show that
the proposed algorithm can reduce the computational complexity
without sacrificing the image quality as compared with conventional
MED algorithms. The proposed algorithm also supports parallel pro-
cessing and hence can further reduce the processing time. © 2007
SPIE and IS&T. [DOI: 10.1117/1.2435197]

1 Introduction

Digital halftoning is a process that converts a gray-level
image into a bilevel image and has been widely used in a
number of applications such as printing. Though error dif-
fusion can provide a better result than the other halftoning
algorithms such as order dithering at a reasonable cost, it
suffers from artifacts such as pattern noise, worm-like arti-
facts, and directional hysterems To reduce these artifacts,
different modifications to the standard error diffusion’ were
made. For example, Wong’s algorlthm4 adjusts the error
diffusion filter adaptively and the Nagae’et al. algorlthm
processes the pixels along a space-filling curve. However,
most of these modifications are based on the same error
diffusion framework in which pixels are processed in a pre-
defined scanning order.

Some other approaches adopt a multiscale approach to
produce a halftone by handling the process at multiple spa-
tial resolutions. For example, Peli’s algorithm” eliminates
directional error diffusion and iteratively modifies selected
binarized pixels to reduce the weighted averaged error of
local regions. However, Peli’s algorithm is not an error dif-
fusion algorithm. Katsavounidis and Kuo’s algorlthm uses
a noncausal filter and a nonpredetermined scanning order to
halftone a gray-level image. It is superior to some other
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conventional halftoning algorithms in a way that it pre-
serves the advantages of error diffusion without sufferlng
directional hysteresis. Chan’ s* and Chan and Cheung’ s’ al-
gorithms are modified versions of that presented in Ref. 7.
It was found that Katsavounidis and Kuo’s algorithm intro-
duced error leakage and pattern noise during error diffusion
and hence degraded the quality of its produced binary half—
tones. Chan modified Katsavounidis and Kuo’s algonthm
accordingly to solve these problems in Refs. 8 and 9. Since
no directional error diffusion and no predefined scanning
order is involved in these algorithms, theoretically no di-
rectional hysteresis exist in the halftoning outputs of these
algorithms.

Essentially, all multiscale error dlfqulOl‘l (MED)
algorithmsL are two-step iterative algonthms. ? At each
iteration, they first locate a critical pixel in the output image
B based on an updated version of the input image X and
assign it a binary value. Then the quantization error of the
selected pixel is diffused to the neighboring pixels with a
noncausal filter so as to update X. The iterations are re-
peated until the sum of all elements of the updated X is
bounded in absolute value by 0.5. However, due to their
frame-oriented processing nature, their complexity is very
high as compared with conventional halftoning algorithms
such as standard error diffusion.’

Two questions arose immediately from the preceding
observation. The first is how to reduce the realization effort
of MED and the second is whether the realization effort
paid in MED is worthwhile. The first question inspires our
search for a low-complexity alternative to the realization of
MED. As for the second question, its answer relies on a
thorough study on how critically and significantly a MED
algorithm can improve the halftone quality as compared
with a non-MED algorithm. However, though the qualita-
tive ground for MED algorithms to eliminate directional
hysteresis is explained and simulation results are presented
to support the ground in Refs. 7-9, no comprehensive and
quantitative analysis on the performance of a MED algo-
rithm can be found in the literature. As the performance of
a halftone algorithm is always the theoretical interest of the
researchers working in the area and a systematic analysis
on this issue is practically useful, we would also like to
conduct a study on this issue.
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This paper presents a low-complexity alternative to re-
alize MED. Similar to other MED algorithms, the proposed
algorithm removes the scanning-path and filter constraints
to eliminate directional hysteresis. The difference is that it
puts its focus on the realization complexity and reduces it
by tackling the technical problems in a different way. Un-
like other MED alg.gorithms,L9 which are basically frame-
oriented, the proposed algorithm performs error diffusion in
a block-based manner to support parallel processing and
reduce the effort for locating critical pixels. This is based
on the idea that, during multiscale error diffusion, the quan-
tization error of a pixel is usually consumed during its
propagation to a distant pixel. The diffusion result of two
distant pixels is likely to be independent and hence process-
ing blocks in parallel makes sense to a certain extent. After
the proposed algorithm is presented, a detailed analysis on
the performance of various MED and the proposed algo-
rithms is given.

The organization of this paper is as follows. Section 2
proposes a fast MED algorithm. In Sec. 3, a comprehensive
analysis on the quality performance and the complexity of
various MED algorithms including the proposed one are
provided. This quantitatively explains why MED is better
than conventional halftoning algorithms and proves that the
proposed algorithm can reduce the complexity without sac-
rificing its halftoning performance in terms of different
measures. In Sec. 4, simulation results are given to evaluate
the performance of the proposed algorithm. Finally, conclu-
sions are given in Sec. 5.

2 Proposed Algorithm

In conventional® MED, all pixel values of the output im-
age B are initialized to be zero and then, based on the
grayscale input image X, an appropriate number of pixels
of B are picked iteratively to assign value 1 until the aver-
age pixel intensity of B is equivalent to that of X. From
another point of view, white dots are iteratively put in a
black background. A considerable amount of realization ef-
fort is paid for locating the positions to put the white dots
and this effort is proportional to the number of white dots
to be introduced. The proposed algorithm reduces the com-
plexity by reducing the number of dots to be put in and the
amount of effort to locate a position for a dot.

To reduce the number of dots to be handled, the pro-
posed algorithm first estimates the average intensity of X.
Without losing of generality, we assume that the maximum
and the minimum pixel values of X are, respectively, 1 and
0. If the average pixel value of X is less than 0.5, white
dots should be introduced to a black background. Other-
wise, black dots should be introduced to a white back-
ground to reduce the realization effort. Hereafter, we as-
sume that white dots are the minority dots and they are
introduced to a black background. If it is the opposite, one
can negate all pixel values of X before carrying out the
proposed algorithm and negate all pixel values of the out-
put at the end. The dot budget is defined to be the number
of minority dots to be settled and it is the rounded value of
min(S,—1,,I,) where S, is the total number of pixels in X,
and I, is the sum of all pixel values of X. Operator min(+)
picks the minimum value from its inputs.

The gray-scale input image X is then partitioned into a
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Fig. 1 Intensity pyramid associated with a block of 4 X 4 pixels.

number of 4 X 4 nonoverlapped blocks. For each block, an
intensity pyramid is constructed as shown in Fig. 1. In for-
mulation, we have

> 2 EGnQi+m2j+n)

N if k=1,2
E(p,q)(l’]) — < m=0,1 n=0,1
X(p,q)(l’,]) if k=0
for i,j=0,1,...,max(0,2>%-1), (1)

where X, ,)(i,j) is the intensity value of the (i,;)’th pixel
of the (p,q)’th block of X and E(‘p!q)(i,j) is the value of the

(i,j)’'th element of the k’th level of the intensity pyramid
associated with the (p,q)’th block of X.

Every four adjacent blocks are grouped together to form
a macroblock of 8 X8 pixels. Except those macroblocks
whose total pixel intensity value is less than 0.5, which
implies no more white dot should be put to them, all mac-
roblocks are processed in parallel as follows. For each mac-
roblock, the block that carries the maximum total intensity
[i.e., the block which has the maximum Efp q)(0,0)] in the

macroblock is picked and the most wanted pixel in the
block is located with the intensity pyramid associated with
the selected block by following the maximum intensity
guidance. Specifically, when the maximum intensity guid-
ance is adopted, one should always proceed from the cur-
rent node at level k to its child node of maximum
E](‘;lq)(i, J). At any time, when there is more than one maxi-

mum encountered in the search, we select one of them ran-
domly. When level 0 is reached, the selected node specifies
the most wanted pixel. For instance, if the node holding
E?p’q)(x, y) is the node, the (x,y)’th pixel of the block will

be the most wanted pixel.

Unless the selected pixel is a boundary pixel of the mac-
roblock, X(p,q)(x, y) should then be quantized to 1 and
B, ,(x,y), the intensity value of the (x,y)’th pixel of the
(p,q)’th block of B, is assigned value 1. The reason for
discriminating the boundary pixels of a macroblock is dis-
cussed later. For the sake of reference, the region in which
a pixel can be quantized after being selected is referred to
as a qualified region.

Suppose the selected pixel is in the qualified region of a
macroblock. After quantizing it to 1, its quantization error
e=X(, ,(x,y)—1 is diffused to the neighbors of the pixel

with a noncausal filter to update X as follows:
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Fig. 2 Four grouping schemes.

X(p.g(x+m,y+n)
0 ifm=n=0

X(p,q)(x +m,y +n) +ew(m,n) else

for —1=<=mn=<1, (2)

where w(m,n) is a coefficient of the diffusion filter defined
as

1712 if jm|=|n|=1

3
U6 if |m| # n] & |m ®)

w(m,n) =

n=1.

s

Since only the central part of a macroblock can be quan-
tized and the diffusion filter is of size 3 X 3, no error can be
diffused outside the macroblock and hence all marcoblocks
can be processed independently. In other words, all mac-
roblocks can be processed in parallel to reduce the process-
ing tune. This explains why, in the proposed algorithm,
boundary pixels of a macroblock are discriminated and not
further processed when they are selected. After diffusion,
all intensity pyramids of the affected blocks are updated
according to Eq. (1).

To provide a chance to handle the boundary pixels of a
macroblock and eliminate the potential blocking artifacts
caused by the block-based approach, the proposed algo-
rithm changes the way how it groups blocks to form a
macroblock in the course of halftoning as follows. After
processing all macroblocks as mentioned before in parallel
once, all blocks of X are regrouped to form new macrob-
locks. Four grouping schemes are used in turns in the pro-
posed algorithm. As an example, Fig. 2 shows how the four
schemes group the blocks in an image of size 6 X 6 blocks
differently. A pixel that is a boundary pixel of a macroblock
in a particular round may not be a boundary pixel of a
macroblock again in next round. By doing so, all pixels of
X can be taken care in the course. Note that the regrouping
does not affect the intensity pyramids of the blocks and
hence does not increase the complexity in this aspect.

The overall effect of using the grouping schemes in
turns and excluding the boundary pixels of a macroblock
from being processed is equivalent to processing over-
lapped 6 X 6-pixel regions, each of which overlaps each of
its four-connected neighboring 6 X 6-pixel regions with an
area of 2X 6 or 6 X2 pixels. Blocking artifacts can hence
be eliminated with this approach.

Figure 3 summaries the proposed algorithm in pseudo
code. The algorithm iteratively allocates white dots to B
until all budgeted dots are used up. At each iteration, a
considerable number of white dots are allocated at a time.
When allocating the dots, it quantizes corresponding pixels
of X and diffuses the quantization errors. It is possible that,
at the last stage of the halftoning process, while there are
still budgeted dots on hand, there is no macroblock whose
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Determine the number of minority dots that should be put
Construct intensity pyramids of all blocks
While the minority dots have not yet totally been located
For Scheme S=A,B,C,D
Partition image X with Grouping Scheme S
For each macroblock
If total residual intensity of the macroblock>0.5
(Here we assume minority dots are white. The criterion should be adjusted if they are black.)
Locate the most wanted pixel
If it is in the qualified region of the macroblock
Quantize it
Diffuse quantization error
End
End
End
Update intensity pyramids of all affected blocks
End
End

Fig. 3 Pseudocode of the proposed algorithm.

total residual intensity is larger than 0.5. In such a case, to
settle the budgeted dots left behind, we select the proper
number of macroblocks that carry the most total residual
intensity among all macroblocks to locate the pixels for
putting the dots.

To handle a boundary pixel or a corner pixel of X, dif-
fusion filters such as [0,0,0;0,%*,2;0,2,1]/5 or
[0,0,0;2,%,2;1,2,1]/8 is used instead of Eq. (3) to avoid
energy leakage, where * marks the position of w(0,0). The
macroblocks containing these corner or boundary pixels
should also extend their qualified regions to allow quantiz-
ing these pixels.

3 Performance Analysis

This section provides an analysis on the performance of
various MED algorithms including the proposed one in
terms of their output quality and computational complexity.
This analysis serves two purposes. First, it quantitatively
shows that MED is better than conventional error diffusion
and its remedial schemes in various aspects including spa-
tial dot distribution and noise characteristics, which is not
provided in any literature’ about MED. Second, it shows
that, as compared with other MED algorithms, the perfor-
mance of the proposed algorithm is comparable to those in
Refs. 8 and 9 and much better than that in Ref. 7 while its
complexity is significantly reduced.

3.1 Dot Distribution and Noise Characteristic

In this part of analysis, dot distribution and noise charac-
teristics of the halftones generated with different halftoning
algorithms were studied based on their spatial and spectral
statistics.

In spatial statistics, Lau and Arce’ developed a direc-
tional distribution function D, , (@) to measure the direc-
tional distribution of dots in a dot pattern. In particular, it is
defined as the expected number of dots per unit area in an
angular segment of the ring bounded by inner radius r; and
outer radius r,. The ring is centered at a dot and the seg-
ment is indexed by a. In ideal case, we have D, , (@)=1
for all @, which indicates an isotropic distribution in the
pattern. Note that D,l,rz(a)>l and D,l‘,z(a)< 1, respec-
tively, indicate a favoring and an inhibition of dots in di-
rection «. In our analysis, the annular ring is defined by
r;1=0 and ry=max(\,3), where \ is the principle wave-
length of the input gray level, and the ring is divided into
16 equal segments.

Jan—-Mar 2007/Vol. 16(1)



Fung, Lui, and Chan: Low-complexity high-performance multiscale error diffusion...

Table 1 Summary of the algorithms evaluated for comparison.

Algorithm Scanning Order Error Diffusion Filler Process

SED, (Ref. 3) Raster Nonadaptive, causal Filter support based

SEDg, (Ref. 3) Serpentine raster Nonadaptive, causal Filter support based

AED (Ref. 4) Raster Adaptive, causal Filter support based

HED (Ref. 5) Space-filling curve Nonadaptive, causal Filter support based

PED (Ref. 6) — — Frame based

MED, (Ref. 7) Max intensity guidance Nonadaptive, noncausal Frame based

MED 98 (Ref. 8) Max intensity guidance Adaptive, noncausal Frame based

MED_04 (Ref. 9) Extreme intensity guidance Adaptive, noncausal Frame based

Proposed Max intensity guidance Nonadaptive, noncausal Block based with four grouping schemes
DD (Ref. 10) Class matrix guidance Adaptive, noncausal Block based
BED (Ref. 11) Raster Nonadaptive, causal Filter support and block based

In spectral statistics, Ulichney1 developed two spectral
statistics to analyze a halftone pattern. The first one is radi-
cally averaged power spectrum density (RAPSD). It is de-
fined as the average power in the annular ring with center
radius f), as follows:

1 »
NIR(f)] fe%f,) ro. W

where N[R(f,)] is the number of frequency samples in
R(f,), which is an annular ring of width A, partitioned from

P(fp):

the spectral domain; and 13(}‘) is the magnitude square of
the Fourier transform of the output pattern divided by the
sample size. The second spectral statistic is anisotropy,
which is defined as

_ 1 D [P(f) - P(f,) ]
MR =1 ki) PAf,)

It provides the SNR of frequency samples of P(f) in R(f,)
and is used to measure the strength of directional artifact.

In our analysis, various error diffusion algorithms were
applied to a constant gray-level image of size 128 X 128
and the dot distributions in their outputs were studied in
terms of the aforementioned statistics. Multiscale frame-
based algorithms including PED (Ref. 6), MED;, (Ref. 7),
MED 98 (Ref. 8), and MED,04 (Ref. 9) and the proposed
algorithm were included in the comparison. Strictly speak-
ing, PED is not a MED algorithm, but it distributes dots
from a multiscale point of view. Due to page constraint,
only a few conventional error diffusion algorithms are re-
ported here for comparison. In particular, for non-
multiscale-based algorithms, this paper presents the results

A(fp)

(5) () HED[5

~ (z) MED.98 [8] (h) MED,04 [9] (i) Proposed

) DD [10]

(k) BED [11]

of standard error diffusion with raster’ (SED,), serpentine
raster’ (SED,,), and space-filling-curve’ (HED) scanning
schemes. The results of an adaptive error diffusion
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Fig. 4 Halftoning results of a 128 X 128 input of constant gray-level
13/255 for the (a) SED,, (b) SEDg,, (c) AED, (d) HED, (e) PED, (f)
MED,, (g) MED_98, (h) MED_04, (i) proposed, (j) DD and (k) BED
algorithms.
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Fig. 5 Corresponding directional distribution functions of Fig. 4.

algorithm4 (AED) are also presented for comparison. Note
that they are all typical examples of eliminating d1rect10na1
hysteresis by adjusting the error diffusion filter* and the
scanning path5 to diversify the error distribution direction.
Two block-based error diffusion algorithms including Mese
and Vaidyanathan 10" dot d1ffus1on (DD) algorithm and
Damera—Venkdata et al’s'" block error diffusion (BED)
algorlthm ' are also included in our 51mulat10ns for com-
parison. The dot shape used in s1mulat1ng is a 2 X2 clus-
ter [1,0;0,1]. Table 1 summarizes the presented algo-
rithms.

Figure 4 shows the halftoning results of a 128X 128
image of constant gray level g=13/255. Directional ripples
appear in Figs. 4(a)-4(c), which implies directional hyster-
esis. There are pattern artifacts in Fig. 4(f). Figures
4(g)—4(i) are visually better than Figs. 4(a)-4(c) as they do
not contain any directional ripples and pattern artifacts. As
for Fig. 4(e), one can see that dots are denser than the other
outputs. In fact, PED tends to introduce more minority dots
than necessary, which results in a brighter or darker output.

Severe blocking effect and pattern artifacts can be found
in Fig. 4(j). This is expected as blocks are processed inde-
pendently and a predefined class matrix is used in DD to
determine the processing order of the pixels in a block.
BED processes blocks and diffuses error in a raster scan-
ning order as in standard error diffusion and hence artifacts
caused by directional hysteresis exist in Fig. 4(k). As a
block-based algorithm, the proposed MED algorithm suc-
cessfully eliminates the blocking effect by using four
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grouping schemes in turns. Besides, no predefined scanning
order and no fixed causal filter is used in the proposed
algorithm. Consequently, no blocking artifact and direc-
tional ripple is found in Fig. 4(i).
Figure 5 shows the directional distribution functions
D, (a) of the patterns shown in Fig. 4. Note that only the
upper halves of the plots are shown. The lower half of the
plot of D,l,rz(a) can be obtained with D,l,,z(a+ )
D, . (a). The plots shown in Figs. 5(a)-5(d), 5(j), and
5(k) are not symmetric in all directions. This reflects the
fact that in Figs. 4(a)-4(d), 4(j), and 4(k) dots are not uni-
formly distributed in all directions and they suffer from
directional hysteresis. For SED, and BED, this is expected
as they exploit causal diffusion filter and fixed scanning
path. Though SED,,, AED, and HED are purposely pro-
posed to reduce the directional hysteresis, they cannot
eliminate it completely.

Theoretically, MED,, MED_98, MED_.04, and the pro-
posed algorithm can eliminate directional hysteresis as no
causal filter and no predetermined scanning path is used in
these algorithms. One can see that the plots in Figs.
5(e)-5(i) are more or less symmetric in all four directions
(east, north, west, and south). This supports the theory.
However, when the same issue is addressed at a finer direc-
tion resolution, MED_ 98, MED_04, and the proposed algo-
rithm are better than MED, in a way that their plots are
symmetric in eight directions, while MED,’s plot is not. In
other words, MED_98, MED_04, and the proposed algo-
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rithm can eliminate directional hysteresis in more direc-
tions. PED’s performance is comparable to MED,’s.

To have a better picture of the directional hysteresis in-
troduced by a halftoning algorithm, a measure called direc-
tional index function is defined as

16
P()= 12 (1= Dy (@, Vg ©
a=1

where D n.xn3)(@) is the directional distribution function

values of the algorithm’s halftoning output of a constant
input, g is the gray level of the input, and \ is the principle
wavelength of the input. This measure does not carry any
information about the direction of the directional hysteresis
in the output. It simply reflects how severe the direction
hysteresis is in the output. The greater the value, the more
severe the directional hysteresis is. In ideal case, its value
should be zero.

Figure 6 shows the directional index functions of the
presented algorithms at different gray levels. A logarithmic
scale is used for the abscissa in the plot. In Fig. 6, we can
see that PED, MED_98, MED_04, and the proposed algo-
rithms provide a better performance as compared with the
others in terms of this measure. Another interesting obser-
vation is that, though MED, is more symmetric than SED,,
SED;,, and AED in four directions, when the direction reso-
lution is increased from 4 to 16, the directional index func-
tion values of MED,, are even larger than those of the others
in quite a number of gray-level inputs.

14F T L—
-- SED,

il —SED_, |
" AED

“* HED
i DD

10 BED

— PED

_ MED,

.. MED 98

... MED_04
— Proposed

Variance g2

Input gray-level

Fig. 6 Performance in terms of directional distribution of dots.

Figure 7 shows the performance of various algorithms in
terms of the anisoiropy of dots in their halftoning results of
different constant gray-level inputs. As mentioned in Ref.
1, when A(f,) >0 dB happens directional components are
considered to be strong or noticeable to human eyes. To
provide a reference to study the performance of the algo-
rithms, a surface defined by A(fp)=0 dB is added in each of
the plots. The plots show that MED_98, MED 04, and the

Table 2 Average number of operations per pixel of various MED algorithms.

Image Size Image Average Number of Operations per Pixel
MED, MED_ 98 Proposed
ADD CMP MUL ADD CMP MUL ADD CMP MUL
256 X 256 “Baboon” 14.67 1212 1.01 13.66 32.32 1.01 9.45 6.72 0.99
“Barb” 13.32 11.01 0.92 1239 29.37 0.92 879 6.67 0.92
“Boat” 15.45 1278 1.06 14.37 34.07 1.06 894 6.80 0.94
“Lena” 14.01 11.59 097 13.04 30.91 097 924 7.04 0.97
“Peppers”  11.77 9.75 0.81 10.96 26.00 0.81 776 6.34 0.82
Average 13.84 1145 0.95 1288 30.53 0.95 8.83 6.71 0.93
512X 512 ‘Baboon” 11.87 11.01 0.82 1426 3647 1.01 9.48 6.68 0.99
“Barb” 1477 13.67 1.01 1295 33.15 0.92 886 6.64 0.93
“Boat” 13.41 1243 0.92 1502 3844 1.07 897 667 094
“Lena” 1555 14.41 1.07 1364 34.88 0.97 931 6.96 0.97
“Peppers” 1412 13.08 097 1147 2935 082 784 6.28 0.82
Average 13.95 1292 0.96 1347 3446 096 8.89 6.65 0.93
Journal of Electronic Imaging 013010-6 Jan—-Mar 2007/Vol. 16(1)
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Fig. 9 Elements to be updated in a pyramid in the worst case.

proposed algorithms are better than the other algorithms. Its
corresponding anisotropy is well below 0 dB in all combi-
nations of gray levels and radial frequencies.

Blue noise halftoning is characterized by a distribution
of binary pixels where the minority dots are spread as ho-
mogeneously as possible.l It is visually pleasant as it does
not clash with the structure of an image. Pixels distributed
in this way create an aperiodic and isotropic pattern and it
does not contain any low-frequency spectral components.

Figure 8 shows the performance of various algorithms in
terms of RAPSD. For easier comparison, the range of
RAPSD shown in all these plots is bounded to be less than
10. If a RAPSD value is larger than 10, it is clipped and the
clipped value is displayed in the plots.

A good blue noise generator should produce a result that
carries little or no low-frequency spectral components. The
result should also provide a flat high-frequency spectral re-
gion and a spectral peak at blue noise principal frequency
f»- To provide a clear picture of the performance of the
algorithm, a white surface that marks the principal fre-
quency f; for a particular gray level is added in each of the
plots as a reference for comparison. Figures 8(g)—8(i) show
that the outputs of MED_,98, MED_04, and the proposed
algorithms have all these features. The harmonics that ap-
pear in the plot shown in Fig. 8(f) explain why there are so
many pattern artifacts in the outputs of MED,.

3.2 Computational Complexity Analysis

In this part of analysis, the computational complexity of
MED algorithms is provided based on an assumption that
the input image is of size N X N, where N is a multiple of 4.

For the proposed algorithm, at the initial stage, N> addi-
tions are required to construct N?/16 intensity pyramids
and determine the intensity level of minority dots. The re-
alization complexity for the steps left behind is then pro-
portional to the number of minority dots (=N?/2) to be
settled in the output.

To settle a dot, all involved operations are confined in a
macroblock. First of all, nine comparisons are required to
locate the most wanted pixel. If it is in the qualified region
of a macroblock, the searching effort will not be wasted.
Since there are 36 pixels in the qualified region of an 8
X 8 macroblock, a reasonable estimate of the hit ratio is
36/64 though the real hit ratio is higher than this in our
simulation. Accordingly, on average, the effort for locating
a qualified pixel is 9(64/36)=16 comparisons. Two multi-
plications and nine additions are required to diffuse the
quantization error. Finally, at most 12 additions are required
to update the affected blocks in the macroblock. This ex-
treme case happens when all four blocks are affected, as
shown in Fig. 9. By considering comparison as addition,
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(c) MEDx
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Fig. 10 Halftones produced with various MED algorithms.

the upper bound of the complexity is 2V>/2 multiplications
and N’+(9+16+12)N?/2 additions, which implies at most
one multiplication and 19.5 additions per pixel.

The initialization stage of MED, takes N*>—1 additions.
For each introduced dot, it takes 3 log,N comparisons to
locate the most wanted pixel, nine additions, and two mul-
tiplications to diffuse the quantization error and at most
4 log,N additions to update the intensity pyramid. Unlike
our proposed algorithm, MED, introduces white dots in-
stead of minority dots and hence the number of introduced
dots is bounded by N? instead of N?/2. The upper bound of
the complexity is 2N?> multiplications and N’>—1
+(7 logo,N+9)N? additions, which implies at most two mul-
tiplications and 7 log,N+ 10 additions per pixel. Its com-
plexity bound per pixel is O(log,N), while that of the pro-
posed algorithm is a constant.

Since block overlapping and block shifting are, respec-
tively, used in MED_98 and MED_.04 to remove blocking
effect, the structure of the intensity pyramids involved is
more complicated as compared with that used in MED;,.
Accordingly, their realization complexity is even higher. In
particular, the complexity bound of MED,04 is roughly
three-fold of that of MED;.
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Table 3 Visual quality of halftones produced with different algorithms in terms of (a) MSE, and (b) MSE, of boundary pixels and interior pixels.

Image Size  Image (a) MSE, x 1078 (b) MSE, (boundary pixels and interior pixels)x10-3

MED, MED_98 Proposed MED, MED_98 Proposed

Boundary Pixels Interior Pixels Boundary Pixels Interior Pixels Boundary Pixels Interior Pixels

oL-0L0€1L0

(1)91 IoA/2002 t1ew-uer

256 x256  “Baboon” 0.0688 0.0198 0.0251 0.0689 0.0687 0.0199 0.0197 0.0254 0.0249
“Barb” 0.1306 0.0196 0.0286 0.1313 0.1301 0.0196 0.0196 0.0288 0.0284

“Boat” 0.2328 0.0212 0.0253 0.2333 0.2324 0.0214 0.0211 0.0258 0.0249

“Lena” 0.1279 0.0209 0.0272 0.1276 0.1281 0.0209 0.0208 0.0272 0.0273

“Peppers” 0.2723 0.0189 0.0260 0.2717 0.2728 0.0188 0.0189 0.0262 0.0259

Average 0.1665 0.0201 0.0264 0.1666 0.1664 0.0201 0.0200 0.0267 0.0263

512x512  “Baboon” 0.0927 0.0195 0.0262 0.0929 0.0926 0.0196 0.0194 0.0263 0.0261
“Barb” 0.1987 0.0193 0.0285 0.1991 0.1984 0.0195 0.0192 0.0290 0.0282

“Boat” 0.2804 0.0202 0.0276 0.2805 0.2803 0.0203 0.0202 0.0280 0.0273

“Lena” 0.1688 0.0203 0.0281 0.1689 0.1687 0.0206 0.0201 0.0284 0.0278

“Peppers” 0.3938 0.0193 0.0283 0.3936 0.3940 0.0195 0.0191 0.0286 0.0281

Average 0.2269 0.0197 0.0277 0.2270 0.2268 0.0199 0.0196 0.0281 0.0275
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Table 4 Quality measurement of halftones produced with different algorithms in terms of (a) WSNR, (b) LDM, and (c) UQl.

Image Size Image (a) WSNR (b) LDM (c) uQl
MED, MED_98 Proposed MED, MED_98 Proposed MED, MED_98 Proposed
256 X 256 “Baboon” 24.7720 24.6042 24.5954 0.9139 0.9158 0.9160 0.1641 0.1826 0.1770
“Barb” 23.8069 24.4193 24.3880 0.9361 0.9387 0.9378 0.1705 0.1907 0.1870
“Boat” 24.2005 24.8692 25.1572 0.9218 0.9229 0.9232 0.1388 0.1576 0.1528
“Lena” 24.3110 24.7865 24.7064 0.9267 0.9288 0.9281 0.1253 0.1403 0.1374
“Peppers” 22.0826 23.7100 23.6978 0.9549 0.9518 0.9511 0.1483 0.1745 0.1724
Average 23.8346 24.4778 24.5090 0.9307 0.9316 0.9312 0.1494 0.1691 0.1653
512x512 “Baboon” 24.7605 24.4745 24.6803 0.9583 0.9593 0.9593 0.1791 0.2002 0.1926
“Barb” 23.6959 24.4917 24.4763 0.9591 0.9607 0.9602 0.1445 0.1634 0.1583
“Boat” 24.2644 24.9879 25.3348 0.9539 0.9541 0.9543 0.0976 0.1114 0.1093
“Lena” 24.3285 24.9699 24.9251 0.9532 0.9543 0.9539 0.0794 0.0901 0.0878
“Peppers” 22.1165 24.0698 23.9476 0.9705 0.9666 0.9660 0.0845 0.1043 0.1022
Average 23.8332 24.5988 24.6728 0.9590 0.9590 0.9587 0.1170 0.1339 0.1300

4 Simulation Results

The analysis presented in the previous section proves the
theoretical advantage of MED in different measures. In
practice, simulation results on real images also reveal this
fact when comparing MED with conventional error diffu-
sion algorithms.L9 Accordingly, this section does not put its
focus on the comparison between MED and conventional
algorithms again. Instead, the focuses are on (1) the com-
plexity of different MED algorithms in their practical real-
ization, (2) whether there is a drop in the visual quality of
the output of the proposed algorithm as compared with
those of other MED algorithms when real images are pro-
cessed, (3) whether the proposed algorithm introduces
blocking artifacts in its output, and (4) what happen if one
partitions an input image into a number of 8 X 8 blocks and
then directly applies MED, or MED 98 to each block so as
to support parallel processing in a straightforward manner.
To address these issues, simulation was carried out to
evaluate the performance of different MED algorithms and
their variants on a set of de facto standard 8-bit gray-scale
images including “Baboon,” “Barb,” “Boat,” “Lena,” and
“Peppers.”

Table 2 shows the average number of additions (ADD),
comparisons (CMP), and multiplications (MUL) required
per pixel to produce the halftones with different MED al-
gorithms in the simulation. It shows that the proposed al-
gorithm can remarkably reduce the number of operations as
compared with conventional MED algorithms. On average,
when the input image is of size 512X 512, the complexity
of the proposed algorithm is only 59% of MED, and 34%
of MED_98 in terms of total number of operations per
pixel. Note that while the other MED algorithms do not
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support parallel processing, the proposed algorithm does
and it can further reduce the Processing time significantly.

Halftone visibility metrics” can be used to measure the
distortion observed by a human viewer between an original
gray-scale image X and its binary halftone B. In particular,
it is defined as

MSE, = Ihvs(X, vd,dpi) — hvs(B,vd,dpi)I?, (7)

N XN

where hvs is the human visual system (HVS) filter function
defined in Ref. 2, vd is the viewing distance in inches, and
dpi is the printer resolution. In our simulations, the viewing
distance was fixed at 20 in. and printer resolution of
600 dpi was considered. Table 3a shows the MSE, results
of the evaluated MED algorithms. One can see that
MED,_98 provides the best result and the performance of
the proposed algorithm is very close to it. The proposed
algorithm reduces the complexity at no cost of the image
quality.

To explore whether the proposed algorithm introduces
more artifacts to the boundary region of a block, block
boundary pixels and block interior pixels of a HVS-filtered
halftone were separated and their contribution to MSE,, was
evaluated individually. As shown in Table 3b, the difference
between their contributions is very small.

Table 4 shows the performance of the MED algorithms
in terms of weighted SNR'? (WSNR), linear distortion
measure’> (LDM), and universal objective image quality
index'* (UQI). WSNR uses the contrast sensitivity
function'® (CSF) of the HVS to measure the distortion of
halftone image while LDM is used to measure the linear

Jan—-Mar 2007/Vol. 16(1)



Fung, Lui, and Chan: Low-complexity high-performance multiscale error diffusion...

distortion. UQI is an index to qualify an image. In terms of
all these measurements, the performance of the proposed
algorithm is more or less the same as that of MED_98.

Figure 10 shows the halftone outputs of various MED
algorithms for subjective evaluation. As mentioned earlier,
one can divide an input image into a number of 8§ X8
blocks and then applies either MED, or MED_98 to each
block independently. This approach turns a frame-based
MED algorithm into a block-based algorithm and makes
parallel processing possible immediately. However, this
straightforward approach does not work. As shown in Figs.
10(d) and 10(f), serious blocking artifacts are visible in
their outputs. In contrast, as shown in Fig. 10(b), there is no
visible blocking artifact in the result of the proposed algo-
rithm and its visual quality is subjectively very close to that
of MED_98.

5 Conclusions

A fast MED algorithm for digital halftoning was proposed
and a detailed analysis on various MED algorithms was
presented. Analysis results show that, like other MED algo-
rithms, the proposed algorithms can provide a better perfor-
mance as compared with conventional error diffusion algo-
rithms in terms of the directional distribution of dots,
anisotropy, and blue noise characteristic, while its compu-
tational complexity is significantly reduced as compared
with conventional MED algorithms. As the proposed algo-
rithm supports parallel processing, processing time can fur-
ther be reduced to enable real-time processing. Simulation
results also demonstrated that, in practical applications, the
proposed algorithm could reduce the computational com-
plexity without sacrificing the image quality of its output.
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