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Abstract

This paper presents a design approach of linear controllers for
nonlinear systems with unknown parameters within known
bounds. The plant is represented by a fuzzy model. Stability
condition will be derived based on Lyapunov stability theory and
formulated into an LMI (Linear Matrix Inequality) problem.
The linear controller can be designed by solving the LMIs. To
illustrate the merits and the design procedure of the proposed
linear controller, an application example on stabilizing an
inverted pendulum on a cart with unknown parameters is given.

1. INTRODUCTION

Control of nonlinear systems is difficult because we do not
have systematic mathematical tools to help finding a necessary
and sufficient condition to guarantee the stability and
performance. The problem will become more complex if some
of the parameters of the plant are unknown. By using a TSK
fuzzy plant model [1-2, 7, 14] a nonlinear system can be
expressed as a weighted sum of some simple sub-systems.
This model gives a fixed structure to some of the nonlinear
systems and thus facilitates the analysis of the systems. There
are two ways to obtain the fuzzy plant model: 1) by performing
system identification methods based on the input-output data
of the plant {1-2, 7, 14], 2) deriving from the mathematical
model of the nonlinear plant [5]. Stability of fuzzy mode!
based systems has been investigated recently [4, 6-13]. A
linear controller {13] was also proposed to control the plant.
Most of the fuzzy controllers proposed are functions of the
grades of membership of the fuzzy plant model. Hence, the
membership functions of the fuzzy plant model must be known.
It means that the parameters of the nonlinear plant must be
known or be constant when the identification method is used to
derive the fuzzy plant model. Practically, the parameters of
many nonlinear plants will change during the operation, e.g.,
the load of a dc-dc converter, the number of passengers on
board a train. In these cases, the robustness property of the
fuzzy controller is an important concern.

A linear controller is proposed in this paper to tackle
nonlinear plants represented by a fuzzy plant model of which
the membership functions depends on some unknown plant
parameters of known bounds. Stability of the closed-loop
system will be analyzed based on the Lyapunov stability theory.
It will be shown that the stability condition derived will be the
same as that of the relaxed stability condition in [6] but the
structure of the proposed linear controller is much simpler.
The derived stability condition will be formulated into an LMI
(Linear Matrix Inequality) problem [3]. By solving the LMIs
using MATLAB, the parameters of the linear controller can be
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obtained.
II. Fuzzy PLANT MODEL AND LINEAR CONTROLLER

An uncertain multivariable nonlinear system is to be
controlled. The plant has the following form:

x(t) = F(x(£))x(#) + B(x(t))u(r) 89)
where F(x(#)) e R™" and B(x(f)) e R™" are the system
matrix and input matrix respectively, both of them have known
structure but subject to unknown parameters, X(¢) e R™' is the
system state vector and u(f) e R™ is the input vector. The

system of (1) is represented by a fuzzy plant model, which
expresses the multivariable nonlinear system as a weighted
sum of linear systems. A linear controller is to be designed to
close the feedback loop.
A. Fuzzy Plant Model

Let p be the number of fuzzy rules describing the
multivariable nonlinear plant of (1), the i-th rule is of the
following format,
Rule i: IF f,(x(2)) is M} and ... and f, (x(?)) is M},

THEN x(f) = A x(1) + B, u(?) V)

where M/, is a fuzzy term of rule i corresponding to the
function f,(x(#)) in terms of the system states and unknown
parameters of the nonlinear plant, ¢  1,..., ¥,i 1,...,p,
¥ is a positive integer; A, e R and B, e R™" are known
system and input matrices respectively of the i-th rule
sub-system. The system dynamics are described by,

p
x(1) =Y w,(x(t))(A,x(1) + B,u(®)), ®)
i=1
where iw,.(x(z))=1, w,(x() [0 1] foralli @ -
i=l
Ho KON Xy RO X=X s (S &) (5)
wy(x(1)) = :

i (”M,- S N %ty (XM % gy (S (X(I)))

k=1
is a nonlinear function of the system states and the unknown
parameters. (Fuzzy modeling is discussed in [1-2, 7, 14].)

B. Linear Controller
A linear controller of the following form is employed to
control the nonlinear plant of (1).

u(r) = (G - im ,RB ,TP]x(t)

=

©

where m; =1or0,j=1,2,...,p ©)
will be determined later. G € R™" is a feedback gain matrix,
ReR™ and PeR™" are symmetric positive definite

matrices to be designed, () denotes the transpose of a matrix
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or vector. Ifall m; are zero, it means the nonlinear system of
(1) is open-loop stable. This can be seen in the later sections.

p 2
=2 XO7Y 3 ww,Q,x0)

i=l j=1

(14)
P P
III. STABILITY AND LINEAR CONTROLLER DESIGN + Zzw (w, ~m,)x o' PB,.RB,.TPx )
To design the linear controller, the values of m;,j=12, .., i=t j=t
p, are determined under the consideration of the system WNCTe: . _ . .
stability. From (3), (6), and writing w,(x()) as w,, Q,;=A, P+PA,-PB RB, P-PBRB, P (15)
From (14),
P
x(t) = i Ax()+B,jG~ Zm RB TP |x(r) ——-Zwa X", x(0)
=1 I-l Jj=1
(16)
p
=y ,(A x(t)-B, Zm RB, Px(t)) ) +wai(W, —m, )x(t)" PB,RB,"Px()
i=1 j=1 i=t j=t .
whereX =A,+BG,i=12,..,p &) where,
B _ i =QU-+jS (17)
x()=3 3 wow, (&, ~B,RB,"P k(1) From (17), let,
From (8), , P"' = J, <0 forall iandj (18)
w,m;B.RB; TPx(s) + w,w,B,RB; TPx(r)
z.z; ! . ;,Z 1+sgn(iw,x(xf PB,RB,’Px(:))
&HE T 2 T 1y m;= = forallj=1,2,...,p(19)
=33 ww, (&, -B,RB, Py + 33w, ~m,)B,RB,TPx(ry (10) 7 3
o e, 1 ifz20 "
It can be observed from (10) that x(f) = Y wAx(r) if R=0. SBMD=1_| e 29
i=l
This system is stable if there exists a common positive definite T TOM (16) to (19), we have,
matrix P, € R™ such that all A,"P,+P,A, are negative V—-—ZZw,w,x(t) 3,x()
definite (Theorem 2.1 in [5]). In [6], Wang et al. derived a L
relaxed stability condition for the following fuzzy control law: 1 1+ sgn(zpl wx(t)T PB,.RB‘,TPx(t)]
3 1 =
u(n) = ) w,(x(0)G ;x(1) an , (Wf -;}“5- 5
J=l +2
where G; e R™",j =1 ,2, ..., p, are feedback gain matrices. -
»
The fuzzy controller is function of w,(x()), implying that x Y w,x()" PB,RB " Px(r)
i=l
w,(x(£)) must be knownT Practically, w,(x(?)) is related to 1 1 . .
the plant parameters and are unknown. A linear controller of <Zi}; wowx(0)" JIJ"(’)*Z E‘ ?;Wi"(’) PB,RB; Px(¢)
(6), which does not involve w; (x(?)) , is used instead such that > 1le .
T
the relaxed stability condition can still be achieved. -/};;5 ;wix(’) PB,RB, me‘
Comparing (6) to (11), the structure of (6) is simpler. To | &
investigate the system stability of (10), we consider the - _ZZ ww, X()" 3, x(1)
following quadratic Lyapunov function, 45353 @n
V=5x@0) Px@) a2 -Z(—;—— w, _ED Zw ()T PB,RB,"Px(?)
. 1. . N
% =5(x(t)T PX()+ ()T PX(0)) (13) LT o1
As w,~—e|-— —=1,i=1,2,...,p, from the property of the
From (10) and (13), 2 2 2
r - T 1 1 .
ZZW‘W'(A' _B RB Tp)x(,) fuzzy plant model, we have e w; — 3 20,/=12,...,p
RS == Y
v = i}“ ) Px(r) Therefore, (21) implies,
+ w,(w, —m,)B,RB " Px(
- ; (w; =m,)B.RB,"Px(r) Vs~ ZZw.wjx(t)TJ,.jx(t) <0 22)
«-! j=l
ii w,w, (X'_ - B,.RB}.TP)x(t) Equality holds when x(r) = 0. Hence, the closed-loop system
+=—x(t)TP == of (10) is asymptotically stable, i.e., x(f) = 0 as 1 —> o .
+ i i w,(w, —m, )BiRB].TPx(t) From (19), to make the values of m,,j=1,2, ... p, to be either
isl j=1 0 or 1, a sufficient condition is given by,
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0 if PB,RB'P<Ofori=1,2,p;j= 1,2,-.-,;:(23
1 if PB,RB,'P20fori=12,,p;j=12,,p

PB.RB,'P,i=1,2,...,p;j=1,2, ..., p, are symmetric. This
happens under a sufficient condition that there exist matrices
S, e®R™ , j =1, 2, .., p, such that B, =BS,; or
B,=-BS,,and RS;" =S, R"20,i=1,2,..,p;j=12, ...,
p. Under the condition of B, =B S,

x(f)"PB,RB,"Px() = x(:)TPB,RS ;B Px()

it can be seen that
As
RS, =8 R"20,j=1,2,..,p, is symmetric, there must
W, e R™" such
W,W,T=RS, =S, RT20. Then x()" PB,RS,"B, Px(?)
x()"PB,W,W,"B,"Px(f) . Let y(9' =W, B,"Px(1) ,
then x(f)" PB,RB,"Px(f) = y(9)"y(#)2 0. Similarly, under
the condition of B,=-BS, ,
-x()"PBB,"Px(t) = —y(1)'y(r)<0. We can state the

design of (6) and the stability condition of (18) (the finding of
R and P) into an LMI problem. From (15) and (19),

AP+PA,+A,'P+PA, -2P(B,RB, +BRB," JP <0
A'P+PA, +A,TP+PA;

-2p(8 RB +B,.RBiT)P} PO

PR +AP PR, AP

exists a symmetric matrix that

it can be shown that

P—l

An application example of cart-pole type inverted pendulum
y system [6] (Fig. 1) will be given in this section to show the
design procedure of the linear controller.

Step I).The dynamic equation of the inverted pendulum is

. A 2 . _
() = gsin(6(1)) —amlo(t) sm(29(t2))/2 acos(8(z))u(t) @5)

41/3 —aml cos” (6(?))

where @ is the angular displacement of the pendulum, g =
9.8m/s’ is the acceleration due to gravity, m = 2kg is the mass
of the pendulum, a=1/(m + M), M e [8 80]kg is the mass of
the cart, 2/ = 1m is the length of the pendulum, and  is the
force applied to the cart. We design a linear controller such
that 6= 0 at steady state. (25) can be modeled by a fuzzy plant
model having four rules.
Rule i: IF f,(x(#)) is M} AND f,(x(?)) is M,

THEN %(?) = Ax(f) + Bu(t) fori=1,2,3,4  (26)
so that the system dynamics is described by,
4
()= Y w,(Ax(t)+ Bu(®)) @n
i=l

where

&0 elamin gmux] =[_

0= %O =160 Qo
I In

18 Té} and 60 el 6..]=[-5 51;

>

g —ambcz(t)2 cos(x, () ( sin(x, ()

SO =13 aml cos? (x,(0) ( () ) and
_ acos(x,(?) a _ 0 1

SHx)= 41/3—amlcos’(x,(0) = ' 2'[ " o]

2(B RB, +B,RB,")<0 U I BT S e
- RB, RB. |< = = ; =B, =
j i + i j 1 3 4 .flm_ 0 1 3 fzm
It can be seen that (24) involves p(p+1) LMIs as some of 0
2 B,=B, = ; fi =9 and f_=20 ,
them are the same. The solutions of R and P will both be Sra - -
symmetric. The results are summarized as follows. £, =-0.1765 and £, =-0.0052 :
Lemma 1: The closed-loop control system of (8) is Ly (AN % gy (X))
guaranteed to be asymptotically stable if the parameters ofthe Wi=— : ;
linear controller, R and P are symmetric positive definite and Z('uM, f[i(x(D) x 1, (fo (x(t))))
satisfy the following LMls, = :
Sy T, pALpI A TLA P T T ~ £ (x(D) +
PAT+AP' +P7A, +A,P"~2(B RB +BRB,7)<0 o GO =28 e g g1 g g
Joralliandj, ' S S
and i P GEON=1-p fGEO)  for 5 = 3, &
0 ifPB,RB,'P<Ofori=12,--,p;j=12,,p () +
m; = : T L i H .(fz(ll(t)))=—f1&)—fz“L for & = 1, 3
1 if PB,RB; P20 fori=12,--,p;j=L2,---,p M3 fo —fo

PB.RB jTP is necessary to be symmetric.

The design procedure is summarized as follows.
Step I). Obtain the fuzzy plant model by means of, e.g., fuzzy
modeling methods [1-2, 7, 14] or other ways.
Step 11). Find the gain G and obtain P and R by solving the
LMIs in Lemma I.

Step I1I). Determine m;,j=1,2, ..., p, according to Lemma 1.
" Obtain the control law according to (6).

IV. APPLICATION EXAMPLE

and g1, (f,(x(0)) =1= 1, (/,(x(9))) for ¢ =2, 4 are the
membership functions.
Step II) A linear controller is designed for (25) such that,

u(r) = (G - i’"zRBJT ")"(‘)

j=1
Choose

28

G=

E’%M =[3441.4886 786.6260]

such that the eigenvalues of A; +B,G,,i=1,2, 3,4, are -2
and —2. By solving the LMIs given in the Lemma 1, we have
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R =1885.8000 and 1):[19'0182 4'17“].

4.1711  1.1205
Step HI) According to Lemma 1, m; =1 forj=1,2,3,4.

Hence, the linear control by:
u(r) = [6300.0384  1552.5546x(7)

Fig. 2 to Fig. 3 show the responses of the system states with
M = 8kg (solid line) and M = 80kg (dotted line) under the

T T
i ] ,x(0)=[71—::- o] and

initial condition of x(0) = {_1?
T
] . The plant used in this paper is the same as

law is  given:

22z
x(0) =} ——
o-[2
that used in [6]. It can be observed that the responses provided
by our linear controller, which has a simpler structure, are
similar to those provided by the fuzzy controller in [6].

V. CONCLUSION

A design of linear controller for nonlinear plants with
unknown parameters based on an LMI approach has been
given. The plant is represented by a TSK model. An
application example on stabilizing a cart-pole type inverted
pendulum system has been given to illustrate the design
procedure and the merits of the proposed linear controller..
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Fig. 1. Cart-pole type inverted pendulum system.
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Fig. 2. Responses of x;(f) under M= 8kg (solid line) and M=
80kg (dotted line).
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Fig. 3. Responses of xx(f) under M= 8kg (solid line) and M=
80kg (dotted line).
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