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A Technique for Producing Scalable Color-Quantized
Images With Error Diffusion

Yik-Hing Fung and Yuk-Hee Chan, Member, IEEE

Abstract—To reliably and efficiently deliver media information to diverse
clients over heterogeneous networks, the media involved must be scalable.
In this paper, a color quantization algorithm for generating scalable color-
indexed images is proposed based on a multiscale error diffusion frame-
work. Images of lower resolutions are embedded in the outputs such that a
simple down-sampling process can extract images of any desirable resolu-
tions. Images possessing this scalable property support transmission over
the Internet which contains clients with different display resolutions, sys-
tems with different caching resources and networks with varying band-
widths and QoS capabilities. Unlike most of the color halftoning algorithms
available nowadays, the proposed algorithm is not dedicated for printing
applications but for color-indexed displays. It works with any arbitrary
palettes of different size.

Index Terms—Color index, color quantization, directional hysteresis,
error diffusion, halftoning, multiscale processing, scalable media.

I. INTRODUCTION

Color quantization [1] is widely used in many multimedia applica-
tions to save data storage requirement, save transmission bandwidth,
and display images with a color display device that allows only a lim-
ited number of colors. When color quantization is performed, digital
halftoning [2]–[4] would be helpful to improve the quality of the output
by making use of the lowpass filtering property of human eyes. At the
moment, the most popular halftoning method is error diffusion and sev-
eral well-known error diffusion filters such as Floyd–Steinberg filter [5]
and Stucki filter [6] are generally used to achieve the goal.

One of the applications of color quantization is to convert images
into a color-indexed image file format called GIF. GIF is one of the two
primary Web file formats used in Web applications nowadays since it
inherits the benefit of fast and simple decoding[7]. When one delivers
media information to diverse clients over heterogeneous networks,
clients may support different display resolutions and systems may
have different caching capabilities. In that case, it is desirable to make
media information scalable such that it can be delivered efficiently and
reliably. Since color-quantized images are widely used in multimedia
applications nowadays, it is desirable to make them scalable such that

Manuscript received April 4, 2005; revised January 26, 2006. This work was
supported in part by the Research Grants Council of the Hong Kong Special
Administrative Region (PolyU 5205/04E) and in part by the Centre for Multi-
media Signal Processing of The Hong Kong Polytechnic University (POLYU
Grant A046). The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. Reiner Eschbach.

Y.-H. Fung and Yuk-Hee Chan are with the Centre for Multimedia Signal
Processing, Department of Electronic and Information Engineering, The Hong
Kong Polytechnic University, Hong Kong (e-mail: enyhchan@polyu.edu.hk).

Color versions of Figs. 1–5 are available online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIP.2006.877480

1057-7149/$20.00 © 2006 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 27, 2009 at 22:02 from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 10, OCTOBER 2006 3219

Fig. 1. Color quantization result of Orchard’s algorithm [2] using a palette
of size 32 and its down-sampled version. (a) Full-scaled version (256� 256).
(b) Down-sampled version (128� 128).

their downscaled versions can be obtained directly with the images
through some simple operations.

The most straightforward approach to obtain a downscaled version
of a halftoned color-quantized image is down sampling. However, this
approach does not work because such an image contains a lot of high-
frequency energy. Fig. 1 shows the effect of directly down sampling
an image produced with a conventional color quantization algorithm
[2] in which error diffusion is involved. Visible artifacts can be found
everywhere.

Two better approaches can be used to provide a client over hetero-
geneous networks a downscaled version of a halftoned color-quantized
image. The first one is to generate several scaled original color images
of desired sizes, color quantize each of them and store all of them in
the server for future use. This is very memory-consuming since one
has to store several halftoned color-quantized versions of the original
color image for one single application. The second approach is to make
use of postprocessing technique. In this approach, only one halftoned
color-quantized image is stored. To obtain a halftoned color-quantized
image of smaller size, the available halftoned color-quantized image
is first restored to its original [8], [9] or low-pass filtered to remove
the high-frequency noise. The processed image is then downscaled and
color quantized again to produce the image of desirable resolution. This
approach is computation demanding since a sequence of image pro-
cessing steps has to be carried out.

The advantages of producing scalable color-quantized images are
obvious. First, the generated result does not require extra memory to
store a set of halftoned color-quantized images of different resolutions.
Besides, only simple downsampling is required to produce the down-
scaled versions, and, hence, very little computational effort is required
to generate this set of halftoned color-quantized images.

In general, a scalable color-quantized image can be produced by first
producing an output of lower resolution and then, when producing the
output of higher resolution, forcing its downsampled pixels to be the
corresponding pixels in the output of lower resolution. For the sake of
reference, this approach is referred to as constrained halftoning and the
aforementioned pixels in the output of higher resolution are termed as
constrained pixels. Similar idea was used by Wong to generate scalable
binary halftones[10]. However, Wong’s algorithm cannot be directly
applied in producing a scalable color-quantized image.

Theoretically, any conventional binary halftoning algorithm can
work with constrained halftoning to produce scalable color-quan-
tized images after being extended to handle color-quantized images.

However, it could be more complicated than we expect. First, not all
conventional binary halftoning algorithms can be directly extended
to handle color-quantized images in a straightforward manner. Color
quantization is actually a vector quantization instead of a bi-level
uniform scalar quantization as in the case of binary halftoning. A
straightforward extension of binary halftoning only works when a
uniform palette is used in a color quantization process. When an
arbitrary palette is used in color quantization to generate halftoned
color-quantized images, modification to the algorithms is required.

Second, not all binary halftoning algorithms are suitable for con-
strained halftoning. Most conventional binary halftoning algorithms
process pixels in a predefined scanning order. Accordingly, they do not
take a constrained pixel into account until the pixel is encountered in the
course. It is very likely that the value assigned to a constrained pixel is
against the natural quantization result. This mismatch disturbs the har-
mony of a local region and degrades the quality of the output. Wong’s
algorithm [10] reduces this problem by using an adaptive error dif-
fusion filter. However, pattern artifacts and directional hysteresis still
exist due to the causal nature of the error diffusion filter used in this
approach.

In view of the aforementioned factors, some binary error diffusion
algorithms [10]–[16] would be comparatively more appropriate to work
with constrained halftoning after being extended. Among them, Peli’s
algorithm [11] was designed to make use of the strength of both order
dithering and error diffusion to produce binary halftones. Riemersma’s
algorithm [12] tries to reduce directional hysteresis by using a space
filling curve to determine the scanning order. Aiming at removing the
source of directional hysteresis, mutltiscale error diffusion algorithms
[13]–[15] use a noncasual filter and a nonpredetermined scanning order
to halftone a gray level image. All these algorithms are originally pro-
posed for binary halftoning.

In this paper, based on the idea of constrained halftoning and mul-
tiscale error diffusion, we proposed an efficient approach to generate
a halftoned color-quantized image that can be displayed at several
resolutions. It is generated in such a way that, when down sampling
is performed, the resultant image is also a halftoned color-quantized
image and it is a high-quality rendition of the original color image
at reduced resolutions. With such a scalable property, the generated
halftoned color-quantized image is also suitable for progressive
transmission.

II. FRAMEWORK OF MULTISCALE ERROR DIFFUSION

This section extends the framework of binary multiscale error diffu-
sion to take care of color quantization. In this extended framework,
color quantization is performed in YIQ color space so as to reduce
the correlation among different color components. Another reason for
doing so is that Euclidean distance in YIQ space matches HVS re-
sponse more closely as compared with that in RGB space. Processing
the image in YIQ instead of RGB space allows the color quantizer to
select a visually more appropriate palette color with a given input. In
practice, palettes used in popular image formats such as GIF are usually
defined in RGB or YIQ domain. Directly color quantizing an image in
these two domains would reduce complexity and minimize the com-
putation error introduced during format conversion. Without lose of
generality, hereafter, we assume the color palette and the input image
are defined in YIQ space. Though the work presented in this paper is
developed in YIQ domain, it can also be developed in some other color
domains such as Lab domain with the same approach.

Let X be a 24-bit N � N true-color image each pixel of which is
represented as ~X(i;j) = (X(i;j)Y ; X(i;j)I ; X(i;j)Q), where X(i;j)c for
c 2 fY; I; Qg is the intensity value of the cth primary color component
of the (i; j)th pixel of the image.
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The proposed algorithm is an iterative algorithm. LetU be an image
which reports the current status of the image being processed at the
beginning of a particular iteration. At each iteration, the algorithm first
locates a pixel location based on the maximum energy guidance with an
energy pyramid E associated with U. The details of the pyramid will
be elaborated later. The selected pixel is then color quantized with a
predefined set of colors (palette). The quantization error is diffused with
a noncasual filter to neighboring pixels to updateU. These procedures
are repeated until all pixels are color quantized. At the start of the first
iteration, U is initialized to be X.

A. Constructing Energy Pyramid E

LetM be a mask of sizeN �N that defines which pixels have been
color quantized. Specifically, its element M(i;j) is 0 if ~X(i;j) has been
color quantized or else it is 1.

A multiscale representation of a given color image U is defined as
a sequence of matrices fU0; � � �Ul; � � �ULg, where L = log2N and
U

L = U. Ul is of size 2l � 2l and its (i; j)th element is a triplet
(U l

(i;j)Y ; U
l
(i;j)I ; U

l
(i;j)Q) for i; j = 0; 1; . . . ; 2l � 1. Elements ofUl

for l = 0; 1 � � �L � 2 are defined as

U
l
(i;j)c =

1

m=0

1

n=0

U
l+1
(2i+m;2j+n)c for c 2 fY; I; Qg (1)

while elements ofUL�1 are defined as (2), shown at the bottom of the
page, where

S =

1

m=0

1

n=0

M(2i+m;2j+n) : (3)

The energy pyramidE associated with imageU is then constructed
with fEljl = 0; 1; � � �Lg, where El is the energy plane of matrix
U

l. The (i; j)th element of El can be defined as (4), shown at the
bottom of the page, so as to match the conventional definition of en-
ergy. However, in this paper, we define it as (5), shown at the bottom
of the next page, instead because the realization effort of (5) is much
lower and, no matter which definition is used, the simulation results in
our study is more or less the same both subjectively and objectively in
terms of the S-CLELAB performance.

B. Searching the Pixel for Color Quantization

The location of a pixel to be color quantized is determined via max-
imum energy guidance with energy pyramidE. To a certain extent, the
pixel chosen is the one with the largest energy in the neighborhood.
Specifically, its location is obtained by searching the energy pyramid
from the coarsest levelE0 to the finest levelEL. Note thatE0 contains
only one element E0

(0;0).
Assume that we are now at position (l; (i; j)) which corre-

sponds to the (i; j)th element of a particular level l. We check
fEl+1

(2i+m;2j+n)jm;n = 0; 1g and proceed to the position
(l + 1; (2i + p; 2j + q)) such that El+1

(2i+p;2j+q) is the maximum in
fEl+1

(2i+m;2j+n)jm; n = 0; 1g, where p; q 2 f0; 1g. If more than one
position satisfies the criterion, one of them will be randomly selected.

C. Color Quantization and Error Diffusion

Let (L; (m;n)) be the position that we finally reach at the finest
level of the pyramid E in the search and C = fv̂i : i = 1; 2; � � �Ncg
be the given color palette. ~U(m;n) = (U(m;n)Y ; U(m;n)I ; U(m;n)Q)
is then color quantized. The best-matched color in the palette, say v̂k ,
is selected based on the minimum Euclidean distance criterion in YIQ
color space as follows:

k~U(m;n) � v̂kk � k~U(m;n) � v̂lk 8v̂l 2 C: (6)

The quantization error ~" = v̂k � ~U(m;n) is then diffused to ~U(m;n)’s
neighborhood to update image U with a noncausal filter. In formula-
tion, it is given as

~U(i;j) = ~U(i;j) �W(m�i;n�j)~"

for i = m� 1 and j = n� 1 (7)

where W is defined as

W =

W(�1;�1) W(�1;0) W(�1;1)

W(0;�1) W(0;0) W(0;1)

W(1;�1) W(1;0) W(1;1)

=
1

12

1 2 1

2 �12 2

1 2 1

:

U
L�1
(i;j)c =

1
S

1
m=0

1
n=0M(2i+m;2j+n)U

L
(2i+m;2j+n)c; if S 6= 0 for c 2 fY; I; Qg

0; else
(2)

E
l
(i;j) =

U l
(i;j)Y

2
+ U l

(i;j)I

2
+ U l

(i;j)Q

2
; if 0 � l < L

M(i;j) UL
(i;j)Y

2
+ UL

(i;j)I

2
+ UL

(i;j)Q

2
; if l = L

for i; j = 0; 1; . . . ; 2l � 1 (4)

E
l
(i;j) =

U l
(i;j)Y + U l

(i;j)I + U l
(i;j)Q ; if 0 � l < L

M(i;j) UL
(i;j)Y + UL

(i;j)I + UL
(i;j)Q ; if l = L

for i; j = 0; 1; . . . ; 2l � 1 (5)

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 27, 2009 at 22:02 from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 10, OCTOBER 2006 3221

Fig. 2. Testing images.

To handle the boundary and the corner pixels, W is modified to be

1

8

0 0 0

2 �8 2

1 2 1

and
1

5

0 0 0

0 �5 2

0 2 1

respectively, to avoid energy leakage.

III. PROPOSED MULTISCALE MULTIRESOLUTION VECTOR

ERROR DIFFUSION ALGORITHM

With the framework presented in the previous section, a color quan-
tization algorithm for generating scalable color quantization images is
proposed in this section.

Consider the case that one wants to produce a color quantization re-
sult of a given image I in which a set of color quantization results of
downscaled versions of I are embedded. Let Ir be one of the down-
scaled versions of I. Without loss of generality, we assume that I is of
size N �N and Ir is of size (N=sr)� (N=sr), where sr 2 f2rjr =
1; 2 . . .R; R < L = log2Ng is a desirable scaling factor. The objec-
tive of the proposed algorithm is to produce an output Y such thatYr

for r = 1; 2 . . .R can be obtained by simply down samplingY, where
Yr is the color quantization result of Ir .

Note that I can be downscaled with any approach to obtain Ir , pro-
ducing different results. In this paper, Ir is obtained by averaging I as
follows:

Ir(i;j)c =
1

sr � sr

s �1

m=0

s �1

n=0

I(s i+m;s j+n)c

for i; j = 0; 1; . . . ; (N=sr)� 1 and c 2 fY; I; Qg (8)

where Ir(i;j)c and I(i;j)c are, respectively, the cth color components of
the (i; j)th pixels of Ir and I.

In the proposed algorithm, starting with r = R, we iteratively gen-
erate Yr with Ir and use Yr as a constraint to produce Yr�1 in the
next iteration until Y is eventually obtained.

As selected by the user, YR is of the lowest resolution to be sup-
ported in the scalable Y. There is no constraint to generate it and one
can make use of the multiscale error diffusion algorithm presented in
Section 2 to generate it with X = IR.

To obtain Yr with Ir for 0 < r < R, the same multiscale error
diffusion algorithm presented in Section 2 can be used by embedding a
constraint in the initialization stage. Suppose one has already obtained
Yr with Ir and starts to produce Yr�1 with Ir�1. At the start of the

first iteration, after initializing U to be X = Ir�1, we quantize the
down-sampled elements of Yr�1 to be

Y r�1
(2i;2j)c = Y r

(i;j)c for i; j = 0; 1; . . . ; (N=sr)� 1 (9)

where Y r
(k;l)c is the cth color component of the (k; l)th element ofYr ,

and then diffuse the quantization error at positions (2i; 2j)s with (7)
to update U. Note assignment (9) guarantees that Yr can be obtained
by simply down samplingYr�1. This completes the first iteration and
the following iterations are carried out as usual as it is presented in
Section II until Yr�1 is obtained.

The proposed algorithm is an iterative algorithm. Theoretically, one
iteration is required to process one pixel. In each iteration, 3log

2
N

scalar comparisons are required to locate the pixel to be processed.
It then takes Nc vector comparisons to select a palette color for the
located pixel. After error diffusion, there are at most 9 pixels whose
associated ~U(m;n) values are changed and, for each of these pixels,
log

2
N + 1 elements of structure fU0; � � �Ul; � � �ULg have to

be updated. Hence, it takes two scalar multiplications and at most
9(log

2
N +1) vector additions to update fU0; � � �Ul; � � �ULg. Note

this already includes the complexity of error diffusion. Finally, it
takes, at most, 18(log

2
N + 1) scalar additions to update the energy

pyramid E with the updated fU0; � � �Ul; � � �ULg. The dimension of
the vectors involved in all vector operations is three. As compared with
a conventional color quantization algorithm, the extra total complexity
is bounded by O(N2log

2
N).

IV. SIMULATION AND COMPARATIVE STUDY

Simulation was carried out to evaluate the performance of the algo-
rithm on a number of de facto standard 24-bit full color images. Each of
them is of size 256� 256. Fig. 2 shows the testing images used in the
simulation. For each testing image, a set of color palettes of different
size were generated with median-cut algorithm [1] for color quantiza-
tion. The proposed algorithm was applied to all testing images to ob-
tain their corresponding halftoned color quantization results with the
generated color palettes to evaluate its performance. In its realization,
parameter R was selected to be 4.

For comparison, halftoned color quantization results were also pro-
duced with some other color quantization algorithms [2]–[4] and then
down sampled to produce various downscaled versions. Unlike most
color halftoning algorithms which are dedicated for printing applica-
tions [16], [17], these evaluated algorithms [2]–[4] are not straight-
forward extension of binary halftoning and are able to handle color
quantization in which any arbitrary palettes can be used. Among them,
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TABLE I
AVERAGE S-CIELAB COLOR DIFFERENCE (�E) METRIC OF THE HALFTONED COLOR-QUANTIZED OUTPUTS OF VARIOUS ALGORITHMS

AND THEIR DOWN-SAMPLED VERSIONS WHEN THE INVOLVED PALETTE IS OF SIZE (a) 16, (b) 32, (c) 64, AND (d) 128

Orchard’s algorithm [2] forms a common framework that most of these
algorithms adopt. In its realization, Floyd-Steinberg filter [5] was used
in error diffusion. Both Akarun’s algorithm [3] and Özdemir algorithm
[4] adopt the framework presented in Orchard’s algorithm. In partic-
ular, Akarun’s algorithm [3] uses an adaptive error diffusion filter to
prevent texture contours, color impulses and color shift. Instead of
the conventional Euclidean distance criterion, Özdemir’s algorithm [4]
uses a weighted sum of the distances among color vectors as a searching
criterion in its color-quantization process to prevent excess accumula-
tion of quantization errors. Breaux’s algorithm [18] is an extension of
Peli’s algorithm [11] for producing halftoned color-quantized images.

As mentioned in Section I, some conventional halftoning algorithms
can be used in constrained halftoning to produce scalable color-quan-
tized images after an extension. Riemersma’s algorithm [12] and
Orchard’s algorithm [2] were extended with the scheme presented in
Section 3 to provide corresponding outputs for comparison. These
extensions are, respectively, referred to as Riemersma+ and Orchard+
in this paper.

S-CIELAB color difference (�E) metric [19] is a spatial exten-
sion of the CIELAB color difference (�E) metric [20]. It is defined
as the Euclidean distance between the original color pixel and its re-
production in S-CIELAB color metric space. It is widely accepted and
used for measuring color reproduction error when a continuous-tone
color image is reproduced with halftoning. Table I shows the perfor-
mance of various algorithms in terms of the average S-CIELAB dif-
ference (�E) value of all pixels in their color quantization outputs
and their corresponding down-sampled versions. The palettes used to
obtain Table I(a)–(d) is, respectively, of size 16, 32, 64, and 128. Sim-
ulation results show that the proposed algorithm can provide a better

result than the other algorithms even though constrained halftoning is
applied to some of them.

Fig. 3(b)–(h) shows the processing results of different evaluated al-
gorithms. Fig. 3(a) is the original 256� 256 24-bit full-color image for
reference. The palette used to generate Fig. 3(b)–(h) is of size 32 and
was obtained with Fig. 3(a) using median-cut algorithm. One can see
the ripple patterns in the sky region in Fig. 3(d) and (h). These patterns
are caused by directional hysteresis.

As a multiscale error diffusion algorithm, the proposed algorithm
eliminates directional hysteresis, and, hence, no such artifacts can be
found in Fig. 3(e) and (f). Fig. 3(e) and (f) shows, respectively, the
cases when the energy term is defined with (4) and (5). It is hard to tell
their difference, and, hence, (5) is recommended in this paper. Though
Özdemir’s [4], Breaux’s [18], and Riemersma’s [12] algorithms can
also reduce directional hysteresis, artifacts can be found in their simu-
lation results. In particular, pattern noise can be observed in the yellow
cap in Fig. 3(b) and severe color shifts can be found between the yellow
and the red caps in Fig. 3(c). As compared with Fig. 3(f), the caps in
Fig. 3(g) is noisy. Though these algorithms can effectively remove di-
rectional hystersis in their produced halftones, their color quantization
performance is inferior to that of the proposed algorithm.

Fig. 3(g) and (h) shows the results of applying constrained halftoning
to Riemersma’s [12] and Orchard’s [2] algorithms. Besides the arti-
facts that we mentioned earlier, one can see that, as compared with
Fig. 3(a), the fine details of the peak of the yellow cap are totally
missing in these figures. In contrast, these details are preserved in
Fig. 3(e) and (f) to a certain extent. This shows that not all algorithms
can work with constrained halftoning to provide a good color quanti-
zation result.
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Fig. 3. Color quantization results of full-scaled “Caps” (palette size = 32):
(a) Original, (b) Özdemir, (c) Breaux, (d) Akarun, (e) proposed [using energy
definition (4)], (f) proposed [using energy definition (5)], (g) Riemersma+, and
(h) Orchard+.

Figs. 4 and 5 show the downscaled versions of Fig. 3. The down-
scaling of Fig. 3(b)–(h) was carried out by simple down sampling.
Figs. 4(a) and 5(a) show I

1 and I
2, respectively. They are used as ref-

erences for evaluating how close the downscaling outputs of a color-
quantization result is to the downscaled original. The corresponding
downscaling ratios used to produce Figs. 4 and 5 were, respectively,
2 and 4. Accordingly, they are of size 128� 128 and 64� 64, respec-
tively. For easier inspection, these figures are zoomed with nearest-

Fig. 4. Downscaled versions of Fig. 3 (s = 2): (a) Original, (b) Özdemir,
(c) Breaux, (d) Akarun, (e) proposed [using energy definition (4)], (f) proposed
[using energy definition (5)], (g) Riemersma+, and (h) Orchard+.

neighbor interpolation to make their size as large as the original full-
scaled version. One can see that the downscaled versions of Fig. 3(e)
and (f) are equally good and can faithfully report the content of the
downscaled versions of Fig. 3(a) while the others cannot. The poor ap-
pearance of the downscaled versions of Fig. 3(b) and (d) is expected
as Özdemir’s [4] and Akarun’s [3] algorithms do not take care of the
scalability of their outputs. Artifacts found in Fig. 3(c), (g), and (h) can
also be found in their corresponding downscaled versions.
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Fig. 5. Downscaled versions of Fig. 3 (s = 4): (a) Original, (b) Özdemir,
(c) Breaux, (d) Akarun, (e) proposed [using energy definition (4)], (f) proposed
[using energy definition (5)], (g) Riemersma+, and (h) Orchard+.

Unlike the algorithms in which causal diffusion filters and prede-
fined processing sequences are used in the error diffusion process, the
proposed algorithm color-quantizes pixels in a so-called “maximum
energy guidance” manner and diffuses the quantization errors with a
noncausal diffusion filter. This approach completely removes the arti-
facts caused by directional hysteresis.

V. CONCLUSION

It is always useful to produce scalable color-indexed images for de-
livering media information to diverse clients over heterogeneous net-
works reliably and efficiently. This paper presents an extension work of
binary multiscale error diffusion to handle color quantization. Based on
this work, a color quantization algorithm is proposed to produce scal-
able color-indexed images. For any given image, this algorithm can
produce a high-quality directional hysteresis-free output and simulta-
neously embed a set of color quantization results of the downscaled
versions of the given image without any memory overhead. With the
color-quantization output of the proposed algorithm, images of desir-
able resolutions can be extracted by simply down sampling the output.
The proposed algorithm works with any arbitrary color palettes of dif-
ferent size.
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